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Abstract. Given the current position of n sites in a radio network, we

discuss the problem of �nding routes between pairs of sites such that

the energy consumption for this communication is minimized. Though

this can be done using Dijkstra's algorithm on the complete graph in

quadratic tim, it is less clear how to do it in near linear time. We present

such algorithms for the important case where the transmission cost be-

tween two sites is the square of their Euclidean distance plus a constant

o�set. We give an O(kn log n) time algorithm that �nds an optimal path

with at most k hops, and an O

�

n

1+�

�

time algorithm for the case of

an unrestricted number of hops. The algorithms are based on geometric

data structures ranging from simple 2-dimensional Delaunay triangula-

tions to more sophisticated proximity data structures that exploit the

special structure of the problem.

1 Introduction

Networks between a number of sites can be set up without additional infras-

tructure using radio communication between the sites. Such an approach has

recently gained considerable interest. We discuss the fundamental problem of

�nding good routes between pairs of sites.

Since the sites have often only limited energy reserves from batteries or power

from solar panels, a prime optimization criterion is the energy consumption. We

model this as follows. When two sites, say u and v, communicate directly, the

sender node u needs a transmission energy C

u

+juvj

2

. The cost o�set C

u

accounts

for distance independent energy consumption like the energy consumption of the

signal processing during sending and receiving. juvj

2

denotes the square of the

Euclidean distance of u and v. Although many cost functions for energy con-

sumptions have been proposed this quadratic behavior is the most fundamental

one since it accurately describes the behavior of electromagnetic waves in free

space.
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In addition to energy consumption, another expensive resource is bandwidth

1

| transmitting a data packet using range r inhibits

2

communication in an area of

size �

�

r

2

�

. Hence, our quadratic cost measure can also be viewed as an estimate

for the degree to which a route hinders other connections from using the same

frequencies. A third cost measure is the reliability of a connection. The more

nodes are involved, the higher is the probability of a failure. This cost measure

is indirectly captured by the o�set C

u

.

We model the network as a complete geometric graph where the nodes of the

graphs corresponds to the sites of the network and an edge from node u to v

in the graph has weight juvj

2

+ C

u

. In principle, an optimal path can be easily

found in time O

�

n

2

�

using Dijkstra's shortest path algorithm in this graph.

The subject of this paper is to exploit the geometric structure of the problem

to �nd energy optimal routes in time closer to O(n) than O

�

n

2

�

. After develop-

ing a number of algorithms for this problem, we were made aware of previous

work for geometric shortest path problems by Chan, Efrat, and Har-Peled [6, 4]

motivated by routing airplanes while taking into account that fuel consumption

grows superlinearly with distance. It turned out that we rediscovered a very

simple algorithm for cost functions without o�set and at least quadratic growth.

Here it su�ces to search for a path in the Delaunay triangulation and hence there

is a simple O(n logn) algorithm. This is rather easy to see since a non-Delaunay

edge e on a shortest path contains points inside the smallest circle enclosing the

edge. Replacing e by two edges going via such a point leads to a smaller sum

of squared lengths. The problem of this cost function for radio networks is that

in large networks it leads to paths with an unrealistically large number of hops

(edges).

For general cost functions, Chan, Efrat, and Har-Peled obtain an algorithm

using time and space O

�

n

4=3+�

�

for any positive constant �.

Although this is a remarkable theoretical achievement, we believe that faster

algorithms are so important for many applications that they are worth investigat-

ing even for more specialized classes of cost functions. Quadratic cost functions

with o�set seem a good compromise for radio networks. The quadratic compo-

nent implies nice geometric properties and models energy consumption in free

space and bandwidth consumption. The o�sets model energy not invested in

radio waves and allow us to penalize paths with too many hops.

1.1 New results

In Section 2 we start with a very simple algorithm based on Voronoi diagrams

that �nds optimal 2-hop paths for uniform o�set costs in time O(logn) after a

preprocessing time of O(n logn) and space O(n). Using the dynamic program-

ming principle this can easily be extended to an O(n logn) algorithm for optimal

1

120 MHz of UMTS frequency range in Germany cost about 50 � 10

9

Euro

2

In channel based systems like GSM, inhibition basically means blocking the channel

for other concurrent communication. In CDMA systems like UMTS the inhibition is

more subtle but nevertheless present.



paths with at most four hops. We then give a more general algorithm for �nding

optimal routes with up to k hops and non-uniform o�set costs with running

time O(kn logn) and O(n) space by reducing it to a special case of 3D nearest

neighbor problem and solving it e�ciently. All the above algorithms are quite

practical. Finally Section 3 gives a more theoretical solution for the general case

of non-uniform costs and arbitrary number of hops with running time and space

O

�

n

1+�

�

for any constant � > 0. The solution is based on 3D closest bichromatic

pair queries [7] similar to the general algorithm in [4]. We mainly improve the

nearest neighbor queries involved to take advantage of the special structure of

the problem.

1.2 Further Related Work

Energy e�cient communication in radio network is a widely studied problem. Be-

sides simple constant cost models [9] the most common simple model is our model

with f(juvj) = juvj

�

for some constant � � 2 [12, 10].

3

Rabaey et al. [8] men-

tion sensor and monitoring networks as a natural application for radio networks

where positions of stations are known because they are also needed on the ap-

plication level. Energy-e�cient communication by solving network optimization

problems in a graph with transmission power as edge weights is an intensively

studied approach. However, so far more complex problems like broadcasting and

multi-cast routing have been studied (e.g. [15, 14]) whereas the quadratic com-

plexity of solving the shortest path problem in a complete graph has not been

challenged.

An intensive area of research is distributed routing in dynamic situations

without complete information.

4

Unfortunately, the worst case performance of

such systems is not encouraging. Therefore we believe that research should be

driven from both sides, namely : making pessimistic distributed models more

powerful and making static models with complete information more dynamic.

We view our work as a contribution in the latter direction because faster routing

means that a centralized scheduler can handle more routing requests.

Although we are mainly applying computational geometry to radio com-

munication, one could also take the more abstract point of view that we are

interested in solving fundamental network problems in implicitly de�ned (geo-

metric) graphs. There are results in this direction on spanning trees [11] and

matchings [13].

2 Bounded Number of Hops

There are several reasons why one might prefer routes that traverse only a small

number of edges (hops) in the communication graph. If there are more hops,

3

Powers � < 2 are only relevant for nowadays rather special cases like short wave

transmission with re
ections on the ionosphere.

4
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latency might get too large, reliability becomes an issue and distance independent

energy consumption in the intermediate nodes may become too large. Therefore,

we might be interested in the energy minimal path with the additional constraint

that at most k hops should be used. Section 2.1 presents a simple algorithm for

the case of two-hop paths with uniform o�sets based on 2-dimensional closest

point queries and extends this approach to paths with three and four-hops. Then

Section 2.2 gives a generalization for k-hop paths with non-uniform o�sets that

needs more sophisticated and less standard data structures.

2.1 Two, Three, or Four Hops

Theorem 1. In a complete geometric graph de�ned by n points in the plane

with edge weights C + juvj

2

, queries for optimal 2-hop paths can be answered in

time O(logn) after preprocessing time O(n logn) using O(n) space.

Proof. Given source s and target t we can express the cost �

w

of the 2-hop path

(s; w; t) as a function of d = jstj and the distance r between w and the mid-point

M of segment st. Fig. 1 illustrates this situation. We have

h

2

= r

2

� (d=2� c)

2

= r

2

� d

2

=4� c

2

+ dc;

�

w

= a

2

+ b

2

= c

2

+ h

2

+ (d� c)

2

+ h

2

= d

2

+ 2c

2

� 2dc+ 2h

2

= d

2

=2 + 2r

2

:

Hence, we can minimize the path length by picking the intermediate node with

the smallest Euclidean distance from M . Finding the nearest neighbor is a stan-

dard problem from computational geometry and can be solved in time O(logn)

after O(n logn) preprocessing. For example we can build a Voronoi diagram of

the nodes and a point location data structure for locating w in the Voronoi

diagram [5, Section 7].

The 2-hop algorithm from Theorem 1 can be generalized for a dynamically chang-

ing set of transmitters. Using the dynamic closest point data structure [1] we

can answer two-hop route request in time O(Polylog n). For any given � > 0,

the data structure can be maintained dynamically in amortized time O

�

n

1+�

�

h

t

a b

w

r

Ms
c

d=|st|

Fig. 1. Points with equal cost for two-hop routing lie on a circle around the mid point

M between source s and target t.



per insert/delete operation. If we are content with approximate results within

a factor (1 + �), an answer can be obtained in time O(log(n)=�) [3]. Although

these worst case bounds are only obtained for rather complicated theoretical al-

gorithms we expect that simple data structures will work in practical situations.

For example, if transmitter positions are uniformly distributed, all operations

run in constant expected time using a simple grid based data structure [2].

We now explain how the 2-hop algorithm leads to an e�cient algorithm for

three and four hops.

Theorem 2. In a complete geometric graph de�ned by n points in the plane

with edge weights C + juvj

2

, an optimal path with three or four hops between

nodes s and t can be found in time O(n logn) using space O(n).

Proof. We �rst explain the method for a three-hop path (s; u; v; t). We build a

data structure for answering nearest neighbor queries as in the case of two-hop

in time O(n logn). Then we consider all n�2 possibilities for choosing v. We can

�nd the shortest three-hop path (s; u; v; t) by adding 3C + jvtj

2

to the shortest

two-hop path from s to v. This is possible in time O(logn) by Theorem 1. We

get an overall execution time of O(n logn).

To �nd a four-hop path (s; u; v; w; t) we proceed in a similar way only that

we now have to �nd two such 2-hop paths (s ! v and t ! v) for each possible

choice of v.

For a practical implementation of the above four-hop algorithm, several opti-

mizations suggest themselves that might improve the constant factors involved.

One could exploit that all the 2(n� 2) nearest neighbor queries are independent

of each other. Hence, it su�ces to implement a batched nearest neighbor algo-

rithm that runs in time O(n logn). Another more heuristic approach abandons

batched access and considers candidate points close to the mid point M �rst.

Let l be the length of the shortest path found so far. It can be shown that points

outside the disc centered at M with radius

p

l � jstj

2

=4 cannot possibly yield

improved routes and the search can be stopped.

The basic approach from Section 2.1 for 2{4 hop routing can also be gener-

alized for non-quadratic cost functions. We �rst locate \ideal" relays position in

the Voronoi diagram or a grid �le and then search in the neighborhood for good

points using a more accurate cost measure. We have not analyzed the complexity

of this approach but possibly it could lead to e�cient approximate algorithms

or exact algorithms that are e�cient in some average case model.

2.2 k Hops

For any p 2 P , let �

k

(p) denote the cost of the shortest path from the source node

s to p using at most k hops. In this section we describe a dynamic programming

algorithm that determines �

k

(t) in time O(kn logn) for any k � n� 1. Clearly,

�

1

(p) = C

s

+ jspj

2

. For i > 1 the function �

i

can be computed recursively as



follows:

�

i+1

(p) = minf�

i

(p);min

q2P

f�

i

(q) + C

q

+ jqpj

2

gg: (1)

A trivial implementation of this formula yields an algorithm with running time

O

�

kn

2

�

: We start with �

1

and iteratively determine �

i

for i increasing from 2

to k. In each of the k � 1 phases, equation 1 is applied for all p 2 P . We can

exploit the geometric structure of the problem to speed up the computation.

Theorem 3. In a complete geometric graph de�ned by n points in the plane

with edge weights C

u

+ juvj

2

, the single source shortest path problem restricted

to paths with at most k-hops can be solved in time O(kn logn) using space O(n).

Proof. Applying Lemmas 1 and 3 below, �

i+1

(p) can be computed from �

i

for

all p 2 P in time O(n logn). This corresponds to one phase of the algorithm. For

all k�1 phases, a total of O(kn logn) time is su�cient.

The problem of �nding the point q 2 P that minimizes the expression �

i

(q) +

C

q

+ jpqj

2

on the right hand side of equation 1 can be reduced to a 3D nearest

neighbor query. Consider the points P embedded into the plane z = 0 in 3-

dimensional space. Thus a point p 2 P has the form p = (x

p

; y

p

; 0) 2 R

3

. We

code the cost of a i-hop path from s to p as well as the o�set cost C

p

using the

third dimension: De�ne f

i

: P ! R

3

; f

i

(x

p

; y

p

; 0) := (x

p

; y

p

;

p

�

i

(p) + C

p

). Let

f

i

(P ) := ff

i

(p) : p 2 Pg. Since the vector from p to f

i

(p) is orthogonal to the

plane z = 0 we have for each pair p; q 2 P :

jf

i

(q)pj

2

= jqpj

2

+

�

q

�

i

(q) + C

q

�

2

= �

i

(q) + C

q

+ jqpj

2

:

Let p 2 P be �xed and choose q 2 P such that f

i

(q) is closest to p among

the points in f

i

(P ). Then q minimizes the expression �

i

(q) + C

q

+ jpqj

2

. Using

equation 1 we can compute �

i+1

(p) by answering one nearest neighbor query for

p. This justi�es the following lemma:

Lemma 1. The problem of computing �

i+1

(p) from �

i

(p) reduces to an instance

of the nearest neighbor problem with sites f

i

(P ) and query point p = (p

x

; p

y

; 0).

A standard approach for solving the nearest neighbor problem uses Voronoi

diagrams together with a point location algorithm. The worst case combinatorial

complexity of the Voronoi diagram V(S) for a 3D point set with n elements is

�

�

n

2

�

. Therefore, a straightforward application does not improve the asymptotic

running time of our algorithm. Note however that for our purposes all query

points lie in the plane e := (z = 0). Hence it su�ces to compute the subdivision

of plane e that is induced by the Voronoi diagram V(f

i

(P )). Let V

e

denote this

subdivision of e, which can be regarded as the intersection of V(f

i

(P )) and plane

e. It is very similar to a 2D Voronoi diagram except that there might be less

than n cells (faces). The worst case combinatorial complexity of V

e

is only linear



in the number of points in P .This can easily be veri�ed using Euler's formula

for planar graphs.

In the following we give an algorithm for computing V

e

(S) in time O(n logn).

We use the well known relationship between Voronoi diagrams and the intersec-

tion of upper half spaces [5]. Given a set S of n points in R

3

we map each

point p = (p

x

; p

y

; p

z

) 2 S to the hyperplane h

p

in R

4

which is the graph of the

3-variate linear function

h

p

(x; y; z) = 2p

x

x+ 2p

y

y + 2p

z

z � (p

2

x

+ p

2

y

+ p

2

z

):

A given query point q = (q

x

; q

y

; q

z

) is closest to p 2 S (among all points in S) if

and only if

p = argmax

s2S

h

s

(q

x

; q

y

; q

z

):

This can be interpreted geometrically in 4-dimensional space with dimensions

x; y; z and v as the height

5

: Consider the half spaces bounded from below (with

respect to v) by the hyperplanes H(S) := fh

s

: s 2 S)g. The upper envelope

UE(H(S)) of H(S) is de�ned as the boundary of the intersection of these half

spaces which is the graph of the 3-variate function f(x; y; z) = max

s2S

h

s

(x; y; z).

Hence p 2 S is a nearest neighbor to query point q if and only if f(q) = h

p

(q).

In this case h

p

is a supporting hyperplane that contributes a facet to UE(H(S)).

Consequently, the orthogonal projection of UE(H(S)) to the hyperplane v = 0

is the Voronoi diagram V(S). For our purposes we need to intersect the Voronoi

diagram of the 3D point set f

i

(P ) with the hyperplane (z = 0). The worst case

complexity of the resulting subdivision V

e

and V(f

i

(P )) di�er by a factor of n.

To avoid computing unnecessary information, we schedule the transition to the

subspace z = 0 before computing the upper envelope and obtain the following

algorithm:

Algorithm 1

1. Compute the set of hyperplanes H = H(f

i

(P )).

2. Intersect each hyperplane h 2 H with the hyperplane z = 0 to get a set of

2D hyperplanes H

z

.

3. Compute the upper envelope UE(H

z

).

4. Project UE(H

z

) onto the xy-plane (v = z = 0).

Lemma 2. Algorithm 1 computes V

e

(f

i

(P )) correctly and has running time

O(n logn).

Proof. Let q = (q

x

; q

y

; 0) be any query point on the xy-plane lying in the

Voronoi cell of some site p 2 f

i

(P ) = S (i.e, p is a nearest neighbor for q).

So we have h

p

(q) = max

s2S

h

s

(q). Note that for any s 2 S the 2D hyper-

plane h

z

s

2 H

z

is the graph of a 2-variate h

z

s

(x; y) = h

s

(x; y; 0). Hence, for q,

h

p

(q) = h

z

p

(q

x

; q

y

) = max

s2S

fh

z

s

(q

x

; q

y

)g. This means that h

z

p

contributes a facet

5

So we can use the notion of above and below.



to UE(H

z

). Moreover, in the projection of the UE(H

z

) to the xy-plane, q is part

of the Voronoi region that corresponds to site p.

Since the worst case combinatorial complexity of UE(H

z

) is O(n), it can

be computed in time O(n logn) [5]. It is easy to verify that all other steps of

algorithm 1 can be done in linear time.

Having computed V

e

(f

i

(P )), we can make use of a point location algorithm to

answer 2D nearest neighbor queries e�ciently.

Lemma 3. Let P be a set of n points in R

3

. Allowing O(n logn) preprocessing

time, the nearest neighbor problem for sites P and query points lying in the

xy-plane can be answered in time O(logn).

3 The General Case

In this section we consider the case of computing the shortest path without any

restrictions in the number of hops used. Since all edge weights are non-negative,

this corresponds to computing �

n�1

(t) for target node t. Using the results of the

last section one could solve the problem in time O

�

n

2

logn

�

which is even worse

than applying Dijkstra's algorithm to the complete graph. Therefore, we apply

a di�erent shortest path algorithm which was already used in [4]. It is similar

to Dijkstra's algorithm in that it settles nodes in order of the distance from the

source. But edges are never explicitly relaxed. Instead a powerful geometric data

structure replaces both edge relaxation and the priority queue data structure of

Dijkstra's algorithm.

Theorem 4. In a complete geometric graph de�ned by n points in the plane with

edge weights C

u

+ juvj

2

, the single source shortest path problem can be solved in

O

�

n

1+�

�

time and space for any constant � > 0.

Let �(v) = �

n�1

(v) denote the length of a shortest path from source s to

v 2 V . During the execution of the algorithm each node is either reached (red)

or unreached (blue). Initially all nodes except the source node are blue. Nodes

change their color from blue to red in order of increasing �() values. At the time

a node becomes red, its �() value is known. Let R and B denote the set of red

and blue nodes respectively. In each iteration, we determine a blue node with

smallest distance to the source:

v = argmin

b2B

min

r2R

f�(r) + jrbj

2

+ C

r

g (2)

This can be modeled as a closest bichromatic point problem with Euclidean

distance function using one additional dimension. We de�ne

f : R �! R

3

; f(r

x

; r

y

; 0) = (r

x

; r

y

;

p

�(r) + C

r

):

For any red-blue pair (r; b) 2 R�B, we have jf(r)bj

2

= jrbj

2

+

p

�(r) + C

r

2

. Let

f(R) = ff(r) : r 2 Rg. Then the closest bichromatic pair between the sets f(R)

and B gives the solution to Equation 2. Algorithm 2 states the pseudo code for

the general case.



Algorithm 2

B  V nfsg, R fsg, �[s] 0;

while (B 6= ;)

Find closest bichromatic pair (r; b) between sets f(R) and B.

R R [ fbg, B  Bnfbg, �[b] jf(r)bj

2

;

Correctness can be shown by induction with the following invariants: For any

red-blue pair (r; b) we have �(r) � �(b) and the �()-values of the red nodes are

determined correctly. When a point p is discovered then Equation 2 ensures that

all the remaining blue points have a �()-value at least as large as �(p). Since edge

weights are strictly positive, there cannot be a blue point on a shortest s ! p

path and hence �(p) is computed correctly. The dynamic bichromatic closest

points problems we have to solve are of special type: all blue points are lying in

the xy-plane and the distance function is simply the Euclidean distance. This

enables us to speed up the computation compared to the general 3D dynamic

closest pair problem.

Corollary 1. In a complete geometric graph de�ned by n points in the plane

with edge weights C

u

+ juvj

2

, the single source shortest path problem can be

reduced to answer a sequence of n � 1 closest bichromatic neighbor queries for

dynamically changing point sets R;B 2 R

3

of cumulative size n where all points

in B are lying in the xy-plane.

A general technique for solving the dynamic bichromatic closest pair problem is

given by Eppstein [7], who reduces the problem to the dynamic nearest neighbors

problem for dynamically changing sets of sites R and B. For blue sites B the

query points are red (q 2 R) and vice versa. Since in our application the blue set

is basically a 2D point set, we distinguish two types of nearest neighbor queries:

1. Sites S are restricted to the xy-plane (S � R

2

, query q 2 R

3

).

2. Queries q are restricted to the xy-plane (S � R

3

, q 2 R

2

).

We show that these special types of the 3D problem can be regarded as 2D

nearest neighbor problems. Consider the �rst type. Given a query point q =

(q

x

; q

y

; q

z

) we simply �nd the nearest neighbor for q

0

= (q

x

; q

y

; 0). It is easy to

verify that this is also a solution for q.

The second type of nearest neighbor queries we considered already in the

last subsection for a static set of sites. Here we again exploit the relation be-

tween Voronoi diagrams and the upper envelope of hyperplanes. Instead of pre-

computing the upper envelope, we determine for each individual query point

q = (q

x

; q

y

; 0; 0) the �rst hyperplane that is intersected by the ray emanating

from the point (q

x

; q

y

; 0;+1) in �v direction (see [1]). Since all query points lie

in xy-plane, the corresponding query rays are part of the subspace z = 0. Hence

it su�ces to restrict the calculations to 3D space (with dimensions x; y; v). We

maintain a set of 2D planes in R

3

which are obtained by intersecting the hyper-

planes H(f(R)) = fh

p

: p 2 f(R)g (using the notation from section 2.2) with

hyperplane z = 0. Agarwal and Matou�sek [1] describe algorithms for dynamic

ray shooting problems and state the following lemma.



Lemma 4. Given a convex polytope in R

3

described as the intersection of n

half-spaces, one can process it in time O

�

n

1+�

�

into a data structure of size

O

�

n

1+�

�

, so that the �rst point of the polytope boundary hit by a query ray can be

determined in O

�

log

5

n

�

time. The data structure can be maintained dynamically

in amortized time O(n

�

) per insert/delete operation.

Combined with the result of Eppstein [7] for maintaining the bichromatic closest

pair, this proves Theorem 4. In contrast to the work of [4], we considered a

more restrictive cost function which leads to a better running time. They used

the lower envelope of a set of bivariate functions to solve the nearest neighbor

problem whereas we maintain a set of linear object, namely 2D planes.

We showed how to solve the problem by answering a sequence of closest

bichromatic point queries for dynamic sets R and B. These queries have more

special properties that we have not exploited:

1. We never insert points into set B.

2. We never delete points from set R.

Our application is even more speci�c when we view a deletion followed by an

insertion as one operation, which is then the only operation we need: A node

turns its color from blue to red and is lifted up in the third dimension keeping its

x- and y-coordinates. This might be a starting points for �nding more practical

algorithms.

4 Discussion

We have proposed e�cient algorithms for energy and bandwidth e�cient com-

munication in a model designed for simplicity and resemblance to the actual

physical conditions. The problems of communication in real radio networks are

vastly more complicated and probably do not allow similarly clean solutions.

However, we believe that the algorithmic principles developed here may never-

theless remain useful. In particular, the 2{4 hop routing algorithms from Sec-

tion 2.1 are so simple and 
exible that they might be useful in practice.
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