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Abstract. The cache hierarchy prevalent in todays high performance

processors has to be taken into account in order to design algorithms

which perform well in practice. We start from the empirical observation

that external memory algorithms often turn out to be good algorithms

for cached memory. This is not self evident since caches have a �xed

and quite restrictive algorithm choosing the content of the cache. We

investigate the impact of this restriction for the frequently occurring

case of access to multiple sequences. We show that any access pattern to

k = �(M=B

1+1=a

) sequential data streams can be e�ciently supported

on an a-way set associative cache with capacity M and line size B. The

bounds are tight up to lower order terms.

Keywords: Set associative cache, external memory algorithm, memory hierar-

chy, multi merge.

1 Introduction

The mainstream model of computation used by algorithm designers in the last

half century [13] assumes a single processor with unit memory access cost. How-

ever, the mainstream computers sitting on our desktops have increasingly devi-

ated from this model in the last decade [7{9, 12, 19]. Even without taking disks

and tapes into account the memory hierarchy usually has four levels: registers,

�rst-level cache, second-level cache and main memory. We concentrate on the

relation between one cache level and the main memory since registers can only be

used in a restricted way and multiple cache levels would complicate the analysis.

Alos, in many applications, the tra�c between two levels forms the main bot-

tleneck. Including all overheads for cache miss, memory latency and translation

from logical over virtual to physical memory addresses, a main memory access

can be two orders of magnitude slower than a �rst-level cache hit while the main

memory is three to �ve orders of magnitude larger. Most machines have separate

caches for data and code so that we can disregard instruction reads as long as

the programs remain reasonably short. A cache of size M can store M=B cache

lines of size B (we use the size of the data elements of the underlying application



as unit). All accesses to the next lower level of memory are done in units of cache

lines. An a-way set associative cache consists ofM=(aB) cache sets each of which

can store a cache lines. A cache line starting at memory address xB can only

be stored in set number x modM=(aB). Caches usually use the following �xed

replacement strategy: On a cache miss, the least recently used (LRU) line in the

set of x is replaced by the new line. In order to get fast, compact caches with

acceptable power dissipation, a is a small constant between one (direct mapped

cache) and eight.

Although the technological details are likely to change in the future, physical

principles imply that fast memories must be small and are likely to be more

expensive than slower memories so that we will have to live with memory hier-

archies when talking about sequential algorithms for large inputs.

The general approach of this paper is to model one cache level and the main

memory by the single disk single processor variant of the external memory model

by Vitter and Shriver [22] where M is the size of the internal memory, B is the

block transfer size, i.e., we use the word pairs \cache line" and \memory block",

\cache" and \internal memory", \main memory" and \external memory" and

\I/O" and \cache fault" as synonyms if the context does not indicate otherwise.

We include set associative caches into this model by disallowing explicit access to

the internal memory, i.e., the cache replacement strategy decides which external

memory references can be satis�ed from the internal memory. We call this model

cached memory.

An almost ubiquitous principle behind e�cient external memory algorithms

is to read or write k = O(M=B) sequential streams of data [21]. For example,

k-way merge sort is based on reading and radix sort, bu�er trees [1] or external

memory list ranking [18] are based on writing k sequences. Empirically, many of

these algorithms also perform well on cached memory. For example, in a study

by LaMarca and Ladner [11], k-way merging performs best among algorithms

tried and even Sibeyn's quite involved external memory list ranking algorithm

[18] performs better than a simple pointer chasing although the latter executes

only a fraction of the instructions. We have designed an external memory prior-

ity queue based on k-way merging which performs O((I=B) log

M=B

I=M) I/Os

for any sequence of operations with I insertions [17]. This algorithm is similar

to previous algorithms with the same asymptotic performance [1, 3, 5, 4] yet per-

forms at least a factor of three fewer I/Os. Running in the cache hierarchy of a

workstation the algorithm is several times faster than an optimized binary heap

implementation which is empirically the best algorithm for small queues [17].

Similarly, an external memory version of a simple parallel algorithm for gen-

erating random permutations turns out to be several times faster on a cached

memory than the conventional sequential algorithm which executes only half

as many instructions [16]. This algorithm is based on writing k sequences to

memory.

Unfortunately, most of these algorithms can fail miserably on set associative

caches because an adversary can schedule the accesses in such a way that all

recent accesses use the same cache set. In Section 2 we show that it is su�cient



to randomize the starting addresses of the data streams and to reduce k by a

factor O(B

1=a

) in order to ensure that the expected number of cache misses after

N accesses is only a small fraction larger than the N=B �rst reference misses

which have to occur when streaming through N elements. We give upper and

lower bounds on the expected number of cache faults which are tight up to lower

order terms for the range of inputs which allow e�cient operations.

Related Work

Caches are intensively studied in computer architecture and compiler design (e.g.

[7]). Evaluations are usually based on simulations. This yields useful quantitative

results if traces of meaningful benchmarks are simulated. Simulations also have

the advantage that interactions between many complicated features for mitigat-

ing cache faults like victim caches, write bu�ers or out-of-order execution can be

modeled. However, each simulation only yields results for one particular combi-

nation of architecture, algorithm, implementation, compiler and input. This is

undesirable for algorithm designers who would like to estimate the performance

of a family of algorithms for many systems and all possible inputs before starting

to implement. Simulations are unacceptable for theoreticians who would like to

quantify the relative power of di�erent machine models. Furthermore, the ex-

ternal memory algorithms we have in mind, produce so many irregular memory

references and data dependencies that the additional architectural optimizations

mentioned above cannot completely hide the general structure of the cache de-

�ned by the parameters M , B and a.

Simple analytical cache models have long been known [15, 10]. However, in

these independent reference models the cache lines are assumed to be accessed in

random order according to some �xed probability distribution. This assumption

is not warranted for accessing sequences and we will see that it can lead to wrong

predictions about the impact of the associativity a.

Fricker and Robert [6] have proposed a model for accessing sequences. How-

ever, it is limited to one particular access schedule while we allow an adversary

to schedule the accesses. Furthermore, their model can only be evaluated numer-

ically for a particular set of parameters and needs at least quadratic time in the

number of memory accesses whereas our analysis yields closed form formulas.

On the application side, cache optimizations play an important role in high

performance numerical computations but the data access patterns occurring

there are often quite regular or at least predictable. Therefore, the basic tech-

niques used in numerical computations are of little help in optimizing irregular

and unpredictable access patterns.

External memory algorithms are a well established branch of algorithmics [21,

20]. Our approach to randomize the starting addresses of sequences is similar

to the approach used by Barve et al. [2] in order to e�ciently use parallel disks

for k-way merging. However, we do not want to bound the maximum contention

but the fraction of overloaded cache sets. Furthermore, for k-way merging, a

clever prefetching algorithm is available whereas we have to live with a �xed

replacement strategy. Correspondingly, the analysis techniques are di�erent.



Overview

After de�ning the problem in Section 2 we derive an upper bound on the number

of cache misses due to sequence accesses in Section 3. In Section 4 this bound is

re�ned to take interferences between sequence data and work areas with arbitrary

access patterns into account. Section 5 complements this with a lower bound.

Finally, Section 5 summarizes the results and compares the bounds numerically

for a particular example.

2 Multiple Data Streams

Consider k sequences stored in arrays. These elements are read (or written)

sequentially. An adversary is allowed to schedule the accesses to these sequences,

i.e, it is allowed to choose N and s

1

; : : : ; s

N

2 f1; : : : ; kg in the following code:

for t := 1 to N do

work on the current element of sequence s

t

advance sequence s

t

to the next element

The analysis is done for starting addresses x

j

of the arrays with the prop-

erty that the values x

j

modM are uniformly distributed independent random

variables. If the actual code does not use randomization, the analysis will yield

average case bounds. The code can also actively randomize the starting ad-

dresses. For example, when allocating memory for a sequence of length l, the

algorithm can choose a random o�set 0 � X < M , allocate a memory block

of length l + X and put the sequence at the end of this block. Note that in a

system with virtual memory, this wastes only one page of physical memory since

the beginning of the block is never accessed. If the lengths of all sequences are

known in advance (e.g., for k-way merge sort), it should be possible to waste

even less memory since we additionally have the choice in which order to allocate

the sequences. This may be important for large k and large second level caches

in order to avoid running out of virtual address space.

3 An Upper Bound

We start with the simplifying assumption that all memory accesses are sequence

accesses. In Section 4, we will see that this is often a good approximation.

Theorem 1. Given an a-way set associative cache with capacity M and cache

line size B < M=a. Any schedule of N sequential accesses to k < M�(a)=B

sequences with randomized starting address

1

causes at most

E[X

a

] � N

�

1

B

+

�

kB

M�(a)

�

a

+O

�

k

M�(a)� kB

��

+ k (1)

cache misses, where �(a) =

a

p

a!=a.

1

Closer inspection of the proof shows that it is su�cient if the starting addresses are

(a+ 1)-wise independent.



We analyze the di�erent types of cache misses seperately. Whenever a cache

line is accessed for the �rst time we have a �rst reference miss (also called

compulsory miss).

Lemma 1. There are at most N=B �rst reference cache misses.

Conict misses arise when more than a cache lines are mapped to the same

cache set. We �rst look at the case that frequent accesses to one sequence �ll up

multiple entries of a cache set:

Lemma 2. There are at most N(k � 1)=(M �B + 1) � Nk=M conict misses

with one sequence occupying at least two entries of a cache set.

Proof. Consider the accesses for a particular sequence b. LetN

b

denote the length

of sequence b. An access to b can only cause a conict miss with a sequence b

0

occupying at least two entries of the accessed cache set, if b

0

has made at least

M�B+1 accesses after the last access to b (due to LRU replacement). Since there

are at most N � N

b

accesses by other sequences overall, sequence b can su�er

at most b(N �N

b

)=(M �B + 1)c of the conict misses under consideration.

Summing over all sequences yields the claimed bound.

The most interesting cache misses are those conict misses where di�erent

sequences access the same cache set.

Lemma 3. Any schedule of N sequential accesses to k sequences with random-

ized starting address causes at most

E[X

a

] � N

B � 1

B

��

(k � 1)(B � 1)

M�(a)

�

a

+

k � 1

M�(a)� (k � 1)(B � 1)

�

+ k (2)

cache misses due to conicts between di�erent sequences, where �(a) =

a

p

a!=a.

Proof. Let c

bj

denote the probability that the cache set addressed by sequence

b in its j-th access has been accessed by at least a other sequences since the last

access of sequence b. By linearity of expectation the expected number of this

type of conict misses can be bounded by

E[X

a

] � k +

B � 1

B

X

b

N

b

X

j=1

c

bj

where N

b

denotes the total number of accesses to sequence b. The factor (B �

1)=B stems from the fact that the �rst access to each cache line cannot cause a

conict miss since it causes a �rst reference miss.

Now we focus on a particular sequence (we therefore drop the b indices for

now). Let

�

B := f1; : : : ; kg n fbg :

Let z

ij

denote the number of accesses made to sequence i 2

�

B between the

(j � 1)-th and j-th access by sequence b and let

z

j

:=

X

i2

�

B

z

ij



denote the total number of possibly conicting accesses. The probability that

sequence i uses the same cache set between these two accesses is

p

ij

= min

�

1; (z

ij

+B � 1)

a

M

�

if z

ij

> 0 and 0 otherwise. We have

c

bj

� min

�

1;

X

I�

�

B;jIj=a

Y

i2I

p

ij

�

since the sequences are shifted independently. We now relax the integrality re-

quirement on z

ij

and also ignore that p

ij

is truncated to zero for z

ij

= 0 and

solve a constrained maximization problem for the function

P

j

p

j

where

p

j

:= min

�

1;

X

I�

�

B;jIj=a

Y

i2I

a

M

(z

ij

+B � 1)

�

:

First, observe that for �xed z

j

, p

j

is maximized by choosing all coe�cients

identical, i.e.,

p

j

� min

�

1;

�

k � 1

a

���

z

j

k � 1

+B � 1

�

a

M

�

a

�

:

A global maximum for this bound is achieved by setting as many of the z

j

as possible to a value just large enough to achieve an estimate p

j

= 1.

Since

�

k�1

a

�

�

(k�1)

a

a!

we get

p

j

�

(k � 1)

a

a!

 

z

j

k�1

+B � 1

M

!

a

=

�

z

j

+ (k � 1)(B � 1)

M�(a)

�

a

so z

j

� M�(a) � (k � 1)(B � 1) is needed for estimating p

j

= 1. There are at

most (N �N

b

)=(M�(a)� (k � 1)(B � 1)) of these terms each contributing 1 to

P

j

c

bj

. The remaining z

j

have to be set to 0 now so that we get a contribution

of at most

N

b

�

k � 1

a

��

(B � 1)a

M

�

a

� N

b

�

(k � 1)(B � 1)

M�(a)

�

a

for these small terms of

P

j

p

j

.

2

Summing over all sequences b we get

k

X

b=1

N

b

X

j=1

c

bj

� N

�

k � 1

M�(a)� (k � 1)(B � 1)

+

�

(k � 1)(B � 1)

M�(a)

�

a

�

:

Theorem 1 is an immediate consequence of lemmata 1, 2 and 3.

2

Note that this way of estimation is only for technical convenience and gives no hint

on actual worst case access schedules: The zero z

j

only have a contribution because

we ignore the truncation of p

ij

to zero and the nonzero z

j

are counted twice.



4 A Notion of Working Set

Theorem 1 accounts for the most important source of conict misses. However,

in practice our application will have additional frequently accessed data which

comes into conict with the sequence data. In particular, we usually need k

sequence pointers and additional data structures of size O(k) for deciding which

sequence is accessed next. We formalize this concept by de�ning a working set

of size w to be data touching w=B cache lines such that no two of them are

mapped to the same cache set. In particular, this is the case if the working set

consists of w words of contiguous aligned memory.

Lemma 4. Let Y

a

denote the number of conict misses predicted by lemmata

2 and 3 for an a-way associative cache. With a working set of size w � M=a,

the expected number of conict misses involving both the working set and the k

sequences can be bounded by 2E[Y

a�1

]wa=M .

Proof. An access to stream b conicts with the working set with probability

wa=M . This can lead to a conict miss if before the last access of stream b,

one sequence has made at least M � B + 1 accesses or if a � 1 other cache

lines have accessed this cache set. The number of these events can be bounded

using lemmata 2 and 3 respectively. The factor two is a conservative estimate to

account for the cases when working set data is evicted from the cache and has

to be reloaded later.

Substituting the previously derived bounds we can conclude that Theorem 1

extends to the case where the working set is taken into account.

Corollary 1. Given an a-way set associative cache with capacity M and cache

line size B < M=a. For any schedule of N sequential accesses to k sequences

with randomized starting address and any number of accesses to a working set

of size O(k) �M=a, Relation (1) bounds the number of cache faults.

Only for a working set of size 
(Bk), conict misses involving the working set

begin to dominate.

5 A Lower Bound

The bound from Theorem 1 and Corollary 1 on the expected number of cache

misses is asymptotically tight. Indeed for the most interesting case of k =

o(M=B), when conict misses are rare, the bound is tight up to lower order

terms:

Theorem 2. There are access schedules to k < M=(aB) sequences such that

any strategy to choose the starting addresses of the sequences incurs

E[X

a

] � N

�

1

B

+

B � 1

B

�

(k � a)B

M�(a)

�

a

max

��

1�

kaB

M

�

;

1

e

��

�O(kM)

(3)

cache faults on the average, where �(a) =

a

p

a!=a.



Proof. Suppose that the adversary �rst \randomly forwinds" the sequences, i.e.,

it accesses the �rst X

i

elements of sequence i where the X

i

are random variables

choosen uniformly and independently from f1;Mg.

Even disregarding the conict misses during forwinding, we have

E[X

a

] � N=B + P

miss

(N � kM)(B � 1)=B � N=B + P

miss

N(B � 1)=B � kM

where N=B is the number of �rst reference misses and where P

miss

is the prob-

ability of a conict miss after forwinding when one of the last B� 1 elements of

a cache line are accessed.

After forwinding, the cache sets currently accessed by the sequences are in-

dependent and uniformly distributed over the entire possible range regardless

which starting addresses have been used. If the adversary subsequently accesses

the sequences in a round robin fashion then an access to a sequence implies a

cache miss if the k � 1 previous accesses to the other sequences have accessed

the same cache set at least a times. The probability for this event is

P

miss

:=

X

i�a

�

k � 1

i

��

aB

M

�

i

�

1�

aB

M

�

k�i�1

(4)

For the purpose of numerical evaluation this is already all we need since the

above tail of a binomial distribution can be e�ciently evaluated using a continued

fraction development of the incomplete beta function [14, Section 6.4]. For an

easy to interpret closed form formula it su�ces to work with the �rst summand:

P

miss

>

�

k � 1

a

��

aB

M

�

a

�

1�

aB

M

�

k�a�1

>

(k � a)

a

a!

�

aB

M

�

a

�

1�

aB

M

�

k

=

�

(k � a)B

M�(a)

�

a

�

1�

aB

M

�

k

�

�

(k � a)B

M�(a)

�

a

max

��

1�

kaB

M

�

;

1

e

�

The latter estimation uses the relations (1 � aB=M)

k

� 1=e for k < M=(aB)

and (1�aB=M)

k

� (1�kaB=M).

6 Discussion

If we set the number of sequences k to cM=B

1+1=a

for some constant c, we can

see from Theorem 1 and Corollary 1 that the probability of a conict miss is

c

a

a

a

=(Ba!)+\lower order terms", i.e., it is of the same order as the fraction of

�rst reference misses. For larger k we get a considerable performance degrada-

tion.

Perhaps the most interesting qualitative conclusion is that for large cache

lines, the associativity can have a remarkably high impact on cache e�ciency.

This stands in contrast to the results one would get by blindly applying the



independent refenrence model, namely that associativity is of little help. The

independent reference model must fail because k long sequences access all cache

lines about equally frequently but nevertheless exhibit signi�cant locality if k is

not too large.
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Fig. 1. Conict miss probabilities for B = 64, M = 2

20

. Exact values are computed

for the di�cult random round robin schedule from Section 5. For a = 2 the worst case

upper bound from Theorem 1, a simple approximation and the simple lower bound

from Corollary 1 are also shown.

We can also draw quantitative conclusions, since for k = O(M=B

1+1=a

) the

derived bounds are tight up to lower order terms. At least for large B this

also works out in practice. For example, consider the conict miss probabilities

shown in Fig. 1. The parameters used there represent a possible con�guration

of the 2-way associative second level cache of the MIPS R10000 processor [12].

Namely, 4 Mbytes divided into cache lines of 256 bytes each. We assume a

unit of 4 bytes so that M = 2

20

and B = 64. In this situation, a conict

miss probability of 1=B � 1:5% should not be exceeded to match the number

of �rst reference misses. For the range k around 1000 ful�lling this condition,

both upper and lower bounds are quite accurate. Even for larger k they clearly

separate the behavior of the 2-way associative cache from direct mapped and

4-way associative alternatives. While a direct mapped cache can only support a

few hundred sequences e�ciently, a 4-way associative version still works quite

well for k = 4000. Still, a fully associative cache could support 2

14

sequences

without conict misses.
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