
Scanning Multiple Sequences Via Cache Memory

�

Kurt Mehlhorn Peter Sanders

Max-Planck-Institut f�ur Informatik,

Im Stadtwald, 66123 Saarbr�ucken, Germany.

E-mail: mehlhorn,sanders@mpi-sb.mpg.de

WWW: http://www.mpi-sb.mpg.de/~mehlhorn,sanders

February 23, 2000

Abstract

We consider the simple problem of scanning multiple sequences. There are k sequences

of total length N which are to be scanned concurrently. One pointer into each sequence

is maintained and an adversary speci�es which pointer is to be advanced. The concept of

scanning multiple sequence is ubiquitous in algorithms designed for hierarchical memory.

In the external memory model of computation with block size B, a memory consisting

of m blocks, and at most m sequences the problem is trivially solved with N=B memory

misses by reserving one block of memory for each sequence.

However, in a cache memory with associativity a, every access may lead to a cache

fault if k > a. For a direct mapped cache (a = 1) two sequences su�ce. We show that by

randomizing the starting addresses of the sequences the number of cache misses can be

kept to O(N=B) provided that k = O(m=B

1=a

), i.e., the number of sequences that can be

supported is decreased by a factor B

1=a

. We also show a corresponding lower bound.

Our result leads to a general method for converting sequence based algorithms designed

for the external memorymodel of computation to cache memory even for caches with small

associativity.

Keywords: Cache memory, set associative cache, external memory algorithm, memory hi-

erarchy, multi merge, data distribution.

1 Introduction

Modern computers have a hierarchical memory: registers, �rst-level cache, second-level cache,

main memory, disks, and tapes. Levels closer to the processor (= lower levels) are faster and

smaller than the levels further away from the processor. Data transfer between di�erent

levels occurs in chunks which are called cache blocks or pages depending on the level of the

hierarchy. There is an essential di�erence between the cache memory and higher levels of the

hierarchy: the placement of data in the cache is highly restricted by a hardware feature called

associativity of the cache.

Formally, a cache memory is de�ned as follows. A cache consists of a certain number m of

cache blocks. Each cache block has size B and hence the total size of the cache is M = m �B.

�

Partially supported by EU ESPRIT LTR Project N. 20244 (ALCOM-IT). A preliminary version of this

paper was presented at ESA 99 [San99a].

1

Size may be measured in bytes; a more natural unit is the size of the data elements of the

underlying application and this is the view which we adopt in this paper.

1

Data transport

from and to the next higher level of memory is done in blocks. We call a block of the next

higher level of memory a memory block. A memory block can usually be only placed at a

small number of cache blocks. More precisely, a cache is organized into s = m=a cache sets

and each cache set consists of a cache blocks; the constant a is called the associativity of the

cache. A memory block starting at memory address xB (in short hand: memory block x)

can only be cached in the set numbered x mod s. A cache with a = 1 is called direct mapped

and a cache with a = m is called fully associative. For reasons of speed, cost, and power

dissipation, actual caches have an associativity between one and eight. An alternative but

equivalent view of cache memory is as follows: Memory is partitioned into s sets of memory

blocks and for each set, a fully associative cache of size a is available.

An access to a memory block x that is not residing is cache memory is called a cache fault

or cache miss. Caches usually use the LRU or the FIFO replacement strategy: On a cache

miss, the least recently used (LRU) block or the block used �rst (FIFO) in the set of x is

replaced by the new block.

Actual hardware caches may have features which our model does not directly handle,

(e.g., [HP96, Chapter 5]). Nevertheless, it can often be adapted. The most important issue

are multiple levels of cache. Our analysis can be applied to each pair of levels separately. A

similar situation arises for pseudo-associative caches which have fast and slow cache hits. For

fast hits it behaves like an a-way associative cache and for slow hits it behaves like an a

0

-way

associative cache with a

0

> a. Often, a = 1 and a

0

= 2. Again, our analysis can be used

to estimate the number of slow and fast hits separately. Another example are victim caches.

A victim cache is a small (typically, less than 32 blocks) cache with high associativity that

holds the last cache blocks evicted from the cache. However, if the number of sequences k

exceeds the capacity of the victim cache, it has little impact on the number of cache misses.

For similar reasons, a small number of write bu�ers are of little help if a program writes to

many sequences.

In this paper we study the e�ect of the degree of associativity on the simple problem of

concurrent traversal of multiple sequences, a problem ubiquitous in algorithms designed for

hierarchical memory: k sequences of total length N are to be scanned concurrently. In each

iteration, an adversary selects the sequence whose pointer is to be advanced. We show:

� If the number of sequences is larger than a, the worst case number of cache misses is N .

� If the starting addresses of the sequences are randomized and the number of sequences

is k = O(m=B

1=a

), the number of cache misses is �(N=B). If k � s, our upper and

lower bounds on the number of cache faults essentially agree.

� Our results imply a general method for converting sequence-based algorithms designed

for the external memory model of computation to cache-aware algorithms: Restrict

the number of sequences concurrently traversed to O(m=B

1=a

) and randomize starting

addresses.

We state our results in more detail in Section 2. Section 3 puts our results into context.

Sections 4 and 5 contain the proofs of our upper and lower bounds, respectively, Section 6

generalizes the upper bound to situations where additional data is stored in addition to

1

We make the simplifying assumption that B is integral.

2

the sequence data, Section 7 discusses the space requirement of randomized placement, and

Section 8 gives applications.

2 Problem De�nition and Statement of Results

We de�ne our problem formally and state our results. Consider k sequences stored in arrays.

The sequences are read (or written) sequentially. An adversary is allowed to schedule the

accesses to the sequences, i.e., is allowed to choose N and s

1

; : : : ; s

N

2 f1; : : : ; kg in the

following code:

for t := 1 to N do

work on the current element of sequence s

t

;

advance sequence s

t

to the next element;

We use N

i

to denote the number of elements scanned in sequence i. Then N =

P

i

N

i

.

The concurrent traversal of multiple sequences is trivially realized in the external memory

model of computation as long as the number k of sequences is at most the number M=B of

memory blocks. One simply reserves one block of memory for each sequence. Observe that

this strategy does not follow the LRU or the FIFO replacement strategy, as it always replaces

a block by a block of the same sequence, and that it uses full associativity, as all elements of

a sequence are stored in the same block of main memory. The total number of I/Os is equal

to the number of memory blocks occupied by the sequences (at least

P

i

dN

i

=Be and at most

k more) and this is clearly optimal.

The behavior of multiple sequence access in cache memory can be dreadful. Assume that

the sequences are scheduled in round-robin fashion and that the i-th block of all sequences

is mapped to the same cache set for all i, 1 � i � k. This will for example be the case, if

all sequences have the same length c �M=a for some integer c and if the sequences are stored

consecutively. In this situation and if the number of sequences is more than a, each access

will lead to a cache fault. The total number of cache faults is equal to N . We performed an

experiment to con�rm this analysis. We allocated an array A of N = 2

24

ints and divided it

into k pieces of length L = N=k each. We then scanned the pieces in round-robin fashion (p

and p0 are pointers into the array A) and summed the elements of all sequences.

for (p0 = A; p0 < A + L; p0++) {

p = p0;

do {

sum += *p;

p += L;

} while (p < A + N);

}

Table 1 shows the observed running times for di�erent values of k.

We propose a randomized strategy to overcome this dreadful behavior. More precisely,

we propose to choose the starting addresses x

j

of the arrays such that the values x

j

modM

are uniformly distributed independent random variables. The idea of placing objects at

random positions in memory has been successfully used before, e.g., in a multi-disk merge-

sort algorithm [BGV97] and in PRAM-simulation [MV84, Ran91]. Our strategy may be

implemented as follows: When allocating memory for a sequence of length l, the algorithm

3

k 1 2 4 8 16 32 64 128 256 512 1024

T 0.52 4.03 3.99 4.02 4.04 4.01 5.6 5.58 5.6 5.53 5.55

Table 1: Execution times for scanning k sequences of total length N = 2

24

in round-robin

fashion. The program was compiled with g++, optimization
ag -O4, and run on a SUN

Sparc Ultra. The machine has a direct mapped cache, i.e., a = 1. We see two jumps in the

execution time. The running time increases almost eight-fold when k grows from 1 to 2, and

it grows by a factor of about 5:6=4:0 = 1:4 when the number of sequences exceeds the size of

the translation lookaside bu�er (= the cache used for translating addresses). The latter e�ect

is not part of our analysis.

chooses a random o�set X with 0 � X < M , allocates a memory block of length l +X, and

puts the sequence at the end of this block. Note that in a system with virtual memory, this

wastes only one page of physical memory since the beginning of the block is never accessed.

We come back to this point in Section 7.

We show three upper bounds for the behavior of multiple sequence access under the

randomized placement policy. We start with a simple and almost tight upper bound for

direct mapped caches (a = 1) and then give a general bound which is close to the lower

bound for k � s and works well for the practically important cases a = 2 and a = 4. We

continue with a better bound for large a and moderate k which is asymptotically tight in the

sense that its predictions about how large k can be made such that the number of cache faults

is still O(N=B) is only a constant factor away from the predictions of the lower bound.

The lower bound is based on the following simple two-phase access pattern: In the �rst

phase it \randomly winds forward" the sequences, i.e., it accesses the �rst X

i

elements of

sequence i where the X

i

are chosen uniformly and independently from f0;M � 1g. In the

second phase it accesses the sequences in round-robin fashion.

Theorem 1 Given an a-way set associative cache with m cache blocks, s = m=a cache sets,

cache block size B, and LRU or FIFO replacement strategy. Let U

a

denote the expected number

of cache misses in any schedule of N sequential accesses to k sequences with randomized

starting addresses

2

.

U

1

� k +

N

B

�

1 + (B � 1)

k

m

�

(1)

U

a

� k +

N

B

�

1 + (B � 1)

�

k�

m

�

a

+

1

m=(k�) � 1

+

k � 1

s� 1

�

for k �

m

�

(2)

U

a

� k +

N

B

�

1 + (B � 1)

�

k�

m

�

a

+

1

m=(k�)� 1

�

for k �

m

2�

(3)

U

a

�

N

B

�

1 + (B � 1)P

tail

�

k � 1;

1

s

; a

��

� kM (4)

�

N

B

1 + (B � 1)

�

(k � a)�

m

�

a

�

1�

1

s

�

k

!

� kM (5)

U

1

�

N

B

�

1 + (B � 1)

k � 1

m+ k � 1

�

(6)

2

It is su�cient if the starting addresses are (a+ 1)-wise independent.

4

where � = �(a) = a=a!

1=a

,

3

P

tail

(n; p; a) =

P

i�a

�

n

i

�

p

i

(1 � p)

n�i

is the cumulative binomial

probability and � := 1 + �(daxe) where x = x(a) = inf f0 < z < 1 : z + z=�(daze) = 1g.

4

We will prove Theorem 1 in Sections 4 and 5. In the remainder of this section we will

discuss the bounds and give numerical examples. All out bounds are of the form p � N + C,

where C does not depend on N . We call p the cache miss probability. We �rst discuss C and

then turn to p.

The term k in the upper bounds accounts for the possible extra block per sequence due to

randomization. The term �kM in the lower bound accounts for the fact that the adversary

in our lower bound advances all sequences by a random amount in the range 0 to M � 1. We

are not able to count cache faults in this set-up phase.

We turn to the cache miss probability next. With r = k=m, the ratio between the number

of sequences and the number of cache blocks, our bounds for the cache miss probability

essentially become

p

1

�

1

B

(1 + (B � 1) � r) (7)

p

1

�

1

B

(1 + (B � 1) �

r

1 + r

) (8)

p

a

�

1

B

(1 + (B � 1)(r�)

a

+ r�+ ar) for r �

1

�

(9)

p

a

�

1

B

(1 + (B � 1)(r�)

a

+ r� for r �

1

2�

(10)

p

a

�

1

B

(1 + (B � 1)(r�)

a

�

1�

1

s

�

k

(11)

Every strategy has to incur at least one cache fault per memory block, the so-called �rst

reference miss. The term 1=B which occurs in all bounds accounts for the �rst reference

misses. The remaining terms bound the number of con
ict misses. A con
ict miss arises

when a cache block is evicted before all elements in the block are scanned. The number of

con
ict misses can be made small by restricting the number of sequences. Observe that the

upper bounds converge to 1=B for r going to zero. More generally, inequality (3) tells us that

the number of misses is O(N=B) if r � 1=(2�) and (B� 1)(r�)

a

= O(1). Both conditions are

satis�ed if k � m=max(B

1=a

; 2�).

The upper and lower bounds for p

1

basically agree; the upper bound lies only by a factor

1 + r above the lower bound.

For a � 2 the situation is more complicated. For small r, (10) is better than (9) since

its derivative at r = 0 is smaller, for large r, (9) is better than (10) since � < �. The upper

bounds are close to the lower bound as long (1�1=s)

k

� 1 and (�+a)r � 1. Both conditions

are satis�ed if k � s.

We next give a numerical example. We use

5

cache size M = 2

20

, block size B = 64, m =

M=B = 2

14

, and k = 512 sequences. For a direct mapped cache (a = 1), inequality (1) bounds

3

We have 1 � � < e, �(1) = 1, �(2) � 1:41, �(3) � 1:66, �(4) � 1:81, �(8) � 2:13, and �(1) = e � 2:71

4

We have �(1) = 2, �(2) = 1 + �(2) � 2:41, �(4) = 1 + �(3) � 2:66, and �(1) = 1 + e � 3:71. The

function f(x) = x+ x=�(dx � ae) is piece-wise linear with discontinuities at x = i=a for integer i. The function

value decreases at discontinuities and f(0+) = 0 and f(1) = 1 + 1=�(dae) > 1. This implies that x(a) exists.

Let j(a) = dx(a)ae. Then x(a) = �(j(a))=(1 + �(j(a))) and hence �(a) = �(j(a))=x(a) = 1 + �(j(a)). Thus

2 � �(a) � 1 + �(a).

5

The example models the MIPS R1000 [MIP98] architecture which has a 2-way associative second level

5

1/B

2/B

3/B

4/B

5/B

257 1246 1555 2105 3878

P
r[

ca
ch

e
m

is
s]

k

p1<
p1>
p2<
p2>
p4<
p4>

Figure 1: Cache miss probabilities for B = 64, M = 2

20

. The upper and lower bound on the

cache miss probability p

a

for an a-way associative cache is denoted p

a

> and p

a

<, respectively.

The bounds clearly separate di�erent degrees of associativity. Observe the little bump in p

4

>;

for k � 1600 inequality (3) gives the better bound and for k > 1600 inequality (2) gives the

better bound.

the number of con
ict misses to (63 � 512=2

14

)N=B � 2N=B, i.e, twice the number of �rst

reference misses. The upper bounds holds for any access pattern. Inequality (6) gives a lower

bound of (63 � 511=(2

14

+ 512))N=B � 2N=B con
ict misses for some access pattern. Upper

and lower bound are essentially the same. For a two-way associative cache (a = 2) inequality

(2) bounds the number of con
ict misses to ((63=2) � 16

�2

+ 1=(16

p

2 � 1) + 1=16)N=B �

(1=8 + 1=22 + 1=16)N=B � 0:23N=B, i.e., less than one fourth the number of �rst reference

misses. Thus a two-way associate cache does signi�cantly better than a direct mapped cache.

Inequality (5) gives a lower bound of 63(511

p

2=2

14

)

2

� (1� 2

�13

)

512

N=B � 0:12N=B con
ict

misses; direct evaluation of inequality (4) gives a lower bound of 0:22N=B con
ict misses.

Figure 1 plots our bounds for the cache miss probability for a = 1, a = 2, and a = 4

and M = 2

20

and B = 2

64

. In the upper bounds the minimum of inequalities (2) and (3)

is taken. The bounds clearly separate the behavior of direct mapped, 2-way associative and

4-way associative caches. Moreover, for a = 1 and a = 2 the lower and upper bounds are

quite close together in particular in the interesting range of small miss probabilities.

Our bounds can also be used to predict the number of sequences that can be supported

with a certain cache miss probability. For example, for a = 1 cache miss probability 2=B

is guaranteed for up to 252 sequences and can be reached with 263 sequences, for a = 2 is

guaranteed for up to 1246 sequences and can be reached with 1255 sequences, and for a = 4

is guaranteed for up to 2105 sequences and can be be reached with 3878 sequences.

cache with cache blocks of 256 bytes. Assuming data units of 4 bytes this amounts to B = 64. A possible size

for the cache memory is 4 Mbytes or M = 2

20

.

6

3 Related Work

The in
uence of associativity has been intensively studied in computer architecture and com-

piler design (e.g. [HP96]) and in numerical software. In the former areas, experiments (simu-

lations or actual execution) are the method of choice, as at this point of time only experiments

are able to model the complex interactions between advanced features for mitigating cache

faults like victim caches, write bu�ers or out-of-order execution. Unfortunately, simulations

only yield results for one particular combination of architecture, algorithm, implementation,

compiler and input and hence the insights from simulations are hard to generalize. This is

undesirable for algorithm designers who would like to estimate the performance of a family of

algorithms for many systems and all possible inputs. Simulations are also unable to quantify

the relative power of di�erent machine models.

Algorithms of numerical analysis, e.g., matrix multiplication, frequently exhibit regular

and predictable access patterns to memory and hence it is often possible to �nd a memory

layout that is guaranteed to work well even in caches with small associativity. A detailed

study of matrix multiplication can be found in [ERS98].

There is little theoretical work on the in
uence of associativity. The independent reference

model assumes that cache blocks are accessed according to some �xed probability distribution

(possibly combined with a simple deterministic access pattern [LFM99]). The independent

reference model is not able to distinguish di�erent degrees of associativity. Direct mapped

caches work as well as caches of higher associativity. Sequence traversal does not fall under

the independent reference model.

The paper which comes closest to ours is by Fricker and Robert [FR91]. They proposed

a model for accessing sequences. However, their model is limited to one particular access

schedule while our model allows an adversary to schedule the accesses. Furthermore, their

model can only be evaluated numerically for a particular set of parameters. The time for

the evaluation grows at least quadratically in the number of memory accesses, whereas our

analysis yields closed form and nearly matching upper and lower bounds.

Sen and Chatterchjee [SC00] describe a general method for emulating external memory

algorithms in direct mapped cache memory. The emulation multiplies the number of cache

faults by two and increases the instruction count by �(B) for every cache fault. In particular,

the emulation implies that m sequences can be maintained with only a constant loss in

e�ciency. It remains to be seen, whether the emulation has small enough constant factors to

be of general use. In order to give the reader a feeling for the constant factors, we outline the

emulation for our problem. We maintain an array B of sizemB in main memory in addition to

the memory containing the sequences (which we call sequence memory in the sequel). Assume

that the pointer into the i-sequence is at address p

i

and let d

i

= bp

i

=Bc. Then addresses

d

i

B, d

i

B + 1, : : : , d

i

B +B � 1 of the i-th sequence are stored in the i-the block of B and all

reading and writing to sequence data is done in the bu�er. When p

i

reaches d

i

B+B, the i-th

block of the bu�er is written back to sequence memory and �lled with the next block of the

i-sequence. The accesses to B incur no cache faults, because the bu�er maps without con
icts

into cache memory. In this way the number of cache faults will be 2N=B and the instruction

count is increased by �(N). The additional instructions arise for copying the data into and

from the bu�er and for checking each access to a sequence element whether it crosses a block

boundary.

7

4 The Proof of the Upper Bounds

We prove Inequalities (1){(3). The access to the �rst element of any sequence is always a

cache miss. For any sequence b and any j, 2 � j � N

b

, let x

bj

be the probability that we

have a cache miss when accessing the j-th element of sequence b where N

b

is the number of

accesses made by sequence b. The expected number of cache misses is therefore given by

U

a

= k +

k

X

b=1

N

b

X

j=2

x

bj

:

The j-th element is either the �rst element in its memory block (probability 1=B) or it is

not (probability (B � 1)=B). In the �rst case, we always have a cache miss (a so-called �rst

reference miss). In the second case, we have a cache miss (a so-called con
ict miss) if there

were at least a accesses to sequences di�erent from b between the (j � 1)-th and the j-th

access to b that went to the cache set addressed by sequence b in its j-th access. We use c

bj

to denote the probability of this event. Then

x

bj

=

1

B

+

B � 1

B

� c

bj

and hence the expected number of cache faults is bounded by

U

a

� k +

N

B

+

B � 1

B

k

X

b=1

N

b

X

j=2

c

bj

:

The hard part is now to analyze

P

N

b

j=2

c

bj

for a particular sequence b. Let

�

B := f1; : : : ; kgnfbg.

Let n

ij

be the number of accesses to sequence i between the (j � 1)-th and the j-th access to

sequence b and let n

j

=

P

i2

�

B

n

ij

and note that

P

j

n

j

� N �N

b

.

We look at three cases. Section 4.1 covers the easiest case a = 1, i.e., direct mapped

caches. This case introduces some of the main ideas for the analysis and also yields a slightly

better bound than the case of general a. We derive inequality (2) in Section 4.2 and inequality

(3) in Section 4.3.

4.1 Direct Mapped Caches (Inequality (1))

Let p

ij

denote the probability that between the (j � 1)-th and the j-th access to sequence b,

sequence i uses the same cache set as sequence b. We have: p

ij

= 0 if n

ij

< 1, p

ij

= 1=s for

n

ij

= 1 since the access goes to a random cache set, and p

ij

grows linearly with n

ij

for larger

values until all s cache sets are a�ected by the recent accesses to sequence i. Thus,

p

ij

= min(1;

n

ij

+B � 1

sB

) if n

ij

> 0, 0 otherwise (12)

and hence

c

bj

�

X

i2

�

B

p

ij

�

X

i2

�

B

n

ij

+B � 1

sB

=

(B � 1)(k � 1) + n

j

sB

:

8

By summing over all sequences we get

k

X

b=1

N

b

X

j=2

c

bj

�

k

X

b=1

(N

b

� 1)(B � 1)(k � 1) + (N �N

b

)

sB

=

(N � k)(B � 1)(k � 1) +N(k � 1)

sB

=

k � 1

sB

(NB � k(B � 1)) �

Nk

s

=

Nk

m

:

Multiplication with (B � 1)=B completes the proof of Inequality (1).

4.2 Inequality (2)

We partition the set of con
ict misses into two sets: The �rst set contains all misses where

some sequence occupies at least two entries of the cache set under consideration and the

second set contains all other con
ict misses. The �rst set is the subject of the next lemma.

Lemma 1 There are at most

N

B

�

k�1

s�1

con
ict misses in accesses to cache sets in which some

other sequence occupies at least two entries of some cache set.

Proof: Consider an access to a particular sequence b. If it causes a con
ict miss and some

other sequence b

0

is occupying at least two entries of the accessed cache set at the time of

the miss then b

0

has made at least sB � B + 1 accesses after the last access to b (due to

LRU or FIFO replacement). Since there are at most N � N

b

accesses by other sequences

overall, sequence b can su�er at most b(N �N

b

)=(sB �B + 1)c of the con
ict misses under

consideration. Summing over all sequences yields

N(k � 1)

sB �B + 1

�

N

B

�

k � 1

s� 1

misses.

To bound the remaining con
ict misses, we bound c

bj

for those cases where no other

sequence made more than sB �B + 1 accesses. To observe a cache miss, there must then be

a set I �

�

B of at least a other sequences hitting the same cache set as sequence b. Since the

sequences are shifted independently we can estimate

c

bj

� min

�

1;

X

I�

�

B;jIj=a

Y

i2I

p

ij

�

where p

ij

is de�ned as in Equation (12).

To bound p

j

:=

P

I�

�

B;jIj=a

Q

i2I

p

ij

=

P

I�

�

B;jIj=a

Q

i2I

(B � 1 + n

ij

)=(sB), we view the

latter expression as a function of the n

ij

and ask for its maximum subject to the constraints

that n

j

=

P

i2

�

B

n

ij

is �xed and 0 � n

ij

� sB �B. With u

i

= (B � 1 + n

ij

)=(sB) and h = a

we conclude from Lemma 2 below that the maximum is attained if all n

ij

have the same value

n

j

=(k � 1). We obtain

p

j

�

X

I�

�

B;jIj=a

��

n

j

k � 1

+B � 1

�

1

sB

�

a

=

�

k � 1

a

���

n

j

k � 1

+B � 1

�

1

sB

�

a

�

(k � 1)

a

a!

��

n

j

k � 1

+B � 1

�

1

sB

�

a

=

�

n

j

+ (k � 1)(B � 1)

M=�

�

a

:

9

We next bound

P

N

b

j=2

c

bj

=

P

N

b

j=2

min(1; p

j

) by applying Lemma 3 below with A = N

b

� 1 �

N

b

, C = (k � 1)(B � 1), D =M=�, and E = N �N

b

and obtain

N

b

X

j=2

c

bj

�

N �N

b

M=�� (k � 1)(B � 1)

+N

b

�

(k � 1)(B � 1)

M=�

�

a

�

N �N

b

M=�� (k � 1)(B � 1)

+N

b

�

k�

m

�

a

:

By summing over all sequences we get

B � 1

B

k

X

b=1

N

b

X

j=2

c

bj

�

B � 1

B

�

N(k � 1)

M=�� (k � 1)(B � 1)

+N

�

k�

m

�

a

�

=

N

B

�

(k � 1)(B � 1)

M=�� (k � 1)(B � 1)

+ (B � 1)

�

k�

m

�

a

�

�

N

B

�

1

m=(k�) � 1

+ (B � 1)

�

k�

m

�

a

�

: (13)

Summing this bound, the k + N=B �rst reference misses, and the con
ict misses accounted

for in Lemma 1 completes the proof of Inequality (2) except for the proof of our two technical

lemmas.

Lemma 2 Subject to the constraints u

i

� 0 and

P

i2

�

B

u

i

= U , the function f : (u

i

)

i2

�

B

7!

P

I�

�

B;jIj=h

Q

i2I

u

i

is maximized for u

i

= U=(k � 1) for all i 2

�

B.

Proof: The claim is obvious for h = 1 or k � 1 = j

�

Bj = 1. So assume h � 2 and k � 3.

Observe �rst that f is continuous and that the domain of de�nition is compact. Thus the

function attains its maximum. We now show indirectly that all arguments are equal at the

maximum. Assume w.l.o.g. that f1; 2g �

�

B and let B

0

=

�

B n f1; 2g. Each term in f either

contains none of u

1

or u

2

, exactly one, or both. We may therefore rewrite f as

X

I�B

0

;jIj=h

Y

i2I

u

i

+

X

I�B

0

;jIj=h�1

(u

1

+ u

2

)

Y

i2I

u

i

+

X

I�B

0

;jIj=h�2

(u

1

� u

2

)

Y

i2I

u

i

:

For �xed values of u

i

, i 2

�

B n f1; 2g and �xed value of u

1

+ u

2

, the maximum is attained if

u

1

= u

2

. We conclude that all components of the maximizing argument are equal.

Lemma 3 Let A 2 N and consider positive parameters C, D, E with D > C. Then

f(z) :=

A

X

j=1

min

1;

�

z

j

+ C

D

�

h

!

�

E

D � C

+A

�

C

D

�

h

;

where f is understood as a mapping from R
A

�0

to R under the constraint

P

A

j=1

z

j

= E.

Proof: Clearly, f(z) � A and hence the claim is trivial if E=(D � C) > A. So assume that

E � A(D�C). In the maximizing argument, there will be no z

j

larger than D�C and hence

it su�ces to bound f(z) =

P

A

j=1

((z

j

+ C)=D)

h

subject to the constraints 0 � z

j

� D � C

and

P

A

j=1

z

j

= E. For convenience, de�ne g(x) := ((x+ C)=D)

h

.

10

We claim that in a maximizing argument of f at most one z

j

has a value strictly between

0 and D�C. This follows from the observation that, since g is concave, we have g(x)+g(y) <

g(x� �)+ g(y+ �) for any two x and y with 0 < x � y < (D�C) and � = min(x;D�C� y).

The maximizing argument of f therefore has bA=(D � C)c variables equal to D � C,

one variable equal to �(D � C) where � = A=(D � C) � bA=(D �C)c, and the remaining

A� bA=(D � C)c � 1 variables equal to zero. Thus

f(z) �

�

A

D � C

�

+ g(�(D � C)) +

�

A�

�

A

D � C

�

� 1

��

C

D

�

h

:

Next observe that g(�(D�C)) � (1��)g(0)+�g(D�C) = (1��)(C=D)

h

+� by the concavity

of g. Thus f(z) � A=(D�C)+A(C=D)

h

.

4.3 Inequality (3)

In the proof of Inequality (2) we distinguished between two kind of accesses: cache misses

where some other sequence occupied at least two entries of the accessed cache set and cache

misses where at least a other sequences accessed the same cache block. Lemma 1 dealt with

the former case of faults. Its proof does not exploit random placement and gives a bound

that increases with a. In order to get a better bound we have to study more carefully under

what circumstances sequences occupy more than one block of a cache set.

Lemma 4 Let d

ij

= b(n

ij

+B�1)=(sB)c, and let z

ij

= n

ij

�d

ij

�sB. Then �(B�1) � z

ij

<

sB� (B�1) and either d

ij

or d

ij

+1 of the accesses to sequence i go to the same cache set as

the j-th access to b. The probability for the second event is bounded by p

ij

= (z

ij

+B�1)=(sB).

Proof: We have d

ij

� 0 and hence the claim is certainly true for n

ij

= 0. So assume

n

ij

> 0. If n

ij

= 1, sequence i uses one memory block. For each increment of n

ij

, the

expected number of memory blocks occupied by the n

ij

elements of sequence i grows by

1=B, since the probability that the additional element starts a new memory block is 1=B.

The expected number of memory blocks occupied by the n

ij

elements is therefore equal

to 1 + (n

ij

� 1)=B. For a �xed cache set, these memory blocks use an expected number

of (1 + (n

ij

� 1)=B)=s cache blocks in the set. The actual number of cache blocks used

is either the
oor or the ceiling of this number. The latter case occurs with probability

(1+(n

ij

�1)=B)=s�d

ij

= (B�1+n

ij

�d

ij

�sB)=(sB) = p

ij

.

Let d

j

=

P

i2

�

B

d

ij

. Between the j � 1-th and the j-th access to sequence b at least d

j

cache blocks of the cache set containing the j-th access to b are replaced. If a are to replaced,

there must be a subset I �

�

B of cardinality h

j

:= a � d

j

such that all sequences i 2 I use

d

ij

+ 1 cache blocks in the cache set. We want to bound the probability c

bj

of this event.

We use di�erent arguments for small and large values of h

j

and therefore group the indices

j according to the value h

j

. For h, 0 � h � a, let J

(h)

be the set of j with h

j

= h, let

N

(h)

b

=

�

�

J

(h)

�

�

, let N

(h)

=

P

j2J

(h)

n

j

, and let Z

(h)

=

P

j2J

(h)

z

j

. In the proof of Inequality (2)

we only distinguished the sets J

(a)

and [

h<a

J

(h)

and used Lemma 1 to deal with the latter

set.

Consider �rst the case that h � x � a where x = x(a) is de�ned as in the statement of

Theorem 1; we re�ne the argument used in the proof of Lemma 1. For any j 2 J

h

we have

11

d

j

� (1� x)a and hence (using d

ij

= b(n

ij

+B � 1)=(sB)c � (n

ij

+B)=(sB))

n

j

=

X

i2

�

B

n

ij

�

X

i2

�

B

(d

ij

� sB �B) � (1� x) � a � sB � kB =M=� � kB:

Thus

X

j2J

(h)

c

bj

�

�

�

�

J

(h)

�

�

�

�

X

j2J

h

n

j

M=� � kB

:

We next consider h � x � a and hence h � dx � ae. Consider any j 2 J

h

. There must be a

subset I �

�

B of cardinality h

j

such that all sequences i 2 I use d

ij

+ 1 cache blocks in the

cache set under consideration. We want to bound

c

bj

� min(1; p

j

) where p

j

:=

X

I�

�

B;jIj=h

j

Y

i2I

p

ij

=

X

I�

�

B;jIj=h

j

Y

i2I

z

ij

+B � 1

sB

:

Maximizing p

j

using Lemma 2 (with z

j

=

P

i2

�

B

z

ij

, �(B � 1) � z

ij

< sB � (B � 1), and

u

i

= (z

ij

+B � 1)=(sB)) we get z

ij

= z

j

=(k � 1). We obtain

p

j

�

X

I�

�

B;jIj=h

j

��

z

j

k � 1

+B � 1

�

1

sB

�

h

j

=

�

k � 1

h

j

���

z

j

k � 1

+B � 1

�

a

M

�

h

j

�

(k � 1)

h

j

h

j

!

��

z

j

k � 1

+B � 1

�

a

M

�

h

j

=

�

(z

j

+ (k � 1)(B � 1))a

M(h

j

!)

1=h

j

�

h

j

�

�

z

j

+ kB

M=�

�

h

j

;

where the last inequality uses h

j

� dx � ae and hence

a

(h

j

!)

1=h

j

�

a

dxae!

1=dxae

�

dxae

x � dxae!

1=dxae

=

�(dxae)

x

= 1 + �(dxae) = � :

We can now estimate

P

j2J

(h)

min(1; p

j

). We apply Lemma 3 with A = N

b

, C = kB,

D =M=�, and E = Z

(h)

and obtain

X

j2J

(h)

min(1; p

j

) �

Z

(h)

M=� � kB

+N

(h)

b

�

k�

m

�

h

:

Observe next that Z

j

+ (a � h

j

)sB = N

j

for all j. Summation over j 2 J

(h)

yields Z

(h)

+

N

(h)

b

� (a� h) � sB = N

(h)

. We may therefore rewrite the right hand side as

N

(h)

�N

(h)

b

(a� h)sB

M=� � kB

+N

(h)

b

�

k�

m

�

h

=

N

(h)

M=� � kB

+N

(h)

b

"

�

k�

m

�

h

�

(a� h)s

m=� � k

#

:

Consider the expression in the square bracket. We claim that this expression is non-positive

for h < a. Since k � m=(2�), the �rst term is bounded by (1=2)

h

. The second term

is at least (a � h)s=(m=�) = (a � h)�=a. Substituting h = a � d it therefore su�ces to

show (1=2)

a�d

� d�=a or a=2

a

� �d=2

d

for d � 1. For d � 2, the inequality holds since

� � 2 and since x 7! x=2

x

is decreasing for x � 2. For d = 1 the inequality holds, since

a=2

a

� 1 � �(a)=2 for all a.

12

We conclude that

X

j2J

(h)

c

bj

�

X

j2J

(h)

min(1; p

j

) �

N

(h)

M=� � kB

+N

(h)

b

�

k�

m

�

a

for all h. Summing the bound over all h yields

N

b

X

j=2

c

bj

�

N �N

b

M=� � kB

+N

b

�

k�

m

�

a

:

By summing over all sequences we obtain

B � 1

B

k

X

b=1

N

b

X

j=2

c

bj

=

N

B

�

1

m=� � 1

+ (B � 1)

�

k�

m

�

a

�

:

This completes the proof of Equation (3).

5 The Lower Bounds (Inequalities (4), (5), and (6))

We prove Inequalities (4), (5), and (6). Recall the two-phase access strategy. In the �rst phase

the adversary \randomly winds forward" the sequences, i.e., it accesses the �rst X

i

elements

of sequence i where the X

i

are chosen uniformly and independently from f0;M � 1g. In the

second phase it accesses the sequences in round-robin fashion.

After winding forward, we have a �rst reference miss with probability 1=B. Furthermore,

the cache sets currently accessed by the sequences are independent and uniformly distributed

over the entire possible range regardless which starting addresses have been used and hence

each access to the last B � 1 elements of a memory block has the same probability P

miss

of a

cache fault. We have a cache miss if the k� 1 preceding accesses to the other sequences have

accessed the same cache set at least a times. The probability for this event is

P

miss

:=

X

i�a

�

k � 1

i

��

1

s

�

i

�

1�

1

s

�

k�1�i

:

We conclude that the expected number of cache misses is at least

N

B

+

(N � kM)(B � 1)

B

P

miss

�

N

B

(1 + (B � 1)P

miss

)� kM:

This proves Inequality (4). For Inequality (5) we estimate P

miss

by the �rst term of the sum.

We have:

P

miss

>

�

k � 1

a

�

s

�a

�

1�

1

s

�

k�1�a

>

(k � a)

a

a!

s

�a

�

1�

1

s

�

k

=

�

(k � a)�

m

�

a

�

1�

1

s

�

k

:

For Inequality (6) we use P

miss

= 1�

P

i<a

�

k�1

i

� �

1

s

�

i

�

1�

1

s

�

k�1�i

. For a = 1 this amounts

to P

miss

= 1� (1� 1=m)

k�1

. Next observe that

(1� 1=m)

k�1

= e

(k�1) ln(1�1=m)

� e

�(k�1)=m

� 1=(1 + (k � 1)=m);

where the �rst inequality follows from ln(1 + x) � x for all x and the second inequality

follows from e

�x

(1+x) � 1 for x > 0 (observe that the line through the point (�x; e

�x

) with

slope e

�x

intersects the y-axis below the value 1.). Thus P

miss

� 1 � 1=(1 + (k � 1)=m) =

(k � 1)=(m+ k � 1).

13

6 A Generalization

In the preceding sections we studied the concept of scanning multiple sequences in its pure

form. An application of the concept will also access additional data; there is need for sequence

pointers and for data structures which decide which sequence is to be accessed next. In this

section we will show that a large class of algorithms based on the concept runs well in cache

memory.

We consider algorithms that scan k sequences of total length N and use additional data

occupying w con
ict-free memory blocks, i.e., no two are mapped to the same cache set. This

will be the case if the additional data has size at most sB and is stored in contiguous words

of memory. We refer to the additional data as the working set.

Theorem 2 Let U

a

denote our bound on the number of cache misses for an a-way associative

cache de�ned in Theorem 1 and de�ne U

0

= N . With the working set occupying w con
ict-

free memory blocks, the expected number of cache misses arising in the N accesses to the

sequence data and any number of accesses to the working set, is bounded by w+(1�w=s)U

a

+

2(w=s)U

a�1

.

Proof: We �rst show how to charge the cache faults caused by accesses to data in the working

set. The �rst fault of each memory block in the working set is charged to the memory block

and each further fault is charged to the sequence access which caused the eviction of the block

from the cache memory. In this way w faults are charged to the blocks in the working set

and all faults of blocks in the working set are charged to some access.

Consider next the accesses to sequences data. Such an access goes either to a cache set

not used by the working set (probability 1 � w=s) or it goes to a cache set also used by the

working set (probability w=s). For the former case of accesses the analysis of Theorem 1

applies and hence the number of cache faults in such accesses is bounded by (1 � w=s)U

a

.

For the second kind of accesses, we make two observations: we certainly upper bound the

number of cache faults caused by sequence accesses if we restrict the size of a cache set to

a� 1 and each access is charged one further fault (namely the access of the working set data

which it might have evicted). Thus, the total number of charges to accesses of the second

kind is bounded by 2(w=s)U

a�1

.

The preceding theorem is easily extended to additional data of larger size. For example,

if the additional data occupies l contiguous memory blocks, the expected number of cache

faults is bounded by l + (1� w=s)U

a�r

+ 2(w=s)U

a�r�1

, where w = l mod s and r = bw=sc.

7 Space Requirement

Our randomized placement strategy wastes virtual address space. Although the actual space

used for the k sequences is at most N +2kB

0

, where B

0

is the size of a virtual memory page,

the virtual address space used might be as large as N + kM . For large k and large M this

might be a problem. Consider the numerical example discussed at the end of Section 2: With

M = 2

24

bytes of cache memory, a 2-way associative cache easily supports k = 2

10

sequences.

The naive memory allocation scheme wastes kM = 2

34

virtual memory. On 32 bit systems

this is impossible and even a 64 bit operating system might only work if these 16 Gbytes of

space are available on the swapping disk. Fortunately, there are better allocation strategies.

14

We start with the simple example where all sequence lengths are multiples of M and

known in advance. We choose o�sets X

i

2 [0 ::M � 1], i 2 f1; : : : ;Mg uniformly at random,

sort the o�sets and then allocate the sequences in the sorted order. In this way the total

wasted memory is at most M . A similar scheme can be used for arbitrary sequence lengths.

The problem of a space e�cient allocation order then becomes a special case of the traveling

salesman problem. Several greedy approximation algorithms suggest themselves which seem

to be non-trivial to analyze however.

A scheme that works even if the sequence lengths are not known in advance maintains

a data structure with all free intervals of memory. When a sequence of size L

i

and random

o�set X

i

is to be allocated, the data structure is searched for a free interval which can

accommodate the sequence with this o�set. Then, only the space actually needed for the

sequence is allocated. We give an analysis of this scheme for the case that all sequences have

the same length L. We assume that memory starts at logical address 0 and that sequence i

is started at address d

i

M +X

i

such that d

i

2 N is minimized.

Theorem 3 Assume that all sequence have the same length L and let R = max d

i

. Then

E[R] � 2 +max(4eN=M; log(2eN)):

Proof: If all sequence have length L, the condition that the placement of the i-th sequence

at dM +X

i

con
icts with the placement of the j-th sequence can be simpli�ed to dM +X

i

2

[d

j

M +X

j

� L + 1 :: d

j

M +X

j

+ L � 1], i.e., each placement excludes an interval of length

2L + 1 for future placements. Let I

j

= [d

j

M + X

j

� L + 1 :: d

j

M + X

j

+ L � 1] and let

I

0

j

= fx modM : x 2 I

j

g be the image of I

j

under reduction modM .

Consider the i with d

i

= R. By the above, X

i

is contained in R intervals I

0

j

with j < i and

hence in at least R + 1 intervals I

0

j

, 1 � j � n. Thus the probability that R = r is bounded

by the probability that there is an x which is contained in r + 1 intervals I

0

j

, 1 � j � n. The

probability for this event is bounded by

p

r

:=M

�

k

r + 1

��

2L� 1

M

�

r+1

since there are M choices for x,

�

k

r+1

�

choices for the subset of r + 1 indices and 2L� 1 out

of M choices for each selected index. We simplify the bound and obtain

p

r

�

Mk

r+1

(2L)

r+1

(r + 1)!M

r+1

� 2e �N �

�

2eN

rM

�

r

;

where the second inequality uses the fact that kL = N and that (r + 1)! � r! � (r=e)

r

. Let

r

0

= max(4eN=M; log(2eN)). For r � r

0

we have

p

r

� 2e �N �

�

2eN

rM

�

r

� 2e �N �

�

2eN

r

0

M

�

r

� 2e �N �

�

1

2

�

r

�

�

1

2

�

r�r

0

and hence

E[R] =

X

r

p

r

� r

0

+

X

r�r

0

�

1

2

�

r�r

0

� r

0

+ 2:

15

8 Applications

There is a large and growing body of work on algorithms designed for hierarchical mem-

ory. They run under the names external memory algorithms or cache-aware algorithms or

cache-oblivious algorithms. A recent survey of external memory algorithms was given by Vit-

ter [Vit98]. Many algorithms designed for hierarchical memory use the concept of scanning

multiple sequences. In almost all cases the analysis of the algorithms assumes full associativity

and user-controlled block replacement.

User-controlled block replacement was addressed by Frigo et al [FLPR99]. They point out

that a cache of size 2M with the LRU-replacement strategy produces at most twice as many

cache faults as a cache of size M and user-controlled replacement strategy. The results holds

for fully associative caches.

Our results imply that external memory algorithms based on sequence traversal will run

with essentially the same number of memory faults, in a cache with small associativity pro-

vided

� the number of sequences is su�ciently small, e.g., k � m=max(B

1=a

;min(a; 2�)),

� the starting addresses of the sequences are randomized, and

� the data manipulated in addition to the sequence data is small.

Speci�cally, the following algorithms will run well in cache memories of small associativity:

k-way merge sort [NBC

+

94, LL97], radix sort, the cache oblivious algorithms Funnelsort

and Distributionsort described in [FLPR99], bu�er trees [Arg95], external memory list rank-

ing [Sib97], cache-aware generation of permutations [San98],
ash sort [Neu98, RR99], the

cache-aware priority queue of [San99b], all solutions to the class of batched geometric prob-

lems mentioned in the survey [Vit98], the general techniques for obtaining external algorithms

from parallel algorithms [CGG

+

95, SK97, DDH97].

Some of the papers mentioned above, e.g. [NBC

+

94, LL97, San98, San99b], report the

experimental fact that their algorithms run well in cache memory. The experiments were

performed on random data. For some of these applications it should be easy to prove this

observation.

References

[Arg95] L. Arge. The bu�er tree: A new technique for optimal I/O-algorithms. In 4th WADS,

number 955 in LNCS, pages 334{345. Springer, 1995.

[BGV97] R. D. Barve, E. F. Grove, and J. S. Vitter. Simple randomized mergesort on parallel disks.

Parallel Computing, 23(4):601{631, 1997.

[CGG

+

95] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamasia, D. E. Vengro�, and J. S. Vitter.

External memory graph algorithms. In 6th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 139{149, 1995.

[DDH97] F. Dehne, W. Dittrich, and D. Hutchinson. E�cient external memory algorithms by sim-

ulating coarse-grained parallel algorithms. In ACM Symposium on Parallel Architectures

and Algorithms, pages 106{115, Newport, RI, 1997.

[ERS98] N. Eiron, M. Rodeh, and I. Steinwarts. Matrix multiplication: A case study of algorithm

engineering. In K. Mehlhorn, editor, 2nd Workshop on Algorithm Engineering, number

MPI-I-98-1-019, ISSN: 0946-011X in Research Reports MPII, pages 98{109, 1998.

16

[FLPR99] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.

In 40th Symposium on Foundations of Computer Science, 1999.

[FR91] C. Fricker and P. Robert. An analytical cache model. Technical Report 1496, INRIA, Le

Chesnay, 1991.

[HP96] J. L. Hennessy and D. A. Patterson. Computer Architecture a Quantitative Approach.

Morgan Kaufmann, 1996.

[LFM99] R. E. Ladner, J. D. Fix, and A. La Marca. Cache performance analysis of traversals and

random access. In 10th Symposium on Discrete Algorithms, 1999.

[LL97] A. LaMarca and R. E. Ladner. The in
uence of caches on the performance of sorting. In

8th Symposium on Discrete Algorithm, pages 370{379, 1997.

[MIP98] MIPS Technologies, Inc. R10000 Microprocessor User's Manual, 2.0 edition, 1998. http:

//www.mips.com.

[MV84] K. Mehlhorn and U. Vishkin. Granularity of memory in parallel computation. Acta Infor-

matica, 21:339{374, 1984.

[NBC

+

94] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet. Alphasort: A RISC machine

sort. In SIGMOD, pages 233{242, 1994.

[Neu98] K. S. Neubert. The
ashsort1 algorithm. Dr. Dobb's Journal, pages 123{125, February

1998.

[Ran91] A.G. Ranade. How to emulate shared memory. Journal of Computer and System Sciences,

42(3):307{326, june 1991.

[RR99] N. Rahman and R. Raman. Analysing cache e�ects in distributed sorting. In 3rd Workshop

on Algorithm Engineering, LNCS, 1999.

[San98] P. Sanders. Random permutations on distributed, external and hierarchical memory. In-

formation Processing Letters, 67(6):305{310, 1998.

[San99a] P. Sanders. Accessing multiple sequences through set associative caches. In ICALP, number

1644 in LNCS, pages 655{664, 1999.

[San99b] P. Sanders. Fast priority queues for cached memory. In ALENEX '99, Workshop on Algo-

rithm Engineering and Experimentation, number 1619 in LNCS, pages 312{327. Springer,

1999.

[SC00] S. Sen and S. Chatterjee. Towards a theory of cache-e�cient algorithms. SODA, pages

829{838, 2000.

[Sib97] J. Sibeyn. From parallel to external list ranking. Technical Report MPI-I-97-1-021, Max-

Planck Institut f�ur Informatik, 1997.

[SK97] J. Sibeyn and M. Kaufmann. BSP-like external-memory computation. In 3rd Italian

Conference on Algorithms and Complexity, pages 229{240, 1997.

[Vit98] J. S. Vitter. External memory algorithms. In 6th European Symposium on Algorithms,

number 1461 in LNCS, pages 1{25. Springer, 1998.

17

