
Polynomial Time Algorithms for
Network Information Flow

Peter Sanders
�

MPI Informatik
Stuhlsatzenhausweg 85

66123 Saarbrücken, Germany

sanders@mpi­sb.mpg.de

Sebastian Egner
Philips Research Laboratories

Prof. Holstlaan 4
5656 AA Eindhoven

The Netherlands

[sebastian.egner,ludo.tolhuizen]@philips.com

Ludo Tolhuizen
Philips Research Laboratories

Prof. Holstlaan 4
5656 AA Eindhoven

The Netherlands

ABSTRACT

The famous max-
ow min-cut theorem states that a

source node s can send information through a network

(V;E) to a sink node t at a data rate determined by the

min-cut separating s and t. Recently it has been shown

that this rate can also be achieved for multicasting to

several sinks provided that the intermediate nodes are

allowed to reencode the information they receive. In

contrast, we present graphs where without coding the

rate must be a factor
(log jV j) smaller. However, so

far no fast algorithms for constructing appropriate cod-

ing schemes were known. Our main result are polyno-

mial time algorithms for constructing coding schemes

for multicasting at the maximal data rate.

Categories and Subject Descriptors

E.4 [Coding and Information Theory]: Formal mod-

els of communication; C.2.2 [Network Protocols]: Rout-

ing protocols; F.2.2 [Nonnumerical Algorithms and

Problems]: Routing and layout

General Terms

algorithms theory

Keywords

Coding, communication, derandomization, �nite �eld,

linear algebra, multicasting, network information the-

ory, randomized algorithm

1. INTRODUCTION

�

Partially supported by DFG grant SA 933/1-1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’03, June 7–9, 2003, San Diego, California, USA.
Copyright 2003 ACM 1­58113­661­7/03/0006 ...$5.00.

b2b1
b2b1

b2b1

v

u

s w

z

x

y

2b

2b
1b

1b

2b

1b

Figure 1: An example where coding helps [1].

In this paper, we study the problem of multicasting:

Consider a directed graph G = (V;E), a source node

s 2 V , and a set of sink nodes T � V . The task is to

send the same information from the source to all sinks at

maximum data rate (bandwidth). Edges can transport

symbols of some alphabet.

If there is only one sink t 2 T , we have the well known

max-
ow problem and the maximum data rate corre-

sponds to the maximum
ow from s to t which equals

the minimum cut separating s from t. Maximum
ows

can be found in polynomial time. Furthermore, a
ow

of magnitude h can be decomposed into h edge disjoint

paths so that multicasting simply has to send one input

symbol along each of these paths.

Things get more complicated for multiple sinks. For

example, consider the graph in Figure 1 [1]. There are

ows of magnitude two from s to each sink in T = fy; zg.

The reader can easly verify that there is no way to as-

sign two input symbols to
ow paths such that each sink

gets both symbols. Ahlswede et al. [1] have shown that

coding within the network can solve this problem. In

our example, assume we want to multicast the bits b

1

and b

2

. Node w forwards the exclusive-or b

1

� b

2

of the

bits it receives. Now, sink y can �nd b

2

by computing

b

1

�(b

1

�b

2

) and sink z can get b

1

from b

2

�(b

1

�b

2

). It

turns out that this works for all networks, i.e., the up-

per bound on the obtainable data rate imposed by the

minimum cut separating s from some sink t 2 T can

be achieved using coding [1, 15]. This area of network

information
ow is conceptually interesting because it

brings together the seemingly unrelated concepts of cod-

ing and network
ows.

As we have seen in the example from Figure 1, the

data rate can be smaller if coding is not allowed, i.e.,

nodes can only forward (copies of) symbols they receive.

In Section 4 we give simple examples where the rate

achievable without coding must be a factor
 (log jV j)

smaller. In addition, maximizing multicast data rate

without coding is at least as hard as the minimumSteiner

tree problem [4, 12], i.e., even for undirected graphs,

1 + � approximation is hard for some � > 0:01 [5] and

after intensive research, no algorithm achieving an ap-

proximation factor better than 1.55 is known [17].

Our main result is that although coding allows higher

data rates, �nding optimal multicast coding schemes is

possible in polynomial time.

1

1.1 Overview
We continue the introduction with basic notation in

Section 1.2 and a review of related work in Section 1.3.

As our main result, Section 2 develops polynomial time

algorithms for unit capacity directed acyclic graphs. Sec-

tion 3 gives adaptations for capacitated and cyclic graphs

that achieve almost optimal rate. The logarithmic gap

to multicas ting without coding is demonstrated in Sec-

tion 4. Section 5 gives an alternative algorithm for mul-

ticasting with coding that trades faster coding scheme

construction for higher requirements for the size of the

�nite �eld used. This algorithm also illustrates rela-

tions between di�erent approaches to reasoning about

multicasting with coding. Section 6 discusses some open

questions. Appendix A summarizes our notation.

1.2 Basic Notation
Consider an acyclic, unit capacity networkG = (V;E)

where parallel edges are allowed. Node s 2 V is the

source node, T � V the set of sink nodes, h is the size

of the smallest min-cut separating s from any t 2 T .

We use the notation �

�

(v) and �

+

(v) for the set of

edges reaching and leaving node v respectively; start(e)

denotes the node at which edge e starts.

We use linear coding over a �nite �eld F. It will turn

out that jFj = O(jT j) is su�cient. The source node s

gets h input symbols from F. The symbol y(e) 2 F

carried by an edge e is a linear combination of the

symbols carried by the edges entering start(e). The

local coding vector m

e

: �

�

(start(e)) ! F determines

the coe�cients of this linear combination, i.e.,

y(e) =

X

e

0

2�

�

(start(e))

m

e

(e

0

)y(e

0

) :

This formula also holds for edges leaving the source node

if we introduce a dummy node s

0

and h parallel input

edges e

1

, : : : , e

k

connecting s

0

and s such that y(e

i

) is

the i-th input symbol. Our task is to determine the co-

e�cients m

e

(e

0

) such that all sinks can reconstruct the

original information from the symbols reaching them.

Note that this de�nition assumes that only a single

batch of h symbols are sent. Nodes wait until all in-

coming data has arrived. In Section 3.1 we will see that

a multicasting scheme of this type can easily be adapted

1

Independently, Jaggi, Chou, and Jain [11] have ob-

tained a similar result.

to a pipelined scheme where h symbols per timestep are

communicated.

The symbol �

u;v

stands for 1 if u = v and 0 otherwise.

1.3 Previous Work
Ahlswede et al. [1] have shown that the source can

multicast information at a rate approaching h to all the

sinks as the symbol size approaches in�nity. They give a

simple example that shows that without coding this rate

is not always achievable. Li et al. [15] show that linear

coding can be used for multicasting with rate h and �-

nite symbol size. Our algorithms can be viewed as fast

implementations of the approach by Li et al. The main

di�erence is that Li et al. have to check an exponential

number of edge sets to verify that the coding coe�cients

chosen for a particular edge are correct. We reduce this

to a single edge set per sink node by making explicit

use of precomputed
ows to each sink. Koetter and

Medard [14] give an elegant algebraic characterization

of linear coding schemes that achieve the maximal data

rate. They show that �nite �elds of size O(jT j � h) are

su�cient and give a polynomial time algorithm to verify

a given linear network coding scheme. They also give

an algorithm for constructing coding schemes. However,

this algorithm involves checking a polynomial identity

F (x) = 0 for a multivariate polynomial F with an ex-

ponential number of coe�cients. Jaggi, Chou, and Jain

[11] have independently and concurrently developed an

algorithm similar to our deterministic algorithm from

Section 2 that runs in time O

�

jEj(jT j

4

+ h

3

)

�

plus the

time for jT j maximum
ow computations.

There is a number of results for multicasting without

coding in undirected networks. The single source prob-

lem then amounts to (fractionally) packing Steiner trees

connecting fsg [T . The fractional Steiner tree packing

problem is equivalent to the minimum weight Steiner

tree problem (MWST) via duality of the corresponding

linear programs [4, 12]. In particular, approximation

algorithms for MWST yield approximation algorithms

for packing Steiner trees with the same approximation

ratio using the ellipsoid method. Without coding, mul-

tiple multicast requests can be decomposed into a corre-

sponding number of Steiner tree packing problems us-

ing linear programming. Using randomized rounding

one obtains approximate integral solutions to multiple

multicast requests [18, 4]. The approximation quality

is a constant factor plus a logarithmic additive term.

Jansen-Zhang and Baltz-Srivastav [13, 3] avoid using

the ellipsoid method at the cost of a slightly worse ap-

proximation ratio. Using this approach, running times

as low as jEj(jEj + kpolylog(kjEj)) can be achieved

where k is the number of unit data rate multicast re-

quests.

2. POLYNOMIAL TIME CODING
This section is concerned with establishing the follow-

ing result.

Theorem 1. Consider an acyclic unit capacity multi-

graph (V;E) and let h denote the minimum cut size be-

tween the source s and any sink t 2 T . The Linear

Information Flow algorithm constructs linear codes for

all nodes in O

�

jEj � jT j � h

2

�

expected time in a random-

ized variant and in O

�

jEj � jT j � (h

2

+ jT j

2

)

�

worst case

time in a deterministic variant. These codes have the

following properties:

� Any �nite �eld of size jFj � 2 � jT j can be used to

represent symbols sent along edges. For the deter-

ministic case, jFj � jT j is su�cient.

� The source gets h information symbols as input.

� A node needs time O

�

min(jT j; j�

�

(start(e))j)

�

to

compute the symbol to be sent along edge e. The

source needs time O(h) for each edge.

� Each sink can reconstruct all h information sym-

bols in time O

�

h

2

�

.

Building on the notation given in Section 1.2 we ex-

plain the e�ects of linear coding in terms of linear alge-

bra. Since linear coding is used, the information carried

by an edge e is a linear combination of the input sym-

bols of s. We can characterize the e�ect of all the local

coding vectors on edge e independently of a concrete

input using global coding vectors b(e) 2 F

h

. The input

edges of s have the unit vectors b(e

i

) = [0

i�1

; 1; 0

h�i

]

and the other global coding vectors are inductively de-

�ned by b(e) =

P

p2�

�

(start(e))

m

e

(p)b(p) for e 2 E.

These vectors are well de�ned because the network is

acyclic. Using elementary linear algebra it can be seen

that a linear coding scheme can be used for multicast-

ing from s to T if and only if for all t 2 T , the vectors

�

b(p) : p 2 �

�

(t)

	

span the vector space F

h

. Recon-

structing the original information can then be achieved

by solving a linear system of equations of polynomial

size. The intuition is that a linear code mixes the infor-

mation received from di�erent edges but does not loose

essential information as long as there is a bijective map-

ping between the input and the data reaching the sink.

The challenge is now to �nd the local coding vectors

e�ciently, possibly using a small �nite �eld that allows

fast arithmetics. Our algorithm achieves this goal by

making explicit use of a maximum
ow algorithm. Ini-

tially, it computes s-t
ows f

t

of magnitude h for each

t 2 T and decomposes these
ows into h edge disjoint

paths from s to t. If there were only a single sink node,

our task would be simple now. We could route the i-th

input symbol along the i-th edge disjoint path. If an

edge e is on some
ow path W from s to t, let f

t

(e)

denote the predecessor edge of edge e on path W . In

our single sink example, we could choose a nonzero co-

e�cient for m

e

(f

t

(e)) and zero for all other coe�cients.

With multiple sinks, our approach is to superimpose

multiple s-t
ows. The algorithm steps through the

nodes u 2 V in topological order. This ensures that the

global coding vectors of all edges reaching u are known

when the local coding vectors of the edges leaving u

are determined. The algorithm de�nes the coe�cients

of m

e

for one edge e 2 �

+

(u) after the other. There

might be multiple
ow paths to di�erent sinks through

edge e. Let T (e) denote the set of sinks using e in some

b

s

s’

x

w

v

u
0
1

1
a

2

1

2
1

b

e

1

1

1

2

1

p
0
1

e

e

g

f

d

c

b

1
0

1
1

1
0

Figure 2: An example for multicasting with lin-

ear coding from s to T = fa; b; c; d; f; gg. We have

h = 2. Assume that all the
ows are decom-

posed into a topmost path and a bottommost

path. The thin lines within s give nonzero coef-

�cients for local coding vectors. The b vectors

give the resulting global coding vectors. Let us

assume that F = GF(3) and that the edges leav-

ing s are considered from top to bottom. Then

the only feasible linear combinations for m

e

are

[m

e

(e

1

) = 1; m

e

(e

2

) = 2] or [m

e

(e

1

) = 2; m

e

(e

2

) = 1].

As further examples for our notation we have

�

�

(b) = f(v; b); (w; b)g, start(e) = s, T (e) = fb; c; dg,

P (e) = fe

1

; e

2

g, f

d

(e) = e

1

, and f

c

(e) = e

2

. Be-

fore m

e

is �xed, C

b

= fp; e

2

g and correspondingly

B

b

=

��

1

1

�

;

�

0

1

�	

.

ow f

t

and let P (e) =

�

f

t

(e) : t 2 T (e)

	

denote the set

of predecessors edges of e in some
ow path. Nonzero

coe�cients for m

e

are only chosen for edges in P (e).

To ensure that all sinks can reconstruct the input, the

algorithm of Li et al. [15] veri�es that the global cod-

ing vector b(e) is linearly independent of an exponential

number of sets of other global coding vectors. Our algo-

rithm can dramatically simplify this task by exploiting

the
ows. It turns out that only O(jT j) edge sets need

to be checked for each e 2 E.

We maintain the invariant that for each sink t 2 T

there is a set of h edges C

t

such that the global coding

vectors B

t

:= fb(c) : c 2 C

t

g are a basis of F

h

, i.e., the

original input can be reconstructed from the informa-

tion carried by the edges in C

t

. C

t

contains one edge

from each path in f

t

, namely the edge whose global cod-

ing vector was de�ned most recently. Thus, when the

computation completes, C

t

� �

�

(t) and the invariant

ensures that sink t gets all the information.

We �rst establish the invariant by assigning the arti�-

cial input edges fe

1

; : : : ; e

h

g with b(e

i

) = [0

i�1

; 1; 0

h�i

]

to C

t

. When the linear combination m

e

for a new edge

e has been de�ned, we have to exchange f

t

(e) by e in

all the C

t

with t 2 T (e). Hence, to maintain the invari-

ant, it su�ces to check for all t 2 T (e) whether B

t

still

spans F

h

. Figure 2 gives an example for the algorithm

and its notation.

It remains to explain how to �nd coe�cients for m

e

that maintain the invariant. We argue that random co-

e�cients for edges in P (e) do the job if F � 2 � jT j:

Lemma 2 below shows that for a �xed sink, the failure

probability is only 1=jFj. Summing over all sinks, we

see that the failure probability is at most jT j=jF j � 1=2.

This straight-forward construction yields a Monte-Carlo

algorithm for �nding a single local coding vector, i.e.,

the construction can fail. To �nd all coding vectors fast

using a small �eld, this is not su�cient. Here the knowl-

edge of the
ows encoded in the C

t

s and the invariant

come in and allow us to convert the Monte Carlo Al-

gorithm into a Las Vegas algorithm, i.e., a constant ex-

pected number of trials followed by jT (e)j independence

tests su�ces to �nd a feasible local coding vector.

Lemma 2. For any e 2 E and t 2 T (e) assume that

B

t

is a basis of F

h

. Then with probability 1=jFj, a

random local coding vector m

e

: P (e) ! F ful�lls the

property that (B

t

n

�

b(f

t

(e))

	

) [fb(e)g is a basis of

F

h

where b(e) is the corresponding global coding vector

P

p2P (e)

m

e

(p)b(p).

Proof. If we �x the coe�cients m

e

(p) for p 2 P (e) n

�

f

t

(e)

	

then there is exactly one choice of m

e

(f

t

(e))

for which b(e) is linearly dependent of B

t

n

�

b(f

t

(e))

	

,

i.e., there are exactly jFj

jP (e)j�1

local coding vectors

that violate the property for sink t. Since there are

jFj

jP (e)j

choices for local coding vectors, the probability

that a random choice violates the property is

jFj

jP (e)j�1

=jFj

jP (e)j

= 1=jFj.

What we have said so far already yields an algorithm

running in polynomial expected time. In what follows,

we further re�ne the algorithm to obtain a fast and more

concrete implementation (Figure 3) and a deterministic

way of choosing the linear combinations m

e

.

2.1 Testing Linear Independence Fast
The mathematical basis for our re�nement of the LIF

algorithm is the following lemma which states that the

problem of testing linear independence from an h�1 di-

mensional vector space can be reduced to a single scalar

product.

Lemma 3. Consider a basis B of F

h

and vectors b 2

B, a 2 F

h

such that 8b

0

2 B : b

0

� a = �

b;b

0

. Then, any

vector x 2 F

h

is linearly independent of B n fbg if and

only if x � a 6= 0.

Proof. Let x =

P

b

0

2B

x(b

0

)b

0

be the unique repre-

sentation of x in the basis B. We get

x � a =

X

b

0

2B

x(b

0

)b

0

� a =

X

b

0

2B

x(b

0

)�

b;b

0

= x(b):

Now, x is linearly independent of B n fbg if and only

if x(b) 6= 0, i.e, if and only if x�a = 0.

The LIF-algorithm given in Figure 3 maintains vec-

tors a

t

(c) for each sink t and edge c 2 C

t

that can be

used to test linear independence of B

t

n fb(c)g. The

invariant now becomes

8t 2 T : jC

t

j = h and 8c; c

0

2 C

t

: b(c) � a

t

(c

0

) = �

c;c

0

:

(1)

This invariant implies both the linear independence of

B

t

and the desired property of a

t

.

The algorithm in Figure 3 implements the outline of

the LIF algorithm given above. To prove correctness we

have to verify the loop invariant.

Lemma 4. Loop-Invariant (1) holds for (C

t

; B

t

; a

t

).

Proof. (By induction) Before the loop over the ver-

tices, Loop-Invariant (1) is trivially satis�ed. Now as-

sume as induction hypothesis that Invariant (1) holds

for (C

t

; B

t

; a

t

). We show that it holds for (C

0

t

; B

0

t

; a

0

t

).

In C

t

we replace edge f

t

(e) by edge e, hence the

size of C

0

t

is the same as the size of C

t

. According to

the algorithm, b(e) is chosen linearly independent to

B

t

nfb(f

t

(e))g. Hence, b(e)�a

t

(f

t

(e)) 6= 0 by Lemma 3,

and a

0

t

(e) is well de�ned. Finally, we verify b(c)�a

0

t

(c

0

) =

�

c;c

0

for all c; c

0

2 C

0

t

by a short calculation:

b(e) � a

0

t

(e) = b(e) �

�

b(e) � a

t

(f

t

(e))

�

�1

a

t

(f

t

(e)) = 1;

b(e) � a

0

t

(c) = b(e) � a

t

(c)� (b(e) � a

t

(c))(b(e) � a

0

t

(e))

= 0 for c 6= e

b(c) � a

0

t

(e) =

�

b(e) � a

t

(f

t

(e))

�

�1

(b(c) � a

t

(f

t

(e)))

= 0 for c 6= e

b(c) � a

0

t

(c

0

) = b(c) �

�

a

t

(c

0

)� (b(e) � a

t

(c

0

))a

0

t

(e)

�

= b(c) � a

t

(c

0

)� (b(e) � a

t

(c

0

))(b(c) � a

0

t

(e))

= b(c) � a

t

(c

0

) = �

c;c

0

for c; c

0

6= e:

Remark. If the vectors in B

t

are arranged as the rows

of a matrix B

t

and the columns a

t

are correspondingly

arranged as a matrixA

t

, then the invariant is equivalent

to A

t

= B

�1

t

. In this notation, the method of updating

the inverse vectors a

t

in the LIF algorithm is a special

case of the Sherman-Morrison formula [16, Section 2.7].

What we have said so far, su�ces to establish the

complexity of the randomized variant of LIF:

Lemma 5. If Line (*) in Figure 3 is implemented

by choosing random m

e

: P (e) ! F until the condi-

tion \8t 2 T (e) : b(e) is linearly independent of B

t

n

fb(f

t

(e))g" is satis�ed, then the algorithm can be im-

plemented to run in time O

�

jEj � jT j � h

2

�

and the re-

turned information allows decoding in time O

�

h

2

�

at

each sink.

Proof. Using a single graph traversal, we can �nd a

ow augmenting path from s to t 2 T in time O(jEj)

[2]. We apply this routine round robin to each sink

until for some sink no augmenting paths are left. Hence,

we can �nd h augmenting paths for each sink in time

O(jT j � jEj � h).

2

The algorithm then constructs the �nite �eld F of

2

m

elements for m chosen such that jFj < 4jT j. This in-

volves the creation of a lookup table of jFj entries for in-

crementing elements (Conway's \Zech-logarithm", e.g.,

2

We can also use Dinitz' algorithm [7] to �nd many

paths in time O(jEj). For large h this also yields im-

proved asymptotic time bounds for the
ow computa-

tion part [9].

Function LIF(V , E, s, T)

h := min

t2T

min fjCj : C is s-t cutg {{ = min

t2T

jmax
ow from s to tj

insert a new source s

0

into V {{ help to establish the invariant

insert h parallel edges fe

1

; : : : ; e

h

g from s

0

to s into E

let f

t

denote a set of h edge disjoint paths from s to t {{ the chosen
ow from s to t

(* We use the notation f

t

(e), T (e), and P (e) to access the
ows *)

let F be the �eld of size 2

m

, m = blog

2

maxfjT (e)j : e 2 Egc+ 1

forall i: b(e

i

) := [0

i�1

; 1; 0

h�i

] {{ the i-th unit vector of F

h

forall t 2 T do

C

t

:= fe

1

; : : : ; e

h

g {{ t is supplied through C

t

B

t

:= fb(e

1

); : : : ;b(e

h

)g {{ the coding vectors span F

h

forall c 2 C

t

: a

t

(c) := b(c) {{ inverse vectors

foreach vertex v 2 V n fs

0

g in topological order do

forall outgoing edges e of v do

(* Invariant: 8t 2 T : jC

t

j = h and 8c; c

0

2 C

t

: b(c) � a

t

(c

0

) = �

c;c

0

*)

choose a linear combination b(e) =

P

p2P (e)

m

e

(p)b(p) such that {{ (*)

8t 2 T (e) : b(e) is linearly independent of B

t

n fb(f

t

(e))g

forall t 2 T (e) do

C

0

t

:= (C

t

n ff

t

(e)g) [feg {{ advance the set of edges C

t

,

B

0

t

:= (B

t

n fb(f

t

(e))g) [fb(e)g {{ update B

t

correspondingly, and

a

0

t

(e) :=

�

b(e) � a

t

(f

t

(e))

�

�1

a

t

(f

t

(e)) {{ update a

t

correspondingly

forall c 2 C

t

n ff

t

(e)g: a

0

t

(c) := a

t

(c)� (b(e) � a

t

(c))a

0

t

(e)

(C

t

; B

t

; a

t

) := (C

0

t

; B

0

t

; a

0

t

)

return (h; fm

e

: e 2 Eg ; f(C

t

; a

t

) : t 2 Tg ; F).

Figure 3: Linear Information Flow (LIF) coding with fast testing of linear independence. Given a

network (V;E), a source s and a set of sinks T , the algorithm constructs linear codes for intermediate

nodes such that the rate from s to T is maximal.

[10, 8]). Using this table, any arithmetic operation in F

can be computed in constant time.

3

Initializing C

t

, B

t

, and a

t

(c) takes time O

�

jT j � h

2

�

.

The two main loops collectively iterate over all edges

so that there is a total number of jEj iterations. Com-

puting P (e) takes time O(jT j) if the
ows f

t

maintain

pointers to the predecessors of edges in the path decom-

position of f

t

.

Finding a random local coding vector m

e

takes time

O(jP (e)j) = O(jT j). Computing b(e) and testing linear

independence using the vectors a

t

(c) takes timeO(hjT j).

Since the success probability is constant, the expected

cost for �nding a linearly independent m

e

is

O(1) � O(h � jT j) = O(h � jT j). Computing a

0

t

(c) for all t

and all c 2 C

t

takes time O

�

jT j � h

2

�

.

Combining all the parts, we get the claimed expected

time bound of O

�

jEj � jT j � h

2

�

. Sink t 2 T can recon-

struct the vector of input symbols x at s by computing

x =

P

c2C

t

a

t

(c)y(c), where y(c) denotes the symbol re-

ceived over edge c 2 C

t

. This takes timeO

�

h

2

�

.

2.2 Deterministic Implementation
We now explain how the algorithm LIF in Figure 3

3

If the table is considered too large, one can resort to

the polynomial representation of �eld elements. In this

case, no table is needed at the cost of additional factors

in running time that are polylogarithmic in jT j.

can be implemented deterministically. We develop a de-

terministic method for choosing the local coding vectors

in step (*) using the following two lemmas that we for-

mulate as pure linear algebra problems without using

graph theoretic concepts.

Lemma 6. Consider pairs (x

i

;y

i

) 2 F

h

�F

h

with x

i

�

y

i

6= 0 for 1 � i � n � jFj. Then there is a linear

combination u of x

1

; : : : ;x

n

such that 8i : u � y

i

6= 0.

Proof. Let V denote the vector space spanned by

x

1

; : : : ;x

n

and let d denote its dimension. Then K

i

=

fx 2 V : x � y

i

= 0g is a d�1 dimensional subspace of V

for all i. Clearly, u satis�es u �y

i

6= 0 i� u 62 K

i

. As the

K

i

have at least the null vector in common, the number

of linear combinations u as required in the lemma is

U =

�

�

�

�

�

V n

n

[

i=1

K

i

�

�

�

�

�

� jV j �

1 +

n

X

i=1

jK

i

n f0gj

!

= jFj

d

�

�

1 + n

�

jFj

d�1

� 1

��

=

�

1�

n

jFj

�

jFj

d

+ n� 1:

If n < jFj then U � jFj

d�1

� 1. If n = jFj then U �

jFj � 1 � 1 because a �eld has at least two elements.

The linear combination u from Lemma 6 can be found

by �xing one coe�cient of the linear combination after

the other in a greedy fashion.

Lemma 7. A linear combination u proven to exist in

Lemma 6 can be found in worst case time O

�

n

2

(h+ jFj)

�

.

Proof. The proof is by induction on n. For n = 1 we

simply set u = x

1

.

For the induction step from n � 1 to n, we apply the

induction hypothesis to obtain a vector u with u�y

i

6= 0

for i < n. If u �y

n

happens to be nonzero, we are done.

Otherwise, we apply Lemma 6 to (u, y

1

), : : : , (u;y

n�1

),

(x

n

;y

n

). As n � jFj, there is a linear combination

u

00

= �u +
x

n

such that 8i � n : u

00

� y

i

6= 0. In

particular, u

00

� y

n

=
x

n

6= 0 since u � y

n

= 0. Hence,

 6= 0 and u

0

= u

00

=
 is of the form �u + x

n

and we

have 8i � n : u

0

�y

i

6= 0. The coe�cient � can be found

by trying all �eld elements. All jFj trials can be made

in time O(n(h+ jFj)) by precomputing the scalar prod-

ucts u �y

i

and x

n

�y

i

for 1 � i < n. We get a total time

of O

�

n

2

(h+ F)

�

for n iterations.

4

Lemma 7 can be used to �nd the linear combination

m

e

in the LIF algorithm:

Apply Lemma 7 to

�

(b(f

t

(e)); a

t

(f

t

(e))) : t 2 T (e)

	

,

i.e., let b(e) = u =

P

t2T (e)

u

t

b(f

t

(e)) denote a vector

with b(e) � a

t

(f

t

(e)) 6= 0. This value for b(e) can also

be obtained by setting m

e

(p) to the sum of all u

t

with

f

t

(e) = p.

The deterministic part of Theorem 1 can now be proven

analogously to the proof of Lemma 5. We just have

to substitute the expected time O(jT j � h) needed by

the randomized routine for choosing m

e

by the time

O

�

jT (e)j

2

� (jFj + h)

�

= O

�

jT j

2

(jT j+ h

�

needed to ap-

ply Lemma 7. We obtain a total execution time of

O

�

jEj(jT jh

2

+ jT j

2

(jT j+ h))

�

= O

�

jEj � jT j(h

2

+ jT j

2

)

�

.

3. REFINEMENTS

3.1 Pipelining
So far our analysis only covers sending h symbols from

s to the sinks. In reality, we want to send h symbols

per time step in a pipelined fashion. If nodes naively

forward linear combinations of the symbols received in

the previous time step, we can get a mix of the infor-

mation sent during di�erent time steps that is di�cult

to decode.

Still, this naive algorithm works �ne for layered graphs

where a node v can be mapped to a layer `(v) such

that `(s) = 0 and edges only exist between adjacent

layers. In that case, the information received by a node

at layer i at time step � is a linear combination of the

information sent from s at time step � � i. Acyclic

graphs that are not layered, are easy to convert into

layered graphs by replacing edges spanning k+1 layers

by a chain of k new nodes. Figure 4 gives an example.

Since these new nodes have indegree and outdegree 1, no

4

A more detailed analysis shows that at most n trials

are needed and that only a constant expected number of

trials are needed if the coe�cients are tried in random

order and jFj � 2n.

Figure 4: Transformation into a layered graph.

additional coding is necessary. They can be emulated by

the original network by simply introducing time delays,

i.e., data sent along an edge spanning k + 1 layers is

delayed by k steps.

3.2 Edge Capacities
We now consider acyclic graphs with integer edge ca-

pacities c(e). By replacing each capacitated edge by

c(e) parallel unit capacity edges, Section 2 immediately

yields pseudopolynomial time algorithms, i.e., algorithms

with running time polynomial in jV j, jEj, and

P

e2E

c(e).

However,

P

e2E

c(e) can be exponential in the number

of bits needed to de�ne the input graph. Hence, the

question arises how to handle graphs with very large

edge capacities. Again, Section 2 (almost) su�ces to

solve this problem:

Theorem 8. Let h denote the maximum
ow in an

acyclic network G = (V;E) with edge capacities c : E !

N. For any � > 0 such that �h 2 N,

5

linear codes for

network information
ow can be found in time polyno-

mial in jV j, jEj, and 1=� so that (1 � �)h symbols per

time step can be communicated.

Proof. In a preprocessing step, �nd the maximum

ow f

t

from s to each sink t 2 T and reduce c(e) to

max

t2T

f

t

(e). In particular, no edge capacity exceeds

h now. Let w � jEj denote the maximum number of

edge disjoint paths needed to realize any of the
ows

f

t

. Now build a network G

0

= (V;E

0

) with unit ca-

pacity edges where each edge e 2 E corresponds to

c

0

(e) := bw � c(e)=h�c parallel unit capacity edges in E

0

.

Then �nd a multicast coding scheme for G

0

. This is pos-

sible in polynomial time since there are at most w � jEj=�

edges in the unit capacity problem.

For coding and decoding in the capacitated instance,

edge e is split into c

0

(e) edges each with capacity h�=w.

Each such edge transmits h� symbols every w time steps

using the encoding prescribed for the corresponding unit

capacity edge. Thus, on each s-t path in any
ow f

t

,

the unused capacity is at most h�=w, or h� on all paths

on one
ow. Hence, the total used capacity is at least

h�h� = (1� �)h.

3.3 Cyclic Graphs
Ahlswede et al. [1] explain how to convert a cyclic

graph G = (V;E) with maximal obtainable rate h into

an acyclic graph G

0

= (V

0

; E

0

) with jV

0

j = a � jV j,

jE

0

j = O(a � jEj) and rate h

0

� (a�jV j)h. They further

explain how the communication on this graph can be

emulated in a time steps on the cyclic graph G. This

5

The requirement �h 2 N avoids trivial rounding issues.

By appropriately choosing our unit of time, we are quite

exible in choosing �.

U T

s

Figure 5: An example where three symbols per

time step can be delivered. Without coding, the

best we can do is to send three symbols every

two time steps.

transformation can be used together with our polyno-

mial time algorithm for �nding coding schemes. By

choosing a = jV j=� we obtain a coding scheme that

achieves a rate of (1� �)h.

4. THE GAP TO

MULTICASTING WITHOUT CODING

Theorem 9. There are acyclic networks with unit

capacity edges where multicasting with coding allows a

factor
(log jV j) larger rate than multicasting without

coding.

Proof. Consider the network G = (V;E) with vertices

V = fsg [U [T where

U = f1; : : : ; 2hg; T = ft � U j jtj = hg

and edges

E = f(s; u) j u 2 Ug [f(u; t) j t 2 T; u 2 tg :

The network has three layers: The source s constitutes

the �rst layer, the second layer U has 2h nodes, and the

sink nodes T constitute the third layer | one node for

each h-element subset of U . Note that h = �(log jV j).

Figures 2 and 5 give examples for h = 2 and h = 3

respectively.

Since the min-cut has size h, the rate with coding is

h.

6

Without coding, the rate is less than 2. To see

this, suppose the source attempts to send 2n symbols

b

1

; : : : ; b

2n

to each of the sinks in T using n consecu-

tive uncoded transmissions. Let U

i

denote the subset of

intermediate nodes receiving b

i

. As the edges are unit

capacity, the source can send at most 2hn symbols in

total to the intermediate nodes, so

P

2n

i=1

jU

i

j � 2hn.

This implies that there is an i for which jU

i

j � h.

For any h-element subset t of U n U

i

, the sink t does

not receive the symbol b

i

.

6

In this network it su�ces if the source s encodes the

information using a code of length 2h that conveys h

information symbols and allows reconstruction of the

information from any h received symbols. This is called

a [2h; h] MDS code.

5. FASTER CONSTRUCTION
We now outline an alternative algorithm for construct-

ing linear network coding schemes. The algorithm is

faster at the cost of using larger �nite �elds and hence

possibly more expensive coding and decoding. Perhaps

more importantly, this approach illustrates interesting

connections between previous results and the present

paper.

Theorem 10. Linear network coding schemes using

�nite �elds of size jFj � 2 � jEj � jT j and achieving rate h

can be found in expected time O(jEj � jT jh+ jT jM(h))

where M(h) = O

�

h

2:376

�

denotes the time required for

performing h� h matrix multiplications.

Proof.(Outline) First �nd
ows f

t

decomposed into

paths as before (time O(jEj � jT j � h)). Then pick inde-

pendent random local coding vectors m

e

for all edges

simultaneously. Compute all global coding vectors b(e)

(time O

�

P

e2E

jP (e)j � h

�

= O(jEj � jT j � h)). For each

sink t 2 T let B

t

denote the set of global coding vec-

tors corresponding to edges ending a path in f

t

. Check

whether all the B

t

span F

h

(time O(jT j � M(h)) us-

ing matrix inversion based on fast matrix multiplication

[6]). If any of the tests fails, repeat.

Using Lemma 2 and the analysis of the \careful" al-

gorithm from Section 2 it can be seen that the suc-

cess probability is at least 1=2: The careful algorithm

performs

P

e2E

jT (e)j independence tests, each going

wrong with probability 1=jFj. Without the tests, the

failure probability is at most

P

e2E

jT (e)j=jFj � 1=2.The

expected number of repetitions will be constant.

This algorithm is quite similar to the one by Ahlswede

et al. [1]. The main di�erence is that we choose random

linear local coding functions rather than completely ar-

bitrary random functions. Even the analysis of Ahlswede

et al. could be adapted. Their analysis goes through if

the arbitrary random functions are replaced by a ran-

dom choice from a universal family of hash functions.

7

It is well known that random linear mappings form such

a universal family. Exploiting the special structure of

linear functions, this idea can be further developed into

a polynomial time randomized algorithm achieving rate

(1� �)h for any constant � > 0. However, the analysis

given here yields stronger results (rate h, exponentially

smaller �nite �elds) because, using
ow arguments, we

can reduce the exponential number of cuts considered

in [1] to a polynomial number of edge sets that need to

carry all the information.

Another interesting observation is that Koetter and

Medard [14] arrive at a similar requirement for jFj as

Theorem 10 using quite di�erent algebraic arguments.

6. DISCUSSION
Our polynomial time algorithms for multicasting in

acyclic networks are quite simple and could perhaps be

used in practice if the rate h is not too large (otherwise

7

A family H � A

B

of functions from B to A is called

universal if 8x 6= y 2 B : Pr[f(x) = f(y)] = 1=jAj for

randomly chosen f 2 H.

decoding could become too expensive). In addition, the

algorithms are not limited to maximizing the rate. In a

particular application, e.g. streaming multimedia con-

tent in a large computer network, the rate h

0

required

could be �xed. In this situation, one could �nd a cheap

or otherwise favorable subgraph with minimum cut at

least h

0

and use our algorithms to construct codes to

achieve multicast rate h

0

from the server to each client.

There are a number of open problems for graphs with

cycles. Is there a polynomial time algorithm that �nds

a coding scheme with rate exactly h? From a practical

point of view even an approximate algorithm would be

interesting if it allows coding schemes that are faster to

decode. Currently, rate (1� �)h requires decoding time

 (h � jV j=�) per decoded symbol which looks forbidding

for large graphs.

Very little is known about the problem with multiple

sources. Will we again �nd that with coding optimal

solutions are both easier to �nd and more e�cient than

solutions without coding?

Acknowledgements

We would like to thank Rudolf Ahlswede, Ning Cai,

Philip Chou, Sidharth Jaggi, Irit Katriel, Piotr Krysta,

Anand Srivastav, and Berthold V�ocking for fruitful dis-

cussions.

7. REFERENCES
[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W.

Yeung. Network information
ow. IEEE

Transactions on Information Theory,

46(4):1204{1216, 2000.

[2] R. K. Ahuja, R. L. Magnanti, and J. B. Orlin.

Network Flows. Prentice Hall, 1993.

[3] A. Baltz and A. Srivastav. Approximate

implementation of minimum multicast congestion

| implementation versus theory. Manuscript.

[4] B. Carr and S. Vempala. Randomized

meta-rounding. In 32nd ACM Symposium on the

Theory of Computing, pages 58{62, 2000. also in

Random Structures and Algorithms,

20(3):343{352, 2002.

[5] M. Chlebik and J. Chlebikova. Approximation

hardness of the steiner tree problem on graphs. In

8th Scandinavian Workshop on Algorithm Theory,

number 2368 in LNCS, pages 170{179, 2002.

[6] D. Coppersmith and S. Winograd. Matrix

multiplication via arithmetic progressions. J.

Symbolic Computation, 9:251{280, 1990.

[7] E. A. Dinic. Algorithm for solution of a problem

of maximum
ow. Soviet Math. Dokl.,

11:1277{1280, 1970. now spelled `Dinitz'.

[8] J. Dumas, T. Gautier, and C. Pernet. Finite �eld

linear algebra subroutines. In ISSAC, pages

63{74, Lille, 2002. ACM.

[9] S. Even and E. Tarjan. Network
ow and testing

graph connectivity. SIAM J. Comput., 4:507{518,

1975.

[10] K. Imamura. A method for computing addition

tables in GF (p

n

). IEEE Transactions on

Information Theory, 26:367{369, 1980.

[11] S. Jaggi, P. S. Chou, and K. Jain. Low complexity

algebraic multicast network codes. In

International Symposium on Information Theory.

IEEE, July 2003. 1 page abstract, to appear.

[12] K. Jain, M. Mahdian, and M. R. Salavatipour.

Packing Steiner trees. In 14th ACM-SIAM

Symposium on Discrete Algorithms, 2003.

[13] K. Jansen and H. Zhang. An approximation

algorithm for the multicast congestion problem

via minimum Steiner trees. In 3rd International

Workshop on Approximation and Randomized

Algorithms in Communication Networks

(ARANCE), Rome, Italy, 2002.

[14] R. Koetter and M. Medard. An algebraic

approach to network coding. In Proceedings of

INFOCOM, 2002.

[15] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear

network coding. IEEE Transactions on

Information Theory, 49(2):371{381, 2003.

[16] W. H. Press, S. Teukolsky, W. T. Vetterling, and

B. P. Flannery. Numerical Recipes in C.

Cambridge University Press, 2nd edition, 1992.

[17] G. Robins and A. Zelikovsky. Improved steiner

tree approximation in graphs. In 11th ACM

Symposium on Parallel Architectures and

Algorithms, pages 770{779, 2000.

[18] S. Vempala and B. V�ocking. Approximating

multicast congestion. In 10th Int. Symp. on

Algorithms and Computation, number 1741 in

LNCS, pages 367{372, Chennai, 1999. Springer.

APPENDIX

A. NOTATION

a

t

(c): a vector with the property that x � a

t

(c) 6= 0 if

and only if x is linearly independent of B

t

n fb(c)g

for some c 2 C

t

.

b(e) 2 F

h

: global coding vector for edge e 2 E

B

t

: the set of global coding vectors fb(c) : c 2 C

t

g

C

t

: h edges on edge-disjoint paths from s to t

c(e): the capacity of edge e 2 E

�

u;v

: 1 if u = v and 0 otherwise.

E: the set of edges

e 2 E: an edge

e

1

, : : : ,e

h

: input edges connecting s

0

with s

� > 0: a small constant

F: the �nite �eld used

f

t

: a
ow of magnitude h from s to t represented by h

edge disjoint paths

f

t

(e): predecessor edge of e on a path from s to t 2 T

�

�

(v): the set of edges entering node v 2 V

�

+

(v): the set of edges leaving node v 2 V

G = (V;E): the graph

h: the smallest maximum
ow from s to some sink t 2 T

start(e): the node where edge e 2 E departs

m

e

: �

�

(start(e))! F: The local coding vector for edge

e 2 E, i.e., m

e

(e

0

) is the coe�cient multiplied with

y(e

0

) to contribute to y(e)

P (e): the predecessor edges of e in some
ow path

�

f

t

(e) : t 2 T (e)

	

s: source node

s

0

: dummy source node

T � V : the set of sink nodes

T (e) � T the sinks supplied through edge e 2 E, i.e.,

T (e) =

�

t 2 T : e 2 f

t

	

t 2 T : a sink node

V : the set of nodes

v 2 V : a node

y(e): the symbol carried by edge e 2 E

