
A Scalable Parallel Tree Search Library

Peter Sanders

Department of Computer Science, University of Karlsruhe

76128 Karlsruhe, Germany

Email: sanders@ira.uka.de

Abstract

This paper reports design and implementation ex-

periences with the portable and reusable library

PIGSeL for parallel tree search. It is discussed

how e�ciency,
exibility and usability of the li-

brary can be reconciled. Two sample applications

demonstrate its e�ectiveness for the case of paral-

lel depth-�rst search. On a mesh of 1024 Trans-

puters near optimal speedup even for small in-

stances of the Golomb ruler problem is achieved.

The 0/1 knapsack problem is more challenging but

the library achieves good speedups for quite ir-

regular problem instances. From the algorithmic

point of view, this is due to the random polling

load balancing algorithm which turns out to per-

form well even on high-diameter networks, and

also due to a fast initialization scheme, a bot-

tleneck free implementation of the branch-and-

bound heuristics and an adaption of the tree based

double-counting termination detection algorithm.

1 Introduction

Many applications are based on the traversal

of large implicitly de�ned trees, e.g., backtrach-

ing or best �rst branch-and-bound. Examples

can be found in NP-hard problems from opera-

tions research, AI or VLSI-design and also in dis-

crete mathematics, logic/functional programming

or automatic theorem proving. Tree search is also

quite interesting from the point of view of paral-

lel processing research. On the one hand, highly

parallel execution is possible in principle. On the

other hand, tree search is a challenge to the load

balancing algorithm. The computations are data

dependent and often highly irregular. The load

balancer must distribute the tree without a pri-

ori knowledge about the shape of the search tree.

This must be achieved without undue communi-

cation overhead, even if the computations are very

�ne-grained. (For some concrete examples refer to

Section 3.6.)

For the very same reasons, e�ective parallel tree

search applications are not very widespread yet.

The current status of parallel programming tools

and the background of application programmers

make parallelization di�cult. This problem can

be (partially) solved by encapsulating the paral-

lelization into an application independent library.

Considering the fast turnaround in new parallel

machines, such a library must also be portable

over a wide spectrum of architectures.

This paper is structured as follows: In Section 2

we discuss the lessons learned in designing the li-

brary PIGSeL (Parallel Implicit Graph SEarch Li-

brary). It combines the
exibility of an object ori-

ented design with the portability and e�ciency of

plain ANSI-C. In Section 3 we describe the imple-

mentation. Three aspects are of particular inter-

est there. The load balancer and other algorithmic

aspects are critical for an e�cient parallelization.

Interfacing between the load balancer and the ap-

plication decides about the usability of the library.

Finally, experiences with applications make it pos-

sible to judge the bottom line performance. Sec-

tion 4 summarizes the results.

2 Library design

The library PIGSeL is subdivided into several lay-

ers as depicted in Figure 1. After Section 2.1 dis-

cusses some basic principles for designing a layer

and in particular its interfaces to other layers, the

subsequent sections introduce the individual lay-

ers in a bottom up manner.

Application Interface

Application

Sequential Search

Load Balancing

Machine Interface

Abstract Machine

Figure 1: Basic layering of PIGSeL.

2.1 Basic Principles

The layers of the library are not intended as

single monolithic modules implementing a �xed

functionality. In this case the particular layer-

ing would only be interesting for the implemen-

tors as a means of organizing work. Rather, the

layers form the abstract root classes of a hierar-

chy of possible implementations. Layers can also

have a sub-layering or may be collapsed into a sin-

gle module for reasons of e�ciency and simplicity.

What is important is that there should be simple

and well de�ned interfaces between layers, making

it possible to mix and match di�erent implemen-

tations. For example, the machine interface layer

should have a uniform interface to the load bal-

ancer making it possible to freely combine a range

of machines and load balancing strategies. All in

all, PIGSeL is not a clearly delineated system but

an expandable collection of re-combinable classes.

Considering this object oriented design, an ob-

ject oriented implementation language appears to

be appropriate. Together with the aim of porta-

bility, C++ would currently be the prime candi-

date. Unfortunately, even C++ is not available

on all parallel machines. At least if certain re-

quirements regarding e�ciency of the generated

code and conformance to the language standard

are made. We therefore choose plain ANSI-C as

an implementation language. Besides Fortran, C

is the only programming language fully supported

on virtually all parallel machines. Interestingly,

C is powerful enough to express the most impor-

tant class relations directly. One reason for this

is that although there can be many implementa-

tions of an abstract class (a layer) there is only a

single implementation present in a particular pro-

gram. Code inheritance is no problem as long as

it is clear whether the abstract class or the im-

plementation class implements a function. When

this is insu�cient, the C-preprocessor can be used

to override default implementations. Still, the de-

cision for C is an additional reason to keep the

library simple and the class hierarchy
at.

2.2 Machine layer

The Hardware, the operating system, the compiler

and its parallel libraries constitute an abstract ma-

chine the library has to adapt to. We expect that

it should be possible to port our library to all

MIMD-architectures currently in use.

1

2.3 Machine interface layer

The machine interface layer is the only layer of

PIGSeL which is allowed to be machine speci�c.

The dilemma is that on the one hand, the load

balancer should be able to use the strengths of a

particular machine. On the other hand, the in-

terface to the load balancer should be uniform in

order to make it portable. This problem cannot

be solved entirely. Aspects like multi-threading

or properties of the interconnection network can

never be fully uni�ed. But the following com-

promise works quite well: On the one hand, we

�x a minimum common functionality which has

to be implementable on every machine. This is

asynchronous

2

message passing between arbitrary

PEs (Processing Elements) with a single FIFO re-

ceive bu�er on each PE. On every PE, there is

only a single identical process available for execut-

ing the layers above the machine interface layer.

Quite complex interactions can be elegantly im-

plemented by adding two important details: Mes-

sage tags are assigned by a central instance avoid-

ing clashes between di�erent modules. Messages

are \active" in the sense that a handler routine is

called upon reception.

In addition, there are extensions which o�er

higher level services. Currently there is a sub-

1

Even SIMD machines can relatively e�ciently emulate

MIMD-behavior [20]. But automatically compiling an en-

tire library written for MIMD architectures for e�cient

SIMD execution is currently unrealistic.

2

Asynchronous in the sense that the sender does not

need to block until the receiving process has accepted the

message.

layer for collective communications (broadcast, re-

duce, . . .) and a rudimentary I/O support. If the

underlying machine o�ers e�cient primitives for

this functionality these can be used. Otherwise,

the services can be transparently implemented in

terms of the basic functionality.

2.4 Load balancing layer

This layer contains all the components required

for parallelizing the search. This is mainly the

load balancing algorithm but there are also com-

ponents for handling solutions and tree pruning

heuristics. In our experience, there is no single

load balancing principle equally well suited for all

tree search problems. It is not even feasible to use

a single interface to the layers above. However,

there are interfaces which can span a quite wide

range of applications.

For example, for depth-�rst search tree shaped

computations are a useful abstraction. The ba-

sic data type is a subproblem. A subproblem can

be worked on sequentially and it can be split into

two new subproblems which can be worked on on

di�erent PEs. The only thing the load balancer

knows about a subproblem is whether the sub-

problem is exhausted or not. In Section 3.3 it

turns out that this is su�cient to design an e�-

cient load balancing algorithm. The basic model

can be enhanced by additional functionality, e.g.,

for the branch-and-bound heuristics or game tree

search.

For best �rst search, a distributed priority

queue is an appropriate abstraction, i.e., a sequen-

tial best �rst search algorithm runs on each PE

but its priority queue accesses are serviced by the

load balancer. For example, the library PPBB

[22] is based on local priority queues which peri-

odically exchange nodes. For more coarse grained

applications, even a global priority queue can be

used with the same interface. In [21] a bottleneck

free implementation of a global priority queue is

described.

2.5 Sequential search layer

Ideally, the library should completely hide the fact

that the search is parallelized from the user. But

the search strategy has to interact with the load

balancer. One solution is to use a generic search

algorithm. This concept has previously been used

for didactic purposes [2] or for the classi�cation

of algorithms [14], also it is standard procedure in

object oriented design. It has also been used in

the library DIB [4].

We have introduced abstract data types for

search tree Nodes, Differences between nodes (i.e.

edges of the search tree) and Solutions. The dif-

ferences leading to the successors of a node can be

determined by an iterator over the successors of a

node, i.e., there is a set of functions initSucc,

nextSucc, currSucc and moreSucc which can

generate the successors of a node one after the

other. Moving up and down the tree is possible

using apply(Node, Diff) and unApply(Node,

Diff). Together with some additional protocol for

handling solutions and packing data structures,

this functionality is su�cient to implement depth-

�rst search, best �rst search, hybrid search strate-

gies, etc. So, an additional bene�t is that the user

does not have to �x the choice of the sequential

search strategy.

2.6 Application interface layer

In principle, the application can directly be im-

plemented in terms of the interface de�ned by the

generic search algorithm. But the author of a

generic search algorithm wants a very general in-

terface in order to be able to serve a large number

of applications. On the other hand, the applica-

tion programmer prefers a simple interface well

suited for a narrower class of applications. The

application interface layer can mediate between

these two aims by providing a number of special-

ized interfaces. For example, a generic depth-�rst

search algorithm can be adapted to backtrack-

ing, depth-�rst branch-and-bound, iterative deep-

ening A* and variants regarding the way solutions

should be treated (�nd all, �nd any, �nd best, . . .).

2.7 Application layer

The way the application dependent parts are par-

allelized, depends on the original situation. If the

application is implemented from scratch, the most

elegant way is to use the generic search algorithm.

But often there will already be a highly tuned se-

quential version which is to be ported. In this case,

it can be easier to use the interface to the load bal-

ancer directly. It is not very complicated and it

does not require any speci�c knowledge of parallel

computing. This also makes it possible to use ap-

plication speci�c knowledge for tasks like splitting

subproblems or packing them for transmission.

Even more tuning may be useful if the appli-

cation uses heuristics not (yet) implemented by

the library which depend on global information.

For example, duplicate elimination may be useful

when the graph to be traversed is not really a tree.

This requires a distributed hash table which can

be implemented using the machine interface layer

or even the native machine speci�c primitives.

3 Implementation experiences

Analogous to the previous section, we now explain

the implementation experiences level by level, bot-

tom up. We stress the application layer because

this is the place where performance can be mea-

sured directly.

3.1 Machine layer

The implementations have been done on our lo-

cal Workstation Cluster with PVM, Transput-

ers (Parsytec SuperCluster and GCel-3/1024)

with the parallel operating system Cosy and on

the Power-PC based Parsytec machines Power

X'plorer and GC/PP with the run-time system

Parix.

3

An MPI-based implementation for the

IBM SP-2 and other machines will follow soon.

3.2 Machine interface layer

The implementation for PVM and Cosy is very

simple. The largest individual piece of code is re-

sponsible for making sure that the same code is

executed on all PEs and that all PE IDs are avail-

able everywhere. In Parix this \SPMD-mode" is

the default, but it does not support asynchronous

communication between arbitrary PEs. This func-

tionality can be implemented using the quite ef-

�cient multi-threading system of Parix. All im-

plementations use a generic collective communica-

tion sublayer which turned out to be more e�cient

3

We would like to thank the Paderborn Center for Par-

allel Computing (PC

2

) for making the GC-machines avail-

able.

than the builtin functionality of the the abstract

machine.

3.3 Load balancing layer

So far, there is only a load balancer for tree shaped

computations. Its heart is the random polling load

balancing algorithm described in [9] { an almost

penetrantly simple algorithm. Every PE works on

a single subproblem at a time. When this sub-

problem is exhausted, the PE asks a randomly

chosen other PE to split its subproblem. When

the requested PE is also idle, another random PE

is choosen. It can be shown [19] that for a large

class of problems, it is unlikely that any PE has to

issue more than O(logP) requests overall (Let P

denote the number of PEs). So, if the per PE

load is larger than the cost for communicating

O(logP) subproblems, arbitrarily high e�ciency

can be achieved.

The load balancer is further enhanced by an

initialization scheme which broadcasts the root

problem to all PEs, and then splits it locally,

based on the PE number. Furthermore, the tree

based double-counting termination detection al-

gorithm [12, Section 4.6.1] is adapted to random

polling: Incoming and outgoing work transfers are

counted on each PE. When all PEs have been idle

once, these counters are added and a new cycle

is started. When both counters remain the same

for two subsequent cycles, all PEs must be idle

and no work can be in transit. This scheme can

be implemented portably and e�ciently using the

asynchronous reduceAdd-function of the machine

interface layer. It is more scalable than the ring

based schemes used by other implementations and

requires less messages than tree based schemes

previously proposed [3, 9].

There is also an e�cient support for the branch-

and-bound heuristics. When a new solution is

found, the new bound needs to be quickly dis-

seminated to all PEs. We do this by indirectly

sending the value to PE 0 along a binary reduc-

tion tree. Values which are only locally optimal

are discarded as soon as possible. Only when a

new value has reached PE 0, it is broadcast to

all PEs. If locally improved solutions were im-

mediately broadcast, this would result in severe

network contention for applications like the knap-

sack problem where many suboptimal solutions

are found initially. This method is also described

in [6].

3.4 Sequential search layer

Implementing a useful generic search module

proved to be quite di�cult. The reason is that

there are much more ways of handling solutions

and tree pruning heuristics than one would expect

from the neat textbook algorithms. Interestingly

a large step towards a general solution was to sim-

plify the basic search routine by stripping it of all

treatments of heuristics or solution handling leav-

ing only the bare tree traversal functionality. In

addition, there are separate functions for report-

ing new results which the application can call at

any time. The interface overhead between generic

search algorithm, application interface layer and

application is small because most of the function-

ality can be implemented as macros.

The main asset of providing the search layer

may also be unexpected. Splitting a search space

de�ned by a search stack is in principle quite easy

(refer to [16] for example) but in practice there are

many \opportunities" for introducing bugs which

only become apparent when several PEs are in-

volved. For an application programmer who does

not know the internals of the library, these bugs

are di�cult to �nd. A thoroughly tested generic

splitting function can save much of this trouble.

Future versions of the library may contain com-

ponents for black box testing user de�ned split-

ting functions. Another possibility is to provide

a new interface between load balancer and appli-

cation which is based on a generic splitting func-

tion and an application-function for converting be-

tween a generic and an internal representation of

the search space.

3.5 Application interface layer

The application interface layer is very thin yet. So

far, there are only some auxiliary modules. For ex-

ample, one simpli�es packing and unpacking func-

tionality in case search tree nodes contain no dy-

namic data structures.

3.6 Application layer

The following three sections describe experiences

made with the Golomb ruler problem, the 0/1

knapsack problem and some preliminary results

on the 15-puzzle.

Golomb rulers

A Golomb ruler [1] of length m with k marks

is de�ned by integer positions 0 = m

1

, m

2

, . . . ,

m

k

= m with the property jfm

j

� m

i

: 1 � i <

j � kgj = k(k�1)=2, i.e., the ruler can be used to

measure a maximum number of distances. For a

given k we want to �nd a Golomb ruler with min-

imal m. Figure 2 shows a Golomb ruler of length

17 with 6 marks. The problem comes from dis-

crete mathematics but it has applications in radio

astronomy and coding theory.

0 4 1712101

Figure 2: Golomb ruler with k = 6, m = 17.

It is solved using backtracking. On level i of the

search tree, mark i is placed. Starting from a triv-

ial approach, we introduced a number of heuristics

which reduce the sequential execution time by two

orders of magnitude. The search tree therefore

has a quite irregular shape, but it is not very deep

and it remains wide and bushy. The computa-

tions associated with a search-tree node are su�-

ciently coarse-grained to warrant using a generic

search algorithm. But it is critical that the generic

search algorithm decouples tree traversal and han-

dling heuristics. Else it would not be possible to

e�ciently implement the three types of heuristics

used. Before a node expansion takes place, an ap-

proximation of a branch-and-bound value is com-

puted. After the node expansion, a more accurate

bound is computed. Sometimes, all subsequent

successors of a node are pruned without further

computations. Incorporating all these options into

a single \text-book style" generic search strategy

would be di�ucult.

For real applications, we want to �nd Golomb

rulers for as large k as possible. It turns out that

parallelization with random polling is no prob-

lem then. Even large numbers of loosely cou-

pled workstations can achieve almost perfect PE

128

256

384

512

640

768

896

1024

1 64 256 576 1024

sp
ee

du
p

PEs

12 marks: 0.88s par. time
13 marks: 12.07s par. time

perfect speedup

Figure 3: Speedup for Golomb rulers.

utilization. The parallel algorithm expands few

more nodes than the sequential algorithm. Here

we use Golomb rulers as a benchmark problem for

studying scalability issues. We are therefore in-

terested in good speedups for small problems. A

load balancer performing well in this setting can

also be expected to perform well for applications

with very irregular search trees.

4

Figure 3 shows speedups for the task of verify-

ing that the shortest known rulers with 12 respec-

tively 13 marks are indeed optimal. For such in-

stances, the search tree is independent of the order

in which subtrees are evaluated. We therefore get

smooth, well reproducible speedup curves. (Small

uctuations due to the randomized load balancer

have been damped by averaging over 5 measure-

ments). Even for the quite small problem with 12

marks we get a speedup of 578 at a parallel ex-

ecution time of 0:88s. For even larger problems

we achieve almost perfect speedup. (Compared to

the specialized sequential algorithm.)

The 0/1 knapsack problem

An instance of the 0-1 knapsack problem is de-

�ned by m items with weight w

i

and pro�t p

i

and

a knapsack of capacity M . We are looking for

x

i

2 f0; 1g such that

P

p

i

x

i

is maximized subject

to the constraint

P

w

i

x

i

� M , i.e., we want to

achieve a maximal pro�t with items in the knap-

sack without exceeding its capacity. Next to the

traveling salesman problem, the knapsack prob-

4

For example, this relation can be observed in game tree

search. Heuristics which reduce search overhead lead to

frequent drops in usable parallelism [5].

lem might be one of the most extensively studied

discrete optimization problems [11].

There are two basic approaches to exact solu-

tions of the knapsack problem. Dynamic program-

ming is good if m is not too large and the w

i

lie

within a small discrete range. In other cases, dy-

namic programming fails due to its exponential

memory requirements. For these cases, variants

of depth-�rst branch-and-bound are better. The

items are �rst sorted by their pro�t-density (from

now on, let w

i

, p

i

refer to the i-th best item);

then depth-�rst branch-and-bound traverses a bi-

nary search tree where x

i

is determined at level i

of the tree. Lower bounds for use in the branch-

and-bound heuristics are based on relaxing the in-

tegrality constraints on the x

i

. The bounds can

be computed quickly (in O(logm) time) using bi-

nary search and some precomputation. Due to

this �ne granularity, best �rst search is not com-

petitive here. The costs for managing the required

data structures would be too high. Parallelizing

the best �rst approach is also di�cult. In [13] the

speedup on 16 PEs remains below 6.

For the same reason we choose to implement the

application directly on top of the load balancer.

5

The search space is split by evenly dividing open

subproblems on all tree levels between the sub-

problems [16]. The simpler (and often su�cient)

approach of only splitting the top open problem

would generate very unequal splits for the knap-

sack problem.

The standard way for testing the performance

of algorithms for the knapsack problem is to gen-

erate random instances by choosing w

i

uniformly

at random from an interval [w

max

; w

min

]. p

i

is

either choosen independently from an interval

[p

min

; p

max

] or it is correlated to w

i

by choosing

p

i

2 [w

i

+ p

min

; w

i

+ p

max

]. The heuristics turns

out to be so e�ective for the uncorrelated instances

that the average number of node expansions is

5

In an early version we tried to use the generic search

algorithm. It took a factor of about 1.7 more time (Gnu-

C). We were not able to fully resolve the sources of over-

head. Perhaps one problem is that optimizers of compilers

are written with unjusti�ed assumptions about how code

has to look like. This optimizer problem was much more

pronounced in experiments with C++ (Also Gnu). Just

making Node a class (not to speak of the other data types)

incurred an additional overhead factor of two. Even tem-

plates with inline functions seem to be slightly slower than

macros.

0.25

1

4

16

64

256

1024

4096

16384

65536

1 10 100 1000 10000 100000

sp
ee

du
p

sequential execution time [s]

Figure 4: Speedup for 256 instances of the knap-

sack problem on 1024 PEs.

close to m { the search tree is almost a linear list.

Clearly, no speedup for parallel tree search is pos-

sible here.

6

For correlated instances, the shape

of the search tree varies widely with the choice of

the parameters. There are very simple classes of

instances but also di�cult ones where m = 100

already means intractable problems. We expect

hard problems to be easily parallelizable. We fo-

cus on sequentially tractable problems with large

m which still contain parallelism. The thin, irreg-

ular shape of the search tree and the high sub-

problem transmission cost make this a challenge

to the load balancer.

We have generated 256 random instances with

m = 2000, w

i

2 [0:01; 1:01], p

i

2 [w

i

+ 0:1; w

i

+

0:125], M =

P

w

i

=2 using the (32-bit) ran-

dom number generator of INMOS-C. The double-

logarithmic plot in Figure 4 shows the relation

between speedup and sequential execution time.

There is a large number of very small problems for

which we cannot expect any signi�cant speedup.

Beginning at per PE loads of about 10s we start

to observe good performance. Very large prob-

lems show a considerable superlinear speedup. For

these instances the sequential algorithm appears

to have run into some kind of \dead end". The

parallel algorithm is more robust because it fol-

lows multiple search paths at once. The overall

parallel execution time for 1024 PEs is 1410 times

smaller than the sequential time. This indicates

that the traditional pure depth-�rst strategy is not

6

Speedups reported in [10] for this class of instances are

an artifact of a very ine�cient node evaluation function.

the best choice for a sequential algorithm.

The 15-Puzzle

The 15-Puzzle is a standard benchmark problem

from AI. The best sequential algorithm for �nding

shortest solutions is iterative deepening depth-�rst

search (IDA* [8]). There are also successful paral-

lelizations [16, 15, 7, 17]. Our implementation uses

PIGSeL for an individual iteration of the search.

Since there are a number of ways to keep the num-

ber of required iterations for small instances small

and because the search tree turns out to be not

too irregular, we expect a scalability similar to

the Golomb ruler problem. (We have no measure-

ments on large machines yet.)

The 15-puzzle is interesting due to its extremely

�ne granularity. On a PPC 601 our implementa-

tion needs only about 50 machine cycles per node

expansion. We therefore do not use the generic

search algorithm. It is not even advisable to use

the data type Subproblem directly for searching.

For example, the Motorola C-compiler never puts

slots of C-structs into registers. We therefore

copy the more important parts of a subproblem

description into local scalar variables of the se-

quential search function. Only those are reliably

put into registers by the optimizer.

4 Conclusions

We have demonstrated that it is possible to e�-

ciently exploit large parallel machines for search-

ing irregularly shaped trees using a reusable

portable library. The random polling algorithm,

which was known to be successful on low diam-

eter networks [9], is equally e�ective on high la-

tency machines with software routing. Our im-

plementation is particularly e�cient due to a

broadcast based initialization scheme, the double-

counting termination detection algorithm and a

bottleneck free implementation of the branch-and-

bound heuristics. The results for small Golomb

ruler problems demonstrate an e�cient parallel

execution time which is at least an order of magni-

tude smaller than previous results on comparable

machines [18, 23]. Much of this e�ectivity carries

over to more challenging problems like the knap-

sack problem which requires �ne-grained depth-

�rst branch-and-bound with a deep thin search

tree and frequent bound updates.

The design of PIGSeL makes it possible to in-

corporate a wide range of machines, load balancers

and applications into a single framework. Build-

ing the library on a thin machine interface layer

with portable sublayers for higher-level services

proved to be e�ective on three di�erent abstract

machines. Tree shaped computations form a sim-

ple and useful interface between the load balancer

and the search algorithm for depth-�rst search.

Using generic search algorithms to separate the

search strategy and the application is more di�-

cult and the overhead of this approach is only tol-

erable for su�ciently coarse grained applications.

References

[1] G. S. Bloom and S. W. Golomb. Applications of

numbered undirected graphs. Proceedings of the

IEEE, 65(4):562{570, April 1977.

[2] G. Brassard and P. Bratley. Algorithmics Theory

and Practice. Prentice Hall, 1988.

[3] S. Dutt and M. R. Mahapatra. Parallel A* algo-

rithms and their performance on hypercube mul-

tiprocessors. In International Parallel Processing

Symposium, Newport Beach, 1993.

[4] R. Finkel and U. Manber. DIB| A distributed

implementation of backtracking. ACM Trans.

Prog. Lang. and Syst., 9(2):235{256, Apr. 1987.

[5] H. Hopp and P. Sanders. Parallel game tree search

on SIMD machines. In Workshop on Algorithms

for Irregularly Structured Problems, number 980

in LNCS, pages 349{361, Lyon, 1995. Springer.

[6] L. V. Kale and A. B. Sinha. Information shar-

ing mechanisms in paralllel programs. Technical

report, University of Illinois, Urbana Champaign,

1991.

[7] G. Karypis and V. Kumar. Unstructured tree

search on SIMD parallel computers. IEEE

Transactions on Parallel and Distributed Systems,

5(10):1057{1072, 1994.

[8] R. E. Korf. Depth-�rst iterative-deepening: An

optimal admissible tree search. Arti�cial Intelli-

gence, 27:97{109, 1985.

[9] V. Kumar, A. Grama, A. Gupta, and G. Karypis.

Introduction to Parallel Computing. Design and

Analysis of Algorithms. Benjamin/Cummings,

1994.

[10] W. Loots and T. H. C. Smith. A parallel algo-

rithm for the 0-1 knapsack problem. International

Journal of Parallel Programming, 21(5):349{362,

1992.

[11] S. Martello and P. Toth. Knapsack Problems { Al-

gorithms and Computer Implementations. Wiley,

1990.

[12] F. Mattern. Verteilte Basisalgorithmen. Number

226 in Informatik-Fachberichte. Springer, 1987.

[13] G. P. McKeown, V. J. Rayward-Smith, and S. A.

Rush. Parallel branch-and-bound. In Advances

in Parallel Algorithms, pages 349{362. Blackwell,

1992.

[14] D. S. Nau, V. Kumar, and L. Kanal. General

branch and bound, and its relation to A* and

AO*. Arti�cial Intelligence, 23:29{58, 1984.

[15] C. Powley, C. Ferguson, and R. E. Korf. Depth-

�rst heuristic search on a SIMD machine. Arti�-

cial Intelligence, 60:199{242, 1993.

[16] V. N. Rao and V. Kumar. Parallel depth �rst

search. Part I. International Journal of Parallel

Programming, 16(6):470{499, 1987.

[17] A. Reinefeld. Scalability of massively parallel

depth-�rst search. In DIMACS Workshop, 1994.

[18] A. Reinefeld and V. Schnecke. Work-load balanc-

ing in highly parallel depth-�rst search. In Scalable

High Performance Computing Conference, pages

773{780, Knoxville, 1994.

[19] P. Sanders. A detailed analysis of random polling

dynamic load balancing. In International Sym-

posium on Parallel Architectures, Algorithms and

Networks, pages 382{389, Kanazawa, Japan, 1994.

[20] P. Sanders. Emulating MIMD behavior on SIMD

machines. In International Conference Mas-

sively Parallel Processing Applications and Devel-

opment, Delft, 1994. Elsevier.

[21] P. Sanders. Fast priority queues for parallel

branch-and-bound. In Workshop on Algorithms

for Irregularly Structured Problems, number 980

in LNCS, pages 379{393, Lyon, 1995. Springer.

[22] S. Tsch�oke and N. Holth�ofer. A new parallel ap-

proach to the constrained two-dimensional cutting

stock problem. InWorkshop on Algorithms for Ir-

regularly Structured Problems, LNCS, pages 285{

299, Lyon, 1995. Springer.

[23] S. Tsch�oke, M. R�acke, R. L�uling, and B. Monien.

Solving the traveling salesman problem with a

parallel branch-and-bound algorithm on a 1024

processor network. Technical report, Universit�at

Paderborn, 1994.

