
Asynchronous Random Polling Dynamic Load

Balancing

Peter Sanders

Max-Planck-Institut f�ur Informatik,

Im Stadtwald, 66123 Saarbr�ucken, Germany.

E-mail: sanders@mpi-sb.mpg.de, WWW: http://www.mpi-sb.mpg.de/~sanders

Abstract. Many applications in parallel processing have to traverse

large, implicitly de�ned trees with irregular shape. The receiver initi-

ated load balancing algorithm random polling has long been known to

be very e�cient for these problems in practice. For any � > 0, we prove

that its parallel execution time is at most (1 + �)T

seq

=P + O(T

atomic

+

h(

1

�

+T

rout

+T

split

)) with high probability, where T

rout

, T

split

and T

atomic

bound the time for sending a message, splitting a subproblem and �nish-

ing a small unsplittable subproblem respectively. The maximum splitting

depth h is related to the depth of the computation tree. Previous work

did not prove e�ciency close to one and used less accurate models. In

particular, our machine model allows asynchronous communication with

nonconstant message delays and does not assume that communication

takes place in rounds. This model is compatible with the LogP model.

1 Introduction

Many algorithms in operations research and arti�cial intelligence are based on

the backtracking principle for traversing large irregularly shaped trees that are

only de�ned implicitly by the computation [3, 4, 6, 9, 12{14, 19, 17, 21, 35]. Similar

problems also play a role in parallel programming languages [1, 16]. Even for

loop scheduling and some numerical problems [7, 24] like adaptive numerical

integration [25] it can be useful to view the computations as an implicitly de�ned

tree (refer to [34] for a more detailed discussion of examples).

For parallelizing tree shaped computations, a load balancing scheme is needed

that is able to evenly distribute the parts of an irregularly shaped tree over

the processors. It should work with minimal interprocessor communication and

without knowledge of the shape of the tree. Load balancers often su�er from the

dilemma that subtrees which are not subdivided turn out to be too large for

proper load balancing whereas excessive communication is necessary if the tree

is shredded into too many pieces.

We consider random polling dynamic load balancing [19] (also known as ran-

domized work stealing [5, 10, 2, 11]), a simple algorithm that avoids both prob-

lems: Every processing element (PE) handles at most one piece of work (which

may represent a part of a backtracking tree) at any point in time. If a PE runs



out of work, it sends requests to randomly chosen PEs until a busy one is found

which splits its piece of work and transmits one to the requestor.

We continue this introduction by explaining the machine model in Section 1.1

and the problem model tree shaped computations in Section 1.2. Section 1.3

reviews related work and summarizes the new contributions. The main body of

the paper begins with a more detailed description of random polling in Section 2.

In Section 3 we then give expected time bounds and show in Section 4 that they

also hold with high probability (using additional measures). Finally, Section 5

summarizes the paper and discusses some possible future research.

1.1 Machine Model

We basically adopt the LogP model [8] due to its simplicity and genericity. There

are P PEs numbered 0 through P�1. We assume a word length of 
(logP ) bits.

1

Arithmetics on numbers of word length { including random number generation

{ is assumed to require constant time. All messages delivered to a PE are �rst

put into a single FIFO message queue. In the full LogP model, three parameters

for \latency" L, \overhead" o and \gap" g contribute to the cost of message

transfer. We make the more conservative assumption that sending and receiving

messages always costs T

rout

:= L + o + g units of time. So the analysis also

applies to the widespread messaging protocols that block until a message has

been copied into the message queue of the recipient.

1.2 Tree Shaped Computations

We now abstract from the applications mentioned in the introduction by in-

troducing tree shaped computations which expose just enough of their common

properties in order to parallelize them e�ciently. All the work to be done is ini-

tially subsumed in a single root problem I

root

. I

root

is initially located on PE 0.

All other PEs start idle, i.e., they only have an empty problem I

;

.

What makes parallelization attractive, is the property that problem instances

can be subdivided into subproblems that can be solved independently by di�erent

PEs. For example, a subproblem could be \search this subtree by backtracking"

or \integrate function f over that subinterval". We model this property by a

splitting operation split(I) that splits a given (sub)problem I into two new sub-

problems subsuming the parent problem. Let T

split

denote a bound on the time

required for the split operation. For example, in backtracking applications a sub-

problem is usually represented by a stack and splitting can be implemented by

copying the stack and manipulating the copies in such a way that they represent

disjoint search spaces covering the original search space [26].

The operation work(I; t) transforms a given subproblem I by performing

sequential work on it for t time units. The operation also returns when the

subproblem is exhausted.

1

Throughout this paper log x stands for log

2

x.

2



What makes parallelization di�cult, is that the size, i.e., the execution time

T (I) := minft : work(I; t) = I

;

g, of a subproblem cannot be predicted. In ad-

dition, the splitting operation will rarely produce subproblems of equal size.

For the analysis we assume however that 8I : split(I) = (I

1

; I

2

) =) T (I) =

T (I

1

)+T (I

2

) regardless when and where I

1

and I

2

are worked on. For a discussion

when this assumption is strictly warranted and when it is a good approximation,

refer to Section 5 and to [32, 34].

Next we quantify some guaranteed \progress" made by splitting subprob-

lems. Every subproblem I belongs to a generation gen(I) recursively de�ned by

gen(I

root

) := 0 and split(I) = (I

1

; I

2

) =) gen(I

1

) = gen(I

2

) = gen(I) + 1.

For many applications, it is easy to give a bound on a maximum splitting depth

h which guarantees that the size of subproblems with gen(I) � h cannot ex-

ceed some atomic grain size T

atomic

. For example, a backtracking search tree of

depth d and maximum branching factor b is easy to split in such a way that

h � d dlog be. We want to exclude problem instances with very little parallelism

and therefore assume h � logP . Otherwise, we might quickly end up with less

than P atomic pieces of work that cannot be split any more. Since h is the only

factor that constrains the shape of the emerging \subproblem splitting tree", it

can be viewed as a measure for the irregularity of the problem instance. (Obvi-

ously, very regular instances with large h are possible. But in applications where

this is frequently the case, one should perhaps look for a splitting function ex-

ploiting these regularities to decrease h.)

Finally, subproblems can be moved to other PEs by sending a single message.

If problem descriptions are long, the parameters of the LogP model must be

adapted to re
ect the cost of such a long message. The resulting time bounds

will be conservative since many messages are much shorter.

The task of the algorithm analysis is now to bound the parallel execution

time T

par

required to solve a problem instance of size T

seq

:= T (I

root

) given the

problem parameters h, T

split

and T

atomic

and the machine parameters P and

T

rout

. The bound is represented in the form

T

par

� (1 + �)

T

seq

P

+ T

rest

(P; T

rout

; �; h; : : : ) (1)

where � > 0 represents some small value we are free to choose. So, for situations

with T

rest

� T

seq

=P we have a highly e�cient parallel execution.

1.3 Related Work and New Results

There is a quite large body of related research so that we can only give a rough

outline. Many algorithms use a simpler approach regarding tree decomposition

by requiring all \splits\ to occur before calls to \work" (in our terminology).

However, this is only e�cient for some applications since in the worst case a

huge number of subproblems may have to be generated or communicated (e.g.

[18, 7, 27]).

Random polling belongs to a family of receiver initiated load balancing al-

gorithms which have the advantage to split subproblems only on demand by

3



idle PEs. This adaptive approach has been used successfully for a variety of

purposes such as parallel functional [1] and logic programming [16] or game

tree search [12]. Randomized partner selection goes at least back to [13]. The

partner selection strategy turns out to be crucial. The apparently economic

option to poll neighbors in the interconnection network can be extremely in-

e�cient since it leads to a buildup of \clusters" of busy PEs shielding large

subproblems from being split [26]. Polling PEs in a \global round robin" fash-

ion [18] avoids this because no large subproblems can \hide". Execution times

T

par

2 O(

T

seq

P

+ hT

count

) can be achieved where T

count

is the time for incre-

menting a global counter. However, even sophisticated distributed counting al-

gorithms have T

count

2 
(T

rout

logP= log logP ) [36]. It was long known that

random polling performs better than global round robin in practice although

the �rst analytical treatments could only prove an asymptotically weaker bound

ET

par

2 O(

T

seq

P

+ hT

rout

logP ) [18]. Tree shaped computations are a generaliza-

tion of the �-splitting model used in [18]. The gap between analysis and practical

experience was closed in [28, 29] by showing that T

par

� (1 + �)

T

seq

P

+O(hT

rout

)

with high probability using synchronous random polling.

Slightly later, random polling (also called randomized work stealing) was

found to be very e�cient for scheduling multithreaded computations [5]. For

many underlying applications, the two models can be translated into each other.

The critical path length T

1

in multithreaded computations then becomes hT

split

+

T

atomic

for tree shaped computations. Multithreading can model predictable de-

pendencies between subproblems while tree shaped computations allow for dif-

ferent splitting strategies which may signi�cantly decrease h [26]. Multi-threaded

computations are most easy to use with programming language support, while

tree shaped computations are directly useful for a portable and reusable library

[31, 34]. In the following, we concentrate on tree shaped computations. Adapting

these results to multithreading or some more general model encompassing both

approaches is an interesting area for future work however.

All the analytical results above (including [28, 29]) make simplifying assump-

tions that are unrealistic for large systems, di�cult to implement or detrimental

to practical performance. The most common assumption is that communication

takes place in synchronized communication rounds. This is undesirable since idle

PEs have to wait for the next communication round and the network capacity

is left unexploited most of the time. In fact, actual implementations are usually

asynchronous. Arora et al. allow small speed 
uctuations (2C{3C instructions

per round) but even that may be di�ucult to attain since the number of clock cy-

cles needed per instruction can be highly data dependent on modern processors

(e.g., cache faults for large inputs). They also assume that polling and splitting

take constant time (T

rout

+ T

split

2 O(1) in our terminology). This is a viable

assumption for moderate size shared memory machines and the thread stack of

a multithreaded language. But we want an algorithm that scales to large dis-

tributed memory machines and allows more sophisticated application speci�c

splitting functions. Using an even simpler stochastic model, Mitzenmacher was

able to analyze many variants of work stealing [23].

4



Unfortunately, we cannot fully transfer an analysis for the above \round

models" to a realistic asynchronous model since subproblems that are \in tran-

sit" cannot be split and long request queues can build up around PEs that have

\di�cult to split" subproblems. In Section 3 we solve these analytical problems

and show that ET

par

�(1 + �)T

seq

=P + O(T

atomic

+ h (1=�+ T

rout

+ T

split

)). In

Section 4 it turns out that this bound also holds with high probability although

for some values of h it may be necessary to actively trim long queues.

The time bound is not only tight for random polling but in [32] we also

show a number of lower bounds which come very close: There are tree shaped

computations for which a splitting overhead of 
(hT

split

) is unavoidable so that

we get an 
(T

seq

=P + T

atomic

+ hT

split

) lower bound. Furthermore, any receiver

initiated load balancing algorithm not only needs 
(h) communications on the

critical path but also 
(hP ) full size messages overall so that the network band-

width is fully utilized. Wu and Kung [37] show that a similar bound holds for all

deterministic algorithms. Random polling can be slightly improved on certain

networks by carefully increasing the average locality of communication [30]. At

least up to constant factors, similar results can be achieved by dynamic tree

embedding algorithms (e.g. [15]).

2 The Algorithm

Figure 1 gives pseudo-code for the basic random polling algorithm. PE 0 is

initialized with the root problem as speci�ed in the model. PEs in possession

of nonempty subproblems do sequential work on them but poll the network for

incoming messages at least every �t time units and at most every ��t time

units for any constant � < 1.

2

When a request is received, the local subproblem

is split and one of the new subproblem is sent to the requestor. Idle PEs send

requests to randomly determined PEs and wait for a reply until they receive a

nonempty subproblem. Requests received in the meantime are answered with an

empty subproblem. Note that an empty subproblem can be coded by a short

message equivalent to a rejection of the request.

Concurrently, a distributed termination detection protocol is run that rec-

ognizes when all PEs have run out of work. We have adapted the four counter

method [22] for this purpose. Each PE counts the number of sent and received

messages that contain nonempty subproblems. When the global sum over these

two counts yields identical results over two global addition rounds, there cannot

be any work left (not even in transit). Instead of the ring based summing scheme

proposed in [22], we use a tree based asynchronous global reduction operation.

This is a simple and portable way to bound the termination detection delay by

O(T

rout

logP ).

2

If the machine supports it, explicit polling can be replaced by more e�cient and more

elegant interrupt mechanisms which (almost) only cost time when requests arrive.

5



var I, I

0

: Subproblem

I := if i

PE

= 0 then I

root

else I

;

while no global termination yet do

if T (I) = 0 then

send a request to a random PE

repeat

receive any message M (blockingly)

reply requests from PE j with I

;

until M is a reply to my request

unpack I from M

else I := work(I;�t)

if incoming request from PE j then (I; I

0

) := split(I); send I

0

to PE j

Fig. 1. Basic algorithm for asynchronous random polling.

3 Expected Time Bounds

This Section is devoted to proving the following bound on the expected parallel

execution time of asynchronous random polling dynamic load balancing:

Theorem 1. ET

par

� (1 + �)

T

seq

P

+ O

�

T

atomic

+ h

�

1

�

+ T

rout

+ T

split

��

for an

appropriate choice of �t.

The basic idea for the proof is to partition the execution time of each individual

PE into intervals of productive work on subproblems and intervals devoted to

load balancing. We �rst tackle the more di�cult part and show that a certain

overall e�ort on load balancing su�ces to split all remaining subproblems at least

h times. By de�nition of h this implies that they are smaller than T

atomic

. As

a preparation, we assign a technical meaning to the terms \ancestor", \arrive"

and \reach":

De�nition 1. The ancestor of a subproblem I at time t is the uniquely de�ned

subproblem from which I was derived by applying the operations \work" and

\split". A load request arrives at the point of time t when it is put into the

message queue of a PE. A load request reaches a subproblem I at time t if it

arrives at some PE at time t and (later) leads to a splitting of I.

We start the analysis by bounding the expense associated with sending and

answering individual requests:

Lemma 1.

1. The total amount of active CPU work expended for processing a request is

bounded by T

split

+O(T

rout

).

2. If any requests have arrived at a PE, at least one of the requests is answered

every �t+ T

split

+O(T

rout

) time units.

3. The expected elapsed time between the arrival of a message and sending the

corresponding reply is in O(�t+ T

split

+ T

rout

).

6



Proof. 1: A request triggers at most one split. The total expense for sending

and receiving is in O(T

rout

). 2: An additional time of �t for sequential work

can elapse until the message queue is checked the next time. 3: Some queues

might be long so that some request are delayed for a quite long time. However,

there are at most P active requests at any point in time. A request arriving

at a random PE will therefore encounter an expected queue length bounded by

P

i<P

\queue length at PE i"=P � 1.

When a subproblem is split by one or more subsequent load request, there is

a dead time interval during which it cannot be reached by any other request.

Lemma 2. All dead times can be covered by associating a dead time T

dead

=

�t+ T

split

+O(T

rout

) with each request reaching a subproblem.

Proof. Let I denote a subproblem that is reached by a request R at time t and

at PE i. Let k � 0 denote the number of requests in the message queue of PE i

that reach I before R. Only if I is moved to another PE j due to R, I cannot

be reached by any request arriving after t until I is put into the message queue

of PE j. In the worst case, the dead time is (k + 1)(�t+ T

split

+ T

rout

). This is

the case, when \work" has just been called for the ancestor of I . Then a time

�t passes until the load balancer is next activated. Subsequently, the ancestor

is split with an expense of T

split

and a subproblem is sent away. This cycle is

repeated k + 1 times. Then I is reachable on PE j. The total dead time can be

distributed over the k+1 requests involved.

Now we know the various costs and delays associated with requests. If we

could �nd out how many request are necessary to split all subproblems h times

with high probability, we were almost done. However, the question is stated too

imprecisely yet. Requests that arrive during a dead time of a subproblem are

\lost" for that subproblem. We therefore only consider a subset of all completed

requests that has the property to be \su�ciently uniformly" distributed over

time.

De�nition 2. A request may be colored red if there are at most P other red

requests during a time interval T

dead

after its arrival.

Lemma 3. Let I hii denote the subproblem at PE i. For every � > 0 there is a

constant c > 0, such that after processing cPh red requests

P [9i : gen(I hii) < h] � P

��

(for su�ciently large P ).

Proof. For some �xed PE index i, we have

P [9i : gen(I hii) < h] � PP [gen(I hii) < h] :

So it su�ces to show that P [gen(I hii) < h] < P

���1

for su�ciently large P . We

can bound gen(I hii) by the number of red requests that reach I hii. Uncolored

requests can be ignored here w.l.o.g.: Although it may happen that an uncolored

request reaches I hii and causes one or more subsequent red requests to miss

7



I hii, this split will be accounted to the next following red request and its dead

time su�ces to explain that the subsequent red requests miss I hii. Using a

combinatorial treatment, we now show that

P

k<h

P

k

� P

���1

where

P

k

:= P [I hii is reached by k red requests] :

There are

�

chP

k

�

ways, to choose k red request that are to reach I hii. The prob-

ability that they are all heading for PE i is P

�k

. Since there are at most P red

requests in the dead time after a request, there are at least chn� kP remaining

red request that do not reach I hii. The probability of this event is

(1� 1=P )

chP�kP

� e

�(ch�k)

:

All in all, we have

P

k

�

�

chP

k

�

P

�k

e

�(ch�k)

�

�

chPe

k

�

k

P

�k

e

�(ch�k)

=

�

che

2

k

�

k

e

�ch

using the Stirling approximation

�

m

k

�

� (me=k)

k

. Since k < h, it is easy to verify

that the k-dependent part of the above expression is monotonously increasing

with k for c > 1=e and can be bounded from above by setting k = h, i.e.,

P

k

�

�

ce

2

�

h

e

�ch

= e

�h(c�ln c�2)

:

Now P [gen(I hii) < h] can be bounded by

he

�h(c�ln c�2)

= e

�h

(

c�ln c�2�

lnh

h

)

� e

�h

(

c�ln c�2�

1

e

)

:

Since we assume that h 2 
(logP ) there is a c

0

such that h � c

0

lnP :

P [gen(I hii) < h] � P

�c

0

(

c�ln c�2�

1

e

)

� P

���1

for an appropriate c and su�ciently large P .

Now we bound the expense for all requests in order to have cPh red ones

among them.

Lemma 4. Let c > 0 denote a constant. Requests can be colored in such a way

that an expected work in O(hP (�t + T

split

+ T

rout

)) for all request processing

su�ces to process chP red requests.

Proof. Let R

1

; : : : ; R

m

denote all the requests processed and let t(R

1

) � � � � �

t(R

m

)) denote the arrival time of R

i

. Going through this sequence of requests

we color P subsequent requests red and then skip the requests following in

an interval of T

dead

, etc. Since there can never be more than P requests in

transit there can be at most 2P uncolored requests whose executions overlaps

an individual red interval. Therefore, the expense for P red requests can be

bounded by PT

dead

plus the expense for processing 3P requests. The expense

for this is given in Lemma 1.

8



By combining lemmata 3 and 4 we get a bound for the communication ex-

pense of random polling until only atomic subproblems are left.

Lemma 5. The expected overall expense for communicating, splitting and wait-

ing until there are no more subproblems with gen(I) < h is in O(hP (�t+T

split

+

T

rout

)).

Bounding the expense for sequential work { i.e. calls of \work" { is easy. Let

T

poll

denote the (constant) expense for probing the message queue unsuccessfully.

It su�ces to choose �t > T

poll

=(��) to make sure that only (1+�)T

seq

time units

are spent for those iterations of the main loop where the local subproblem is not

exhausted and no requests arrive. All other loop iterations can be accounted to

load balancing.

As the last component of our proof, we have to verify that atomic subprob-

lems are disposed of quickly and that termination detection is no bottleneck.

Lemma 6. If �t 2 


�

min(

T

atomic

h

; T

rout

+ T

split

)

�

and gen(I hii) � h for all

PEs then the remaining execution time is in

O(T

atomic

+ h(�t+ T

split

+ T

rout

)) :

Proof. From the de�nition of h we can conclude that for all remaining subprob-

lems I we have T (I) � T

atomic

. For

T

atomic

h

2 O(T

rout

+ T

split

), O(h) iterations

(of each PE) with cost O(�t + T

split

+ T

rout

) each su�ce to �nish up all sub-

problems. Otherwise, a busy PE spends at least a constant fraction of its time

with productive work even if it constantly receives requests.

3

Therefore, after

a time in O(T

atomic

) no nonempty subproblems will be left. After a time in

O(T

rout

logP ) � O(hT

rout

), the termination detection protocol will notice this

condition.

The above building blocks can now be used to assemble a proof of Theorem 1.

Choose some �t 2 O(T

rout

+ T

split

) \ 


�

min

�

T

atomic

h

; T

rout

+ T

split

��

such that

�t > T

poll

=(��) (where T

poll

is the constant time required to poll the network

in the absence of messages). This is always possible and for the frequent case

T

atomic

=h � T

rout

+ T

split

there is also a very wide feasible interval for �t.

Every operation of Algorithm 1 is either devoted to working on a nonempty

subproblem or to load balancing in the sense of Lemma 5. Therefore, after an

expected time of (1+�)

T

seq

P

+O(h(1=�+T

rout

+T

split

)) su�ciently many requests

have been processed such that only subproblems with gen(I) � h are left with

high probability. The polynomially small fraction of cases where this number of

requests is not su�cient cannot in
uence the expectation of the execution time

since even a sequential solution of the problem instance takes only O(P ) times

as long as a parallel execution. According to Lemma 6, an additional time in

O(T

atomic

+h(1=�+T

split

+T

rout

)) su�ces to �nish up the remaining subproblems

and to detect termination.

3

In the full LogP model even �t 2 


�

min(

T

atomic

h

;max(T

split

+ o; g))

�

su�ces.

9



4 High Probability

In order to keep the algorithm and its analysis as simple as possible, Theorem 1

only bounds the expected parallel execution time. In [33] it is also shown how

the same bounds can be obtained with high probability. The key observation is

that Martingale tail bounds can be used to bound the sum of all queue lenghts

encounterd by requests if the maximal queue length is not too large.

Theorem 2. For �t and � as in Theorem 1,

T

par

� (1+�)

T

par

P

+

~

O

�

T

atomic

+ h(

1

�

+T

split

+T

rout

)

�

if h 2 
(P logP ) or queue lengths in 


�

p

P

�

are avoided by algorithmic means.

4

5 Discussion

Tree shaped computations represent an extreme case for parallel computing in

two respects. On the one hand, parallelism is very easy to expose since sub-

problems can be solved completely independently. Apart from that they are the

worst case with respect to irregularity. Not only can splitting be arbitrarily un-

even (only constrained by the maximum splitting depth h) but it is not even

possible to estimate the size of a subproblem. Considering the simplicity of ran-

dom polling and its almost optimal performance (both in theory and practice)

the problem of load balancing tree shaped computations can largely be consid-

ered as solved.

Although tree shaped computations span a remarkably wide area of appli-

cations, an important area for future research is to generalize the analysis to

models that cover dependencies between subproblems. The predictable depen-

dencies modeled by multithreaded computations [2] are one step in this direction.

But in many classic search problems the main di�culty are heuristics that prune

the search tree in an unpredictable way.

References

1. G. Aharoni, Amnon Barak, and Yaron Farber. An adaptive granularity control

algorithm for the parallel execution of functional programs. Future Generation

Computing Systems, 9:163{174, 1993.

2. N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multipro-

grammed multiprocessors. In 10th ACM Symposium on Parallel Algorithms and

Architectures, pages 119{129, 1998.

3. S. Arvindam, V. Kumar, V. N. Rao, and V. Singh. Automatic test pattern gener-

ator on parallel processors. Technical Report TR 90-20, University of Minnesota,

1990.

4

Let

~

O (�) denote the following shorthand for asymptotic behavior with high proba-

bility [20]: A random variable X is in

~

O (g(P )) i� 8� > 0 : 9c > 0 : 9P

0

: 8P � P

0

:

P [X � cf(P )] � 1� P

��

10



4. G. S. Bloom and S. W. Golomb. Applications of numbered undirected graphs.

Proceedings of the IEEE, 65(4):562{570, April 1977.

5. R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. In Foudations of Computer Science, pages 356{368, Santa Fe, 1994.

6. M. B�ohm and E. Speckenmeyer. A fast parallel SAT-solver { e�cient workload

balancing. Annals of Mathematics and Arti�cial Intelligence, 17:381{400, 1996.

7. S. Chakrabarti, A. Ranade, and K. Yelick. Randomized load balancing for tree-

structured computation. In Scalable High Performance Computing Conference,

pages 666{673, Knoxville, 1994.

8. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subra-

monian, and T. v. Eicken. LogP: Towards a realistic model of parallel computation.

In Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, pages 1{12, San Diego, 1993.

9. W. Ertel. Parallele Suche mit randomisiertem Wettbewerb in Inferenzsystemen.

Dissertation, TU M�unchen, 1992.

10. P. Fatourou and P. Spirakis. Scheduling algorithms for strict multithreaded compu-

tations. In ISAAC: 7th International Symposium on Algorithms and Computation,

number 1178 in LNCS, pages 407{416, 1996.

11. P. Fatourou and P. Spirakis. A new scheduling algorithm for general strict mul-

tithreaded computations. In 13rd International Symposium on DIStributed Com-

puting (DISC'99), Bratislava, Slovakia, 1999. to appear.

12. R. Feldmann, P. Mysliwietz, and B. Monien. Studying overheads in massively

parallel min/max-tree evaluation. In ACM Symposium on Parallel Architectures

and Algorithms, pages 94{103, 1994.

13. R. Finkel and U. Manber. DIB { A distributed implementation of backtracking.

ACM Transactions on Programming Languages and Systems, 9(2):235{256, April

1987.

14. C. Goumopoulos, E. Housos, and O. Liljenzin. Parallel crew scheduling on work-

station networks using PVM. In EuroPVM-MPI, number 1332 in LNCS, Cracow,

Poland, 1997.

15. V. Heun and E. W. Mayr. E�cient dynamic embedding of arbitrary binary trees

into hypercubes. In International Workshop on Parallel Algorithms for Irregularly

Structured Problems, number 1117 in LNCS, 1996.

16. J. C. Kergommeaux and P. Codognet. Parallel logic programming systems. ACM

Computing Surveys, 26(3):295{336, 1994.

17. R. E. Korf. Depth-�rst iterative-deepening: An optimal admissible tree search.

Arti�cial Intelligence, 27:97{109, 1985.

18. V. Kumar and G. Y. Ananth. Scalable load balancing techniques for parallel

computers. Technical Report TR 91-55, University of Minnesota, 1991.

19. V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Com-

puting. Design and Analysis of Algorithms. Benjamin/Cummings, 1994.

20. F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. Randomized routing

and sorting on �xed-connection networks. Journal of Algorithms, 17:157{205, 1994.

21. S. Martello and P. Toth. Knapsack Problems { Algorithms and Computer Imple-

mentations. Wiley, 1990.

22. F. Mattern. Algorithms for distributed termination detection. Distributed Com-

puting, 2:161{175, 1987.

23. M. Mitzenmacher. Analyses of load stealing models based on di�erential equations.

In 10th ACM Symposium on Parallel Algorithms and Architectures, pages 212{221,

1998.

11



24. A. Nonnenmacher and D. A. Mlynski. Liquid crystal simulation using automatic

di�erentiation and interval arithmetic. In G. Alefeld and A. Frommer, editors,

Scienti�c Computing and Validated Numerics. Akademie Verlag, 1996.

25. W. H. Press, S.A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C. Cambridge University Press, 2. edition, 1992.

26. V. N. Rao and V. Kumar. Parallel depth �rst search. International Journal of

Parallel Programming, 16(6):470{519, 1987.

27. A. Reinefeld. Scalability of massively parallel depth-�rst search. In DIMACS

Workshop, 1994.

28. P. Sanders. Analysis of random polling dynamic load balancing. Technical Report

IB 12/94, Universit�at Karlsruhe, Fakult�at f�ur Informatik, April 1994.

29. P. Sanders. A detailed analysis of random polling dynamic load balancing. In In-

ternational Symposium on Parallel Architectures, Algorithms and Networks, pages

382{389, Kanazawa, Japan, 1994.

30. P. Sanders. Better algorithms for parallel backtracking. InWorkshop on Algorithms

for Irregularly Structured Problems, number 980 in LNCS, pages 333{347, 1995.

31. P. Sanders. A scalable parallel tree search library. In S. Ranka, editor, 2nd Work-

shop on Solving Irregular Problems on Distributed Memory Machines, Honolulu,

Hawaii, 1996.

32. P. Sanders. Lastverteilungsalgorithmen f�ur parallele Tiefensuche. PhD thesis, Uni-

versity of Karlsruhe, 1997.

33. P. Sanders. Lastverteilungsalgorithmen f�ur parallele Tiefensuche. Number 463 in

Fortschrittsberichte, Reihe 10. VDI Verlag, 1997.

34. P. Sanders. Tree shaped computations as a model for parallel applications. In

ALV'98 Workshop on application based load balancing. SFB 342, TU M�unchen,

Germany, March 1998. http://www.mpi-sb.mpg.de/~sanders/papers/alv.ps.

gz.

35. E. Speckenmeyer, B. Monien, and O. Vornberger. Superlinear speedup for parallel

backtracking. In C. D. Houstis, E. N.; Papatheodorou, T. S.; Polychronopoulos,

editor, Proceedings of the 1st International Conference on Supercomputing, number

297 in LNCS, pages 985{993, Athens, Greece, June 1987. Springer.

36. R. Wattenhofer and P. Widmayer. An inherent bottleneck in distributed count-

ing. Journal Parallel and Distributed Processing, Special Issue on Parallel and

Distributed Data Structures, 49:135{145, 1998.

37. I. C. Wu and H. T. Kung. Communication complexity of parallel divide-and-

conquer. In Foudations of Computer Science, pages 151{162, 1991.

12


