
A Detailed Analysis of Random Polling Dynamic Load

Balancing

Peter Sanders

LS Informatik f�ur Ingenieure und Naturwissenschaftler

Universit�at Karlsruhe, Germany

Abstract

Dynamic load balancing is crucial for the performance of many parallel algorithms.

Random Polling, a simple randomized load balancing algorithm, has proved to be

very e�cient in practice for applications like parallel depth �rst search. This paper

presents a detailed analysis of the algorithm taking into account many aspects of

the underlying machine and the application to be load balanced. It derives tight

scalability bounds which are for the �rst time able to explain the superior performance

of Random Polling analytically. In some cases, the algorithm even turns out to be

optimal. Some of the proof-techniques employed might also be useful for the analysis

of other parallel algorithms.

1 Introduction

Load Balancing is one of the central issues in parallel computing. Since for many

applications it is almost impossible to predict how much computation a given sub-

problem involves, a dynamic load balancing (DLB) strategy is necessary which is

able to keep the processors busy without incurring an undue overhead.

DLB comes in many guises. This paper is concerned with a very simple yet im-

portant model of the problem domain. Initially there is only one large root problem.

Subproblems are generated by splitting existing problems into two parts, but noth-

ing is known about the relative size of the two parts or their interactions. The only

thing the load balancer knows about a subproblem is whether it is exhausted or not.

One application domain for which this is a useful model is parallel depth �rst

tree search. Search trees are often very irregular and the size of a subtree is hard

to predict, but it is easy to split the search stack into two parts. Also, interactions

between the subtrees often follow the tree structure (e. g. reporting results) or they

are hard to exploit by a load balancer anyway (e. g. broadcasting of the current best

solution or accessing distributed hash tables). Note that depth �rst tree traversal

is a central aspect of many AI and OR applications and of parallel functional and

logical programming languages.

This paper focuses on Random Polling (RP), a simple yet e�ective randomized

DLB scheme. Every processing element (PE) works on at most one subproblem at a

time. A PE whose subproblem is exhausted polls randomly determined PEs until it

�nds one which is busy. The busy PE splits its subproblem and transmits one part

to the idle PE.

Our approach towards analyzing RP is somewhat atypical. We do not present

implementation results or comparisons between a variety of new and old algorithms

as it is usual in many papers with practical orientation. This has been done elsewhere

1

[3, 5, 2, 6, 15, 14]. Nor do we delve deep into a particular detail that is most beautiful,

di�cult, interesting or tractable from a theoretical point of view. Instead, we try

to throw light on as many aspects of the algorithm as possible; hoping that this

approach helps to understand and implement the algorithm in a variety of settings.

The remainder of this introduction gives basic de�nitions and an overview of

related work. Section 1.3 gives some basic results about asymptotic behavior in a

probabilistic setting. Section 2 contains the analysis of Random Polling which is

complemented by a modi�cation for the SIMD programming model in Section 3

where polling is handled in a di�erent and interesting way. Due to space constraints

some of the more technical derivations had to be omitted. They can be found in

[13].

1.1 De�nitions

The analysis considers a MIMD computer consisting of n identical PEs numbered 0

through n�1 which interact by exchanging messages through a network of diameter

d(n). The size w of the root problem is measured in units of sequential execu-

tion time. Subproblems are derived from the root problem by subsequent splitting

operations and can be represented by a message of length at most l(w). When a

subproblem has been split h(w) times it is assumed to have been reduced to some

atomic size g(w).

The performance of a DLB scheme can be assessed by analyzing a problem without

interactions between subproblems where DLB is the only source of parallelization

overhead. Natural performance measures are the parallel execution time T

par

(n; w)

or the e�ciency

E =

w

nT

par

(n; w)

(1)

But the complexity of discussing bivariate functions can be avoided by �xing E and

solving Equation (1) for w yielding the isoe�ciency function w(n). This function

is a convenient measure for the degree of scalability of an algorithm. For a more

detailed discussion see [6].

Since RP is a randomized algorithm, a meaningful analysis has to be a probabilis-

tic one. We use the following notion of behavior with high probability.

De�nition 1 ([10]) A random variable X(n) is in O(f(n)) with high probability

or X(n) 2

~

O (f(n)) for short i�

9c > 0; n

0

> 0 : 8� � 1; n � n

0

: P [X(n) > c�f(n)] � n

��

(In [13] it is shown that behavior with high probability is a stronger notion than the

more customary notion of average case behavior for our purposes.)

1.2 Related work

In [4] it is proved that for d(n) 2 O(1) and fl(w); g(w)g � O(1) RP has an isoef-

�ciency function in O(n

2

logn) with high probability. Much tighter is the result in

[5]: If fl(w); g(w)g � O(1) and h(w) 2 O(logw), the isoe�ciency function of RP

is in O(nd(n)(logn)

2

) on the average. This already indicates a quite good scala-

bility. But it falls short of explaining why RP is in practice more e�cient than a

deterministic algorithm introduced in the same paper which has an isoe�ciency in

�(nd(n) logn).

Another randomized DLB algorithm is based on dynamic tree-embeddings into

butter
y networks or hypercubes [8, 11]. For fl(w); g(w)g � O(1) it has an isoe�-

ciency function in O(nh(n)) with high probability (for butter
ies and hypercubes)

2

which is asymptotically optimal. However, the algorithm has no notion of gran-

ularity control resulting in high memory requirements and a possibly quite small

upper bound on the achievable e�ciency due to communication overhead. Another

interesting result from [8] is that no deterministic tree embedding with the same

performance can exist.

1.3 Some basic results

A useful property of behavior with high probability is that it allows very simple con-

clusions on the maximum of random variables whose behavior with high probability

is known:

Theorem 1 ([13]) LetX

1

(n) 2

~

O (f

1

(n)),. . . , X

m

(n) 2

~

O (f

m

(n)) be random vari-

ables where m is at most polynomial in n. Then

m

max

i=1

X

i

(n) 2

~

O

�

m

max

i=1

f

i

(n)

�

This result has a special case of particular importance for parallel algorithms: The

run time of a parallel algorithm is determined by the slowest PE. If the runtime of

individual PEs is known with high probability Theorem 1 makes it easy to estimate

the overall run time.

Theorem 2 cites a frequently used result about coin
ipping experiments.

Theorem 2 (Cherno� bounds) Let the random variable X represent the number

of heads after n independent
ips of a loaded coin where the probability for a head

is p. Then [10, 7]:

P [X � (1� �)np] � e

��

2

np=3

for 0 < � < 1 (2)

P [X � �np] � e

(

1�

1

�

�ln�

)

�np

for � > 1 (3)

2 Analysis

Figure 1 shows pseudocode for a generic RP dynamic load balancer. All PEs execute

the same program with the exception that PE 0 initially gets all the work.

1

Idle

PEs poll randomly selected PEs for work and reject requests they receive. Busy PEs

cycle between doing work and servicing at most one request.

Note that a busy PE will not block if no requests are imminent nor can it be swamped

by requests without being able to do \useful" work. In addition, some protocol for

termination detection is necessary which is not considered here since it is not a

bottleneck if implemented properly.

Based on the above algorithm, Section 2.1 isolates a subproblem which captures

the probabilistic character of RP in a mathematically simpler question which is then

answered in Section 2.2. This information is used to derive upper bounds for the

isoe�ciency of RP which are complemented by lower bounds in Section 2.4. Finally

Sections 2.5 and 2.6 discuss the validity of assumptions frequently made about the

quality of the splitting function and the in
uence of network contention.

1

It is advisable to improve the initial PE utilization using an appropriate initialization scheme

[13].

3

initialize PE 0 with the root problem

WHILE NOT �nished DO for all PEs in parallel (asynchronously)

IF subproblem is empty THEN

REPEAT

send a request R to a randomly determined PE

wait for a reply and reject any incoming requests

UNTIL R is not rejected

reinitialize subproblem from incoming message

WHILE subproblem is not empty DO

IF there is an incoming request THEN

split subproblem

asynchronously send one part to the initiator of the request

do some work on subproblem

Figure 1: Pseudocode for RP

2.1 Framework of the analysis

The starting point is the de�nition of e�ciency, E =

w

nT

par

. For any
 2 [0; 1=2) we

can set T

par

= T

<

+ T

�

where T

<

is the length of all time intervals during which

less than
n PEs are idle. If we neglect the time to test for a request

2

and assume

that
n active PEs are delayed servicing requests of the idle PEs we get

T

<

<

w

n(1� 2
)

since in this time the active PEs can process the entire problem.

During T

�

there will be at least

n

T

req

work requests per time unit if T

req

is the

time needed for a work request. Let the random variable K(n; h(w)) denote the

number of work requests necessary such that every subproblem has been split at

least h(w) times. Then

T

�

�

K(n; h(w))T

req

n

+ g(w)

because after time

K(n;h(w))T

req

n

every subproblem is reduced to an atomic size g(w).

Now the e�ciency can be estimated.

E �

w

n

�

w

n(1�2
)

+

K(n;h(w))T

req

n

+ g(w)

�

=

w

w

(1�2
)

+

K(n;h(w))T

req

+ ng(w)

(4)

2.2 The order of K(n; h(w))

Under the reasonable assumption that there is at least a constant number of atomic

work units for each PE (i. e. w 2 g(w)
(n)) the asymptotic behavior of K(n; h(w))

can be derived.

Lemma 1 Let the random variable K

t

(n; h(w)) denote the number of requests nec-

essary to hit a particular subproblem \t" h(w) times; Then K

t

(n; h(w)) 2

~

O (nh(w))

if w 2 g(w)
(n).

2

If incorporated into the analysis, it would turn out that the test implies an upper bound on the

e�ciency. However, the test can often be implemented very e�ciently and intervals between tests

can be made arbitrarily large without a�ecting the asymptotic scalability. The maximal e�ciency

can therefore be made as close to 1 as desired.

4

Proof: We need to �nd a c such that for all � � 1 and su�ciently large n

P := P [K

t

(n; h(w)) > c�nh(w)] � n

��

or

P [after c�nh(w) requests: (# of requests for t) < h(w)] � n

��

:

Since the requests are independent and subproblem t is hit with the uniform proba-

bility

1

n

, Theorem 2 (Equation (2)) is applicable. By writing h(w) as

�

1�

�

1�

1

c�

��

(c�nh(w))

1

n

we get

P � exp

"

�

�

1�

1

c�

�

2

c�h(w)

3

#

Since w 2 g(w)
(n), h(w) is in
(logn) because even a perfect splitting function

would always leave a subproblem not in O(g(w)) after less than logarithmically many

splits. So, there is a constant d > 0 such that h(w) � d lnn for su�ciently large n.

Using � � 1 we can further estimate:

P � exp

"

�

�

1�

1

c

�

2

c�d lnn

3

#

= n

��

(

1�

1

c

)

2

cd

3

� n

��

if c � 1 +

3+

p

12d+9

2d

.

There are only O(n) subproblems, and therefore Theorem 1 allows us to conclude

that the asymptotic behavior of K(n; h(w)) with high probability is the same as the

behavior of K

t

(n; h(w)):

Corollary 1 K(n; h(w)) 2 O(nh(w)) with high probability if w 2 g(w)
(n)

2.3 The isoe�ciency of RP

If we neglect network contention (see Section 2.6 for a discussion) then the request

delay T

req

is in O(d(n)l(w)), and together with Relation (4) and Corollary 1 we can

conclude that there is a constant c such that for su�ciently large n and w:

E �

w

w

(1�2
)

+

cnh(w)d(n)l(w)

+ ng(w)

(5)

with high probability. An immediate observation is that for g(w) > ch(w)l(w)d(n)

the scalability is dominated by the atomic grain size. In this case it may not be

necessary to bother about routing delays, quality of splitting function or message

lengths. If h(w)l(w) 2
(w) or g(w) 2
(w) we have lim

n!1

E = 0 according to

our estimate. So, for large h(w)l(w) or g(w) RP may not be scalable at all. Indeed,

for h(w) 2
(w) or g(w) 2
(w) the problem contains a sequential component of

size
(w) and no scalable parallel algorithm is possible.

For maxfh(w)l(w); g(w)g =2
(w) we can choose
 <

1�E

2

and get lim

w!1

E = 1

i. e. for su�ciently large w any desired e�ciency can be achieved. The degree

of scalability for RP can be assessed by �xing E and solving for the isoe�ciency

function w(n). For three characteristic cases we get the following results: (For

details refer to [13].)

� h(w)l(w) 2 O((logw)

a

), a � 1, g(w) 2 O((logw)

b

), b � 0:

w(n) 2

~

O

�

nmaxfd(n)(logn)

a

; (logn)

b

g

�

(6)

5

� h(w)l(w) 2 O(w

�

), 0 < � < 1, g(w) 2 O(w

�

), 0 � � < 1:

w(n) 2

~

O

�

maxf(nd(n))

1

1��

; n

1

1��

g

�

(7)

� h(w) 2 O(logw), l(w) 2 O(w

�

) with � � 0:

w(n) 2

~

O

�

maxf(nd(n) logn)

1

1��

; n

1

1��

g

�

(8)

2.4 Lower bounds

In order to judge the quality of RP and its analysis it is interesting to compare the

results with lower bounds on the scalability of dynamic load balancing in general and

RP in particular. Based on the fact that some piece of work has to travel through

the entire network a lower bound of
(nd(n)) for the isoe�ciency of dynamic load

balancing is derived in [5].

3

Using our more detailed model of the application, two

additional limitations on performance can be identi�ed: First, some processor has to

process a subproblem of size
(g(w)). This information can be used to derive a lower

bound for the isoe�ciency (for details refer to [13]) which shows that the granularity

is the limiting factor if g(w) 2
(h(w)l(w)d(n)). For coarse grained problems RP is

therefore asymptotically optimal. Second, in some way the root problem has to be

split
(logn) times. If we assume that splitting is at least as expensive as copying

(l(w)) bytes, we get a lower bound of
(l(w) logn) on the execution time. Similar

to the argument above we can conclude that for d(n) 2 O(1) and h(w) 2 O(logw)

RP is asymptotically optimal.

In RP splits are coupled to global communications so that we get a lower bound

of
(d(n) logn) on the execution time and of
(nd(n) logn) on the isoe�ciency.

Therefore, for bounded message lengths (l(w) 2 O(1)) and good splitting functions

(h(w) 2 O(logw)) our analysis turns out to be tight.

2.5 Estimating h(w)

Splitting a subproblem of size v produces two subproblems with sizes �v and (1��)v

where 0 < � � 1=2. If it is guaranteed that � is bounded from below by a positive

constant then it is fairly straightforward to show that h(w) 2 O(logw) [5], making

the analysis of RP somewhat simpler.

However, this assumption is not always warranted. In depth �rst tree search for

example, a very popular splitting function splits the search tree by distributing the

successors of the root-node between the two subproblem. If the degree of tree nodes

is bounded by a constant, h(w) is proportional to the height of the tree. If the tree

is su�ciently \dense" the height is indeed logarithmic in w. But, there are search

algorithms where both the height of the tree and w are polynomial in some input

measure [9] and therefore �gures like h(w) �

p

w are quite conceivable.

Although there are more sophisticated splitting functions for search trees [12], it is

an open question in which cases these functions can guarantee that h(w) 2 O(logw)

(perhaps in some probabilistic sense). But even if this works, the analysis for general

h(w) may help to decide whether the additional expense for a more sophisticated

splitting function is worth the e�ort.

Another example for trees of very irregular shape are computation trees induced

by functional programs. According to [1], it is quite di�cult to come up with a

useful splitting function for those trees. The same problem is to be expected for

logical programming languages.

3

Actually this is not true for pathological networks like one where n=2 PEs are fully connected

and another n=2 PEs are arranged as a linear array (\clique plus tail").

6

2.6 The request delay T

req

It is often assumed that on networks like crossbars, grids, hypercubes or multistage

networks a message of length l(w) can be routed in time O(d(n)l(w)). But for

Random Polling this is certainly not true in the strict worst case sense. For example,

when all idle PEs choose to poll the same PE there will be considerable network

contention around the target PE. Here we want to outline why the assumption is

justi�ed for Random Polling in a probabilistic sense.

Since there cannot be more messages than idle PEs, there are at most n messages

at a time. The requests have independent randomly determined destinations. The

contention due to requests headed for the same PE can be estimated using Theorem 2

(Equation 3):

P [#requests for PE i � � ln n] � e

�

1�

1

� lnn

�ln(� lnn)

�

(� lnn)n

1

n

� e

�� lnn

= n

��

for � � 1 and ln lnn � 2. Since answers to requests never have con
icting des-

tinations we can conclude that the number of messages contending for PE i is in

~

O (logn). And Theorem 1 says that the same is true for the PE with the maximum

number of contending messages.

So, we have a routing problem with at most n messages of length at most l(w)

where

~

O (logn) messages contend for one destination. In [7] there are a number of

results which indicate that under these circumstances

T

req

2

~

O (d(n)l(w)) (9)

for grids, hypercubes and various multistage networks with logarithmic diameter.

Note that this may be a conservative estimate since it may be possible to pipeline

messages so that routing could be completed in time

~

O (d(n) + l(w)). This depends

on the bisection bandwidth of the network and the fraction of messages with constant

size (requests and rejects).

The situation is a little bit more complicated for networks with constant (or

sublogarithmic) diameter since here the number of contending messages appears to

become a limiting factor. But a closer look reveals that this is not true. Due to

the asynchronous nature of RP an asymptotically signi�cant delay can only occur

when some PE gets more than O(h(w)) of the requests over the entire runtime of

the program. The

~

O (nh(w)) total requests are again independent and uniformly

distributed and we can apply Theorem 2. We also know that h(w) 2
(logn).

Using an argument as before, it can be derived that the maximum contention is in

~

O (h(w)).

For some networks, contention is a problem due to their limited bisection band-

width. For example, on buses or trees it can only be said that T

req

2 O(nl(w)). The

subsequent analysis works with T

req

2 O(d(n)l(w)). The result for other cases is

easy to obtain by substituting appropriate values for d.

3 Random Polling on SIMD machines

The Random Polling algorithm as described above is not directly applicable to a

SIMD setting since a PE cannot independently issue a request. This problem can

be solved by introducing separate load balancing phases. A load balancing phase is

triggered when the fraction of idle PEs rises above some constant
. This condition

is tested periodically by counting the number of idle PEs; an operation that is quite

7

e�cient on many SIMD-machines. (Still, the interval between tests needs to be in

(d(n)) if it shall not become a bottleneck).

Now we can use a very similar argument as in Section 2.2. Due to space constraints

we only present the key ideas. If any subproblem is hit with a probability of at least

 during each phase, and if the phases are independent, then Theorem 2 can be

used to show that there is a constant c, such that for su�ciently large n,

c�

h(w)

load balancing phases are su�cient to hit every subproblem at least h(w) times with

probability 1�n

��

for any � � 1; i.e. the number of required load balancing phases

is in

~

O (h(w)).

An important point in this argument is that only the phases need to be inde-

pendent, while the requests of one phase can be dependent. This can be exploited

by using a very special kind of globally determined random permutation that is

easy to route on the given hardware. The only requirement is that from the point

of view of a particular subproblem all PEs are equally likely to be a communica-

tion partner. For example, on a d

1

� � � � � d

k

meshes or torus we can determine a

random vector (r

1

; : : : ; r

k

) and let the PE with coordinate (i

1

; : : : ; i

k

) communicate

with PE (i

1

+r

1

mod d

1

; : : : ; i

k

+r

k

mod d

k

) which yields a \shift"-permutation that

can be routed in d(n) steps without collisions. For the special case k = logn and

d

1

= � � � = d

logn

= 2 we get an e�cient scheme for the hypercube which involves a

single XOR for address calculation.

So, for many interconnection networks, a load balancing phase takes time in

O(d(n)l(w)). This also holds if we count the time which passes until it is detected

that the percentage of idle PEs has risen above
, as part of the load balancing

phase. Using this construction it can be shown that T

�

is in

~

O (d(n)l(w)h(w)) and

the results from Section 2.3 also hold for the SIMD case.

4 Conclusions

The simple randomized dynamic load balancing algorithm Random Polling has of-

ten proved useful in practice. This paper explains its good performance under a

variety of circumstances using the notion of isoe�ciency function. The in
uence

of low quality splitting functions and nonconstant message lengths is investigated.

Also, the paper helps to justify the simplifying assumption that network contention

is no problem as long as the bisection bandwidth is high enough. New tight scala-

bility bounds are derived for bounded message lengths and good splitting functions.

Random Polling is asymptotically optimal if the time needed for the delivery of

a message depends only on the problem size or if the communication overhead is

dominated by the atomic grain size of the problem. Finally, a new SIMD variant of

Random Polling is described for which it can be proved that an \almost determin-

istic" communication pattern is as good as a truly random permutation.

References

[1] G. Aharoni, A. Barak, and Y. Farber. An adaptive granularity control algorithm for the

parallel execution of functional programs. Future Generation Computing Systems, 9:163{174,

1993.

[2] R. Feldmann, P. Mysliwietz, and B. Monien. Distributed game tree search on a massively

parallel system. In Data structures and e�cient algorithms: Final report on the DFG special

joint initiative, volume LNCS 594, pages 270{288, 1991.

[3] R. Finkel and U. Manber. DIB| A distributed implementation of backtracking. ACM Trans.

Prog. Lang. and Syst., 9(2):235{256, Apr. 1987.

8

[4] R. M. Karp and Y. Zhang. Parallel algorithms for backtrack search and branch-and-bound.

Journal of the ACM, 40(3):765{789, 1993.

[5] V. Kumar and G. Y. Ananth. Scalable load balancing techniques for parallel computers.

Technical Report TR 91-55, University of Minnesota, 1991.

[6] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing. Design

and Analysis of Algorithms. Benjamin/Cummings, 1994.

[7] T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan Kaufmann, 1992.

[8] T. Leighton, M. Newman, A. G. Ranade, and E. Schwabe. Dynamic tree embeddings in

butter
ies and hypercubes. In ACM Parallel Processing Symposium, pages 224{234, 1989.

[9] J. Pearl. Heuristics. Addison Wesley, 1984.

[10] S. Rajasekaran. Randomized algorithms for packet routing on the mesh. In L. Kronsj�o and

D. Shumsheruddin, editors, Advances in Parallel Algorithms, pages 277{301. Blackwell, 1992.

[11] A. Ranade. Optimal speedup for backtrack search on a butter
y network. Mathematical

Systems Theory, pages 85{101, 1994.

[12] V. N. Rao and V. Kumar. Parallel depth �rst search. Part I. International Journal of Parallel

Programming, 16(6):470{499, 1987.

[13] P. Sanders. Analysis of random polling dynamic load balancing. Technical Report IB 12/94,

Universit�at Karlsruhe, Fakult�at f�ur Informatik, April 1994.

[14] P. Sanders. Massively parallel search for transition-tables of polyautomata. In Parcella 94, VI.

International Workshop on Parallel Proccessing by Cellular Automata and Arrays, Potsdam,

1994.

[15] P. Sanders. Portable parallele Baumsuchverfahren: Entwurf einer e�zienten Bibliothek. In

Transputer Anwender Tre�en (to appear), Aachen, 1994.

9

