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Abstract

We explain how the parallelization aspects of a large class of appli-

cations can be modeled as tree shaped computations. This model is par-

ticularly suited for NP-complete problems. One reason for this is that

any computation on a nondeterministic machine can be emulated on a

deterministic machine using a tree shaped computation. We then pro-

ceed to a particular example, the knapsack problem It turns out that

a parallel depth �rst branch-and-bound algorithm based on tree shaped

computations yields superlinear average speed-up using 1024 processors.

This even holds for large relatively easy problems which produce a very

irregular search tree and only a moderate amount of work.

1 Introduction

Many algorithms in operations research and arti�cial intelligence are based on

the backtracking or depth �rst traversal principle for traversing large implicitly

de�ned trees (e.g. [1, 11, 12, 14, 16, 15, 18]). In addition, some adaptive numeri-

cal algorithms for integration [21], for �nding eigenvalues of tridiagonal matrices

[7] or for nonlinear optimization [20] have a similar structure. Even modeling

the seemingly unrelated problem of loop scheduling in this way can be advanta-

geous [30]. In Section 2, we �rst review the model of tree shaped computations

which exposes the common properties of the above mentioned application. Sec-

tion 3 gives an overview of the quite strong algorithmic techniques available for

tree shaped computations. Having established that tree shaped computations

are both simple and and e�ciently parallelizable we go into further detail re-

garding relations between tree shaped computations on the one hand and the

particular case of NP-complete problems on the other hand. Perhaps the most

fundamental relation is that every problem in NP can easily be translated into

a tree shaped computatatoin of polynomial depth. Section 4 explains the de-

tails. An even more trivial relation is that NP-complete problems can be time
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consuming to solve, so that parallelization might help boost performance. The

main weakness of this argumentation is that even hundreds of processors are

of little help if the execution time for real world instances actually grows ex-

ponentially with a basis signi�cantly larger to one. Therefore, in Section 5 we

discuss a number of heuristics which can be used to prune the search space.

We conclude our discussion in Section 6 by looking at a particular example, the

knapsack problem, for which pruning heuristics can be very successful. This

makes parallelization di�cult yet interesting.

Related Work

Most of the results presented here stem from the PhD thesis [28]. Modelling

aspects beyond NP-complete problems are also discussed in [30]. Algorithmic

aspects are covered in [24, 23, 26]. It should also be noted that tree shaped

computations are also a useful abstraction for a portable and reusable load

balancing library [27].

There is a large body of other related work. We can only give a cross section

and refer to the references in [28] for a more detailed discussion. Early work

on random polling and an application independent library is described in [12].

Random polling and other receiver initiated load balancing methods are also of

central importance for parallel functional and logical programming languages

(e.g., [1, 14]). Tree shaped computations can be considered a generalization of

the �-splitting model used in [16]. A related model based on multithreaded

computations is used in the Cilk project [4, 3, 2]. The ZRAM library [6] is

another recent implementation e�ort.

2 The Abstract Model

All the work to be done by a tree shaped computation is initially subsumed in

a single root problem I

root

located on a processing element (PE) numbered 0.

All other PEs start idle, i.e., they only have an empty problem I

;

.

What makes parallelization attractive, is the property that problem in-

stances can be subdivided into subproblems which can be solved independently

by di�erent PEs. We model this property by a splitting operation split(I) which

splits a given (sub)problem into two new subproblems subsuming the parent

problem. Let T

split

denote a bound on the time required for the split operation.

The operation work(I; t) transforms a given subproblem I by performing

sequential work on it for t time units. The operation also returns when the

subproblem is exhausted.

What makes parallelization di�cult, is that the size, i.e., the execution time

T (I) := minft jwork(I; t) = I

;

g, of a subproblem cannot be predicted. In addi-

tion, the splitting operation will rarely produce subproblems of equal size. For

the analysis we assume however that subproblems are independent in the sense

that

8I : split(I) = (I

1

; I

2

)) T (P ) = T (I

1

) + T (I

2

) (1)
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regardless when and where I

1

and I

2

are worked on. In Section 5.4 we discuss

what happens if this assumption is violated.

Next we quantify some guaranteed \progress" made by splitting subprob-

lems. Every subproblem I belongs to a generation gen(I) recursively de�ned

by gen(I

root

) := 0 and split(I) = (I

1

; I

2

) ) gen(I

1

) = gen(I

2

) = gen(I) + 1.

For many applications, it is easy to give a bound on a maximum splitting depth

h which guarantees that the size of subproblems with gen(I) � h cannot ex-

ceed some atomic grain size T

atomic

. Since h is the only factor which constrains

the shape of the emerging \subproblem splitting tree", it can be viewed as a

measure for the irregularity of a problem instance.

1

Finally, subproblems can be moved to other PEs by sending a message.

3 Load Balancing Algorithms

In [28] a number of load balancing algorithms are investigated using a detailed

model for message passing parallel computers with P PEs coupled via various

interconnection networks. Here, we contend ourselves with an outline of the

practically most important algorithm using a simpli�ed version of the the LogP

model [8] as the machine model. The communication costs are expressed in

terms of T

rout

:= L + o + g, i.e., the sum of communication latency, sending

overhead and gap between messages. We assume that the characteristic message

length is de�ned in such a way that a subproblem can be speci�ed using a single

message.

The random polling algorithm is very simple: Each PE handles exactly one

(possibly empty) subproblem at any point in time. If a PE runs out of work it

sends requests to randomly chosen PEs until a busy one is found which splits its

piece of work and transmits it to the requester. This algorithm was discovered

independently multiple times. Refer to [12] for an early reference. Despite of

its simplicity and the unpredictablility of tree shaped computations, random

polling is very e�cient:

Theorem 1 The expected parallel execution time for solving a tree shaped com-

putation using random polling is

ET

par

� (1 + �)

T

seq

P

+O

�

T

atomic

+ h

�

1

�

+ T

rout

+ T

split

��

for any � > 0 :

In particular, O(h) consecutive splitting and routing operations and an overall

message tra�c in O(Ph) are su�cient. This is optimal in the sense that that

there are tree shaped computations which require at least as many splits [29].

The algorithm also works well if the speed of the PEs in a network of work-

station varies dynamically due to external load since the additional irregularity

introduced by this is comparably small [29, 2]. We can even tolerate a complete

1

Obviously, very regular instances with large h are possible. But in applications where this

is frequently the case, one would look for a splitting function exploiting these regularities to

decrease h.
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deactivation of a worker process as long as it still answers load requests. Such

a mode is desirable for \guest" jobs on interactively used workstations. Even

the time for splitting subproblems can be saved if we introduce the additional

rule that a deactivated worker process sends its entire subproblem when it gets

a request.

4 Relation to NP-complete Problems

By de�nition of the complexity class NP , a class of decision problems L is in

NP if and only if there is nondeterministic Turing machine M accepting the

language de�ned by L using polynomially many steps t(n) 2 Poly(n) (with

respect to the problem size n [13]).

How can such a nondeterministic computation be emulated on a sequential

deterministic machine? Perhaps the most natural approach is outlined in the

following pseudo-code.

Function accept(t)

if t = 0 then return fail

emulate any deterministic computations

if accepting state reached then return true

if nondeterministic transition

for each possible transition do

make this transition

if accept(t-1) then return true

(* Rejecting state or failed subtree *)

undo the computations just performed

return false

This algorithm enumerates all possible computations of the nondeterministic

machine with up to t nondeterministic decisions. By iterative deepening, i.e.,

calling `accept` with ever increasing t, an answer will eventually be found. From

now on we look at a single iteration of this process since in many application a

good estimate for the maximal number of nondeterministic decisions is known

and since otherwise the last iteration is likely to dominate execution time. The

routine `accept' could be e�ciently implemented on a multi-tape Turing machine

(with an extra tape for recording undo-information). When moving towards a

practical program, we use the RAM (random access machine) model instead

and we implement the undo in an e�cient problem-speci�c way.

The memory content of such a program can be viewed as a subproblem in the

sense of tree shaped computations. We only have to specify, how a subproblem

I should be split: First make two copies I

1

and I

2

. Then, consider the �rst entry

in the recursion stack (deepest inside) which still has k � 1 untried possible state

transitions. Manipulate this stack entry and the state of the computations in

both copies in such a way that the computation represented by I

1

tries bk=2c

of the open alternatives and the currently considered alternative while I

2

tries

the remaining dk=2e alternatives.
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Now, a load balancing algorithm like random polling can be used to ex-

ecute the computation in parallel. Let s(n) de�ne a bound on the memory

consumption for a problem of size n. Let d(n) bound the number of steps spent

in consecutive deterministic computations, let i(n) denote the maximum num-

ber of nondeterministic steps needed and let b denote the maximimum number

of alternatives in a nondeterministic step. There is a simple connection be-

tween the above parameters and the parameters of tree shaped computations:

T

atomic

= O(d(n)), T

split

= O(s(n) + d(n)) (note that we may have to do d(n)

deterministic computations before the next splitting opportunity is found) and

h � dlog be i(n). The only serious problem is that the sequential execution

time depends on the order in which alternatives are tried. For now let us as-

sume that all alternatives must be tried. For example, because most problem

instances produce the answer `false'. Then parallelization is simple. The com-

putations are done in parallel and each processor remembers whether it ever

found a `true'. At the very end, the global or of these values can be computed

in time O(T

rout

logP ) to yield the overall result. Theorem 1 therefore bounds

the parallel execution time of our emulation program. Section 5 discusses many

re�nements of this basic approach.

5 Re�nements

Whereas the purpose of Section 4 was mainly a theoretical one, we now inves-

tigate how tree shaped computations can be useful for practically parallelizing

NP-complete problems e�ciently. One way to look at this issue is that the

less we know about a problem, the more likely is it that the sequential solution

strategy will resemble the basic algorithm from Section 4. The more we learn,

the more will the solution strategy deviate and the more will parallelization take

di�erent approaches. Eventually, all similarity to backtrack search may be lost,

for example, if dynamic programming is used or if we even give up the strive

for an optimal solution.

The main purpose of this paper is to collect basic generally useful techniques

which can be used when relatively few things are known which help to guide

the search for an optimal solution.

Section 5.1 gives some more detail on how to split a problem description

into two parts and then cover a few details beyond the model of tree shaped

computations in sections 5.2 and 5.3. Then we explain the impact of the fact

that many search algorithms stop as soon as a solution is found in Seciton 5.4.

Finally, we discuss a number of frequently used heuristics for reducing the search

space in Section 5.5.

5.1 Splitting Strategies

Figure 1 outlines two useful strategies for splitting the search stack into two

independent subproblem. At the top, we see the original state with a solid arrow

for each untried choice. At the bottom, we see the two resulting subproblems.
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Figure 1: Two stack splitting strategies; a): split on all levels. b): split as close

to the root as possible.

The strategy in b) is perhaps the most common one and has already been

described in Section 4. It is simple and guarantees good worst case bounds on

the maximum splitting depth h.

Strategy a) has similar worst case behavior and is slightly more compolicated

but it performs better in some practical cases. It distributes the open alterna-

tives on all levels and is more robust in applications where most subtrees|even

those deep in the stack|represent only small subproblems,

5.2 Initialization, Completion and Subproblem Encoding

Our assumption that the entire memory content of the sequential computation

has to be copied and transmitted was very conservative. For example, the

subproblem description and precomputed tables can be broadcast once and for

all in the beginning. Many backtracking algorithms only require a few words of

variable memory for each level of recursion. If the communication bandwidth

of the system is low, it pays to compress the variable state of the computation

before subproblem transmission. For example, the state of a Prolog computation

can be compactly represented as a bit string encoding the decisions made by

the program [14].

5.3 Result Handling

In practice, optimization problems are much more frequent than plain decision

problems. Tree shaped computations are only concerned with how the work is

distributed and not how the results are collected. This is usually much easier

than the distribution however, because many subproblems will turn out not to
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contribute to the result. At worst, we can always retrace the distribution to

combine subproblem solutions to an overall solution. This is particularly simple

if the function combining the results is associative and commutative because

we can then simply use a global reduction operation (e.g., counting solutions,

�nding one best solution, �nding all solutions).

5.4 Early stopping

The sequential algorithm from Section 4 stops as soon as a `true' is found.

Likewise, optimization problems stop as soon as a good solution is found or at

least they prune parts of the search tree which are guaranteed to contain only

solutions inferior to previously found solutions. Translated into the language of

tree shaped computations, �nding a solution (e.g., a `true' in a decision problem)

means that all subproblems suddenly become empty.

Before we explain the impact of early stopping on the behavior of the parallel

search, we note that search algorithms are often used for verifying that no

solution exist, e.g., in order to prove the unsatis�ability of a logical formula [5]

or to prove that that a solution found heuristically has no signi�cantly better

solution. In this case no anomalies occur.

When solutions exist, the well known phenomenon of speedup anomalies can

occur, i.e., speedups S � P or S � P because the parallel algorithm happens

to �nd a solution very late or very early. As long as there are no heuristics or-

dering the successors of a node by their likelihood to lead to a solution, we can

reasonably expect that negative anomalies do not outweigh positive anomalies

and the only measure we have to take is to stop all PEs quickly when a solution

is found (e.g., [31, 22]). Even with node ordering heuristics, many practical

applications work surprisingly well. We can add splitting heuristics which try

to produce subproblems which have an about equal chance of leading to a solu-

tion. Furthermore, parallel search can even achieve superlinear speedup on the

average relative to sequential depth �rst search since it is less likely to run into

dead ends. We give an example in Section 6. More extreme cases of superlinar

speedup are analyzed in [9].

5.5 Tree Pruning

Search programs often mainly consist of numerous heuristics

2

to reduce the

number and degree of nonderterministic decisions. The e�ect is some subtrees

of the search space are not considered at all { the are pruned. The assumptions

of tree shaped computations are not violated as long as the decision which paths

to take only depend on the path leading from the root to the present node. Only

if information obtained by searching a subtree is used to prune siblings, can the

speedup be a�ected.

2

In this context, \heuristic" means that these rules are not guaranteed to reduce the search

space. Nevertheless, the solutions will often remain optimal.
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Evading Dead Ends: A path in a backtrack search tree usually represents

a sequence of decisions leading to a solution or a dead end. A heuristics that is

sometimes useful tries to prove that backtracking a particular decision cannot

lead out of the dead end. In this case all alternatives of this decision can be

pruned and backtracking proceeds further up the tree. Although this heuristics

can a�ect the speedup, it is usually most e�ective on small subtrees whereas

the load balancing mostly involves large subtrees which are not pruned by this

heuristics. For an example refer to [25].

Depth-�rst branch-and-bound behaves similar to applications where we

are looking for the �rst solution. Here, whenever an improved solution is

found, all other subproblems should learn about the new quality bounds and are

thereby reduced in size. We should not simply broadcast new bounds since this

can lead to severe contention if many new bound are found concurrently. Rather,

the bounds should �rst be send along a reduction tree to PE 0. Then subop-

timal bounds can be thrown away early and we still need only O(T

rout

logP )

time to distribute a new globally best bound.

Game-Tree-Search uses th ��-pruning strategy which heavily depends on

the evaluation of sibling trees and is crucial for performance the throughout the

searched. Consequently, parallelization is rather di�cult. Nevertheless, random

polling turned out to be a good load balancing algorithm for game-tree-search

[10, 11]. In this case tree shaped computations can still be considered a good

model for the load balancing aspect of the application although additional more

application-speci�c models for the \speculativity" aspect are needed.

6 Example: The Knapsack problem

An instance of the 0-1 knapsack problem is de�ned by m items with weight w

i

and pro�t p

i

and a knapsack of capacityM . We are looking for x

i

2 f0; 1g such

that

P

p

i

x

i

is maximized subject to the constraint

P

w

i

x

i

�M , i.e., we want

to achieve a maximal pro�t with items in the knapsack without exceeding its

capacity. Next to the traveling salesman problem, the knapsack problem might

be one of the most extensively studied discrete optimization problems [18].

There are two basic approaches to exact solutions of the knapsack problem.

Dynamic programming is good ifm is not too large and the w

i

lie within a small

discrete range. In other cases, dynamic programming fails due to its exponential

memory requirements. For these cases, variants of depth-�rst branch-and-bound

are better. The items are �rst sorted by their pro�t-density (from now on, let

w

i

, p

i

refer to the i-th best item); then depth-�rst branch-and-bound traverses

a binary search tree where x

i

is determined at level i of the tree. Lower bounds

for use in the branch-and-bound heuristics are based on relaxing the integrality

constraints on the x

i

. The bounds can be computed quickly (in O(logm) time)

using binary search and some precomputation. Due to this �ne granularity,

best �rst search is not competitive here. The costs for managing the required
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Figure 2: Speedup for 256 instances of the knapsack problem on 1024 PEs.

data structures would be too high. Parallelizing the best �rst approach is also

di�cult. In [19] the speedup on 16 PEs remains below 6.

The search space is split by evenly dividing open subproblems on all tree

levels between the subproblems. The simpler (and often su�cient) approach of

only splitting the top open problem would generate very unequal splits for the

knapsack problem.

The standard way for testing the performance of algorithms for the knapsack

problem is to generate random instances by choosing w

i

uniformly at random

from an interval [w

max

; w

min

]. p

i

is either choosen independently from an inter-

val [p

min

; p

max

] or it is correlated to w

i

by choosing p

i

2 [w

i

+ p

min

; w

i

+ p

max

].

The heuristics turns out to be so e�ective for the uncorrelated instances that

the average number of node expansions is close to m { the search tree is almost

a linear list. Clearly, no speedup for parallel tree search is possible here.

3

For

correlated instances, the shape of the search tree varies widely with the choice of

the parameters. There are very simple classes of instances but also di�cult ones

where m = 100 already means intractable problems. We expect hard problems

to be easily parallelizable. We focus on sequentially tractable problems with

large m which still contain parallelism. The thin, irregular shape of the search

tree and the high subproblem transmission cost make this a challenge to the

load balancer.

We have generated 256 random instances with m = 2000, w

i

2 [0:01; 1:01],

p

i

2 [w

i

+ 0:1; w

i

+ 0:125], M =

P

w

i

=2 using the (32-bit) random number

generator of INMOS-C. The double-logarithmic plot in Figure 2 shows the rela-

3

Speedups reported in [17] for this class of instances are an artifact of a very ine�cient

node evaluation function.
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tion between speedup and sequential execution time. There is a large number of

very small problems for which we cannot expect any signi�cant speedup. Begin-

ning at per PE loads of about 10s we start to observe good performance. Very

large problems show a considerable superlinear speedup. For these instances

the sequential algorithm appears to have run into some kind of \dead end".

The parallel algorithm is more robust because it follows multiple search paths

at once. The overall parallel execution time for 1024 PEs is 1410 times smaller

than the sequential time. This indicates that the traditional pure depth-�rst

strategy is not the best choice for a sequential algorithm.

7 Conclusions

Search problems related to NP-complete problems and many other applications

can be modelled by tree shaped computations. With random polling we have an

algorithm which parallelizes tree shaped computations very e�ciently although

very irregular and completely unpredictable computations are allowed. At the

same time, the model is the basis for an e�cient and very slim interface between

the load balancer and a reusable and portable load balancing library [27, 29].

Even if dependencies between subproblems are present, the predictions made

by the simple model are often correct and the load balancer works well.
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