
Randomized Static Load Balancing for

Tree-Shaped Computations

Peter Sanders

LS Informatik f�ur Ingenieure und Naturwissenschaftler

Universit�at Karlsruhe, 76128 Karlsruhe

E-mail: sanders@ira.uka.de

Abstract

Parallelizing a problem by statically assigning a �xed number of subprob-

lems to each processor is very popular due to its simplicity and low com-

munication overhead. In many cases it can be proved to be su�cient to

randomly assign O(logN) subproblems to each of N processors in order to

smooth out load imbalance due to varying subproblem sizes. However, this

is not true for the tree structured computations considered in this paper be-

cause the subproblem sizes get less uniform when the number of generated

subproblems is increased. Even under moderate assumptions, a polynomial

number of subproblems needs to be assigned to each processor. Still, for

machines with slow communication and applications with good splitting

functions, a carefully designed randomized static load balancer can be a

competitive alternative to dynamic load balancing schemes. The results

also help to explain the impact of static load balancing as an initialization

method for a subsequent dynamic load balancing phase.

1 Introduction

One of the key tasks in parallel programming is load balancing, i.e., evenly dis-

tributing subproblems over the individual processors (PEs). One of the simplest

approaches is to statically assign an equal number of subproblems to each PE.

Even if we assume that interactions between subproblems are not important,

load imbalance due to varying subproblem sizes may limit the e�ciency of this

approach. If, in addition, subproblem sizes are hard to predict, there seems to

be no way to get good load balance. But this dilemma can be solved by ran-

domization. For example, in [8] it is proved that in many cases it is su�cient to

randomly assign O(logN) subproblems

1

to each of N PEs in order to smooth out

load imbalance on the average.

In this paper we want to consider randomized static load balancing for tree

shaped computations (RaTSLoB). In tree shaped computations subproblems are

generated by repeatedly splitting a root problem. This is a natural model for

many algorithms based on tree search like backtracking or depth �rst branch-and-

bound. We show that even under moderate assumptions, a polynomial number of

1

Throughout this paper log stands for the logarithm base 2.

subproblems needs to be assigned to each PE in order to get good performance.

The degree of this polynomial depends on the quality of the splitting function.

Still, for good splitting functions and machines with slow communication static

load balancing is a competitive algorithm.

Section 2 introduces the machine and application model under consideration.

Then, Section 3 explains how RaTSLoB can be implemented with low communi-

cation overhead. Section 4 summarizes previous work in this area. The main part

of this paper is the analysis of RaTSLoB in Section 5. Finally, Section 6 sum-

marizes the results and mentions some interesting questions for future work. In

particular, two ideas about the impact of static load balancing as an initialization

scheme for dynamic load balancing are introduced.

2 De�nitions

We consider a MIMD computer consisting ofN = 2

n

identical PEs

2

which interact

by exchanging messages through a network of diameter d(N). A message of length

s can be broadcast to all PEs in time O(d(N) + s).

The problem size is measured by the sequential execution time w required to

solve the entire problem (the root problem). The root problem can be represented

by a message of length r(w). The only things an algorithm can do with a problem

is to work on it, to check whether it is exhausted and to split it into two parts.

Splitting takes time s(w). Nothing is guaranteed about the relative size of the

two generated subproblems.

For the purpose of the analysis, we model the quality of the splitting function

as follows: A subproblem of size v is split into two parts of size Xv and (1�X)v

where X is a random variable with range [0; 1], a constant variance VarX = �

2

2

[0;

1

4

], mean EX =

1

2

and P [X = x] = P [X = (1� x)]. The last two conditions

can be assumed without loss of generality because they can always be met by

randomly exchanging the generated subproblems with probability

1

2

. Di�erent

applications of the splitting functions are assumed to be independent. The fact

that the size of the generated subproblems adds up to the original problem size is

not as evident as it appears because many tree shaped computations have to risk

some speculative computation in order to be able to split the problem at all.

3

We

neglect this e�ect because we want to concentrate on the load balancing aspect

and because there are many applications where speculative computation is not a

severe problem.

We assess the performance of a load balancing algorithm by analyzing a prob-

lem class without interactions between the subproblems so that load balancing is

the only source of parallelization overhead. This can even be justi�ed for appli-

cations wich do have interactions between subproblems if we want to concentrate

of the load balancing aspect.

A natural performance measure is the parallel execution time T

par

(N;w) or the

e�ciency E(N;w) =

w

NT

par

(N;w)

. The awkwardness of discussing these bivariate

functions can be avoided by �xing E and solving for w yielding the isoe�ciency

function w(N). This function is a convenient measure for the degree of scalability

2

The algorithms and analysis presented here can also adapted to PE numbers which are not

an integer power of two.

3

The reverse e�ect is also possible and can lead to \superlinear" speedup.

(* Input: *)

R : Problem (* Root problem *)

k : N (* Number of subsequent splits to be performed *)

Determine a random permutation � : f1; : : : ; 2

k

g ! f1; : : : ; 2

k

g

Broadcast R to each PE

FOR PE i := 1 TO 2

n

DOPAR (* asynchronously *)

FOR j := (i� 1)2

k�n

+ 1 TO i2

k�n

DO

P := R (* Problem under consideration *)

let (b

0

; : : : ; b

k�1

) be the bit representation of �(j)� 1

FOR l := 0 TO k � 1 DO

IF b

l

= 0 THEN

P := left part of splitting P into two parts

ELSE

P := right part of splitting P into two parts

process P

collect results

Figure 1: Generic Algorithm for randomized static load balancing for tree shaped

computations.

of an algorithm. The smaller the isoe�ciency function, the smaller the problem

size required for cost optimal parallel execution. For a more detailed discussion

refer to [9].

3 Implementation issues

Figure 1 shows the basic algorithm for randomized static load balancing for tree

shaped computations. Conceptually, the root problem R is split into 2

k

parts

which are equally but randomly distributed to the PEs using the permutation �

�1

.

But instead of actually transmitting subproblems, every PE directly generates the

subproblems allocated to it. In order to do this, a single broadcast of the root

problem is su�cient. No further communication is necessary until the results

are collected

4

. This approach trades k redundant split operations for a global

transmission of a subproblem.

Splitting problems into exactly two parts seems to be somewhat impractical on

the �rst glance. On the one hand, many applications are more naturally expressed

in terms of splitting functions which generate a variable number of successors

(e.g. the successors of a depth �rst search tree node). But the successors can

always be grouped into two subsets. Heuristics which try to divide a problem as

evenly as possible are often easier to express with exactly two subproblems even

if the underlying application has a variable number of successors [16, 20]. On the

other hand, a split operation might produce an empty subproblem. Due to the

4

For many applications, collecting results can be implemented as e�ciently as distributing

work. For example, if the overall result is combined from the partial results by applying an

associative and commutative operation (e.g. +, min or [), the partial results can �rst be

combined locally and then globally using a single reduction operation.

randomization we can hope that the empty subproblems generated by subsequent

vain split operations are equally distributed over the PEs.

The only nontrivial part of Algorithm 1 is the random permutation �. The

classical algorithm for generating a random permutation [7, Section 3.4.2, Algo-

rithm P] is sequential and requires explicit storage of the function table. Using

this algorithm would ruin the storage and communication economy we wanted to

gain with our approach. Fortunately, we do not really need to be able to generate

every permutation with equal likelyhood. We only need some permutation which

is su�ciently uncorrelated to the behavior of the splitting function.

A quite simple approach is based on the theory of �nite �elds [13]. Let p be a

primitive polynomial modulo 2 of degree k (e.g. as tabulated in [15]). Then the

polynomial x

l

mod p (l relatively prime to 2

k

� 1) is a generating element of the

multiplicative group of GF (2

k

), i.e., the sequence ((x

l

)

1

; : : : ; (x

l

)

2

k

�1

) enumerates

the nonzero polynomials modulo p. By interpreting the coe�cients of the poly-

nomials as bits of a computer word, we can e�ciently enumerate the numbers

between 1 and 2

k

� 1. If we insert the number 2

k

at some random place in this

sequence we get the desired pseudo-random permutation. Computing the next

sequence element takes O(k) word operations (multiplication of binary polynomi-

als modulo p using shifts and XORs) and computing the starting element on each

processor can be done with O(k

2

) word operations using a square-and-multiply

exponentiation algorithm.

A somewhat more complicated but related idea are Sobol sequences [15] which

also enumerate the numbers between 1 and 2

k

� 1 using primitive polynomials

modulo 2. They are popular for applications like Monte Carlo integration because

they sample the integration domain more uniformly than a true random sequence.

Whether this special feature is also useful for our application remains to be seen,

but one advantage is that the next sequence element can be generated using only

a constant number of word operations.

4 Related work

The idea to parallelize the traversal of large trees by statically decomposing it

into identical subtrees is quite old. In [1] trees are decomposed without the detour

over bisection of the tree.

5

However, since every PE gets only one subproblem

the e�ciency is quite limited. Later, this and similar approaches were used as an

initialization scheme for dynamic load balancing algorithms [12, 11, 19, 5, 20]. In

[18, 6] PEs are initialized with several subproblems of work (but without using

tree splitting). Quite some work has been done on decomposing trees where

�nding any solution branch will �nish the search. See [2] for a recent survey.

Our model of tree splitting is inspired by the work of Rao and Kumar [17, 9].

In our terminology they assume that the distribution of the splitting factor X

is P

h

X =

1

2

� �

i

= P

h

X =

1

2

+ �

i

=

1

2

where � is some arbitrary but �xed

constant smaller than

1

2

. An important di�erence is that in our approach the

actual value of � turns out to be quite important. On the other hand we can

model applications where the result of the splitting function is occasionally very

low. (For example consider a splitting event where a subproblem of size w is split

5

The formulas given in the paper contain small errors. This can be considered to be one

additional argument for our simpler approach of always bisecting the tree.

into subproblems of size c and w � c. Depending on w, the splitting factor can

get arbitrarily close to 0 here.)

For other load models, it is a quite common technique to assign several pieces

of work with independent sizes to each processor [8, 4, 14]. Often it is tried to

justify the independence assumption by assigning subtasks to a PE which are

in some sense as far apart as possible [14]; [18, 6] use this rule for trees and

it works well for them but in general true randomization is safer because it is

easy to construct plausible looking trees where the maximum distance strategy

is catastrophically bad. A general problem for the analysis of the algorithms

considered here is that assumptions about statistical properties are required which

cannot really hold because the underlying computation is unknown but quite

deterministic. (With the notable exception of probabilistic simulations [4].)

5 Analysis

In Section 3 we did not specify how the parameter k in Algorithm 1 should be

chosen in order to get good performance. This is a crucial question. If k is too

small, the load will turn out to be unevenly distributed. If k is too large, the

algorithm spends most of its time generating tiny subproblems of work which

are not worth this e�ort. For this purpose, Section 5.1 derives basic results

which make it possible to give bounds on the optimal value of k in Section 5.2.

Section 5.3 uses these results to assess the scalability of the algorithm.

5.1 Properties of the work splitting process

Since we assumed that di�erent split operations are independent, it is easy to

derive the expected value and the variance of the size of a subproblem that has

been split k times:

Theorem 1 Let Y be the size of a subproblem generated by k splits of a root

problem of size 1. Then, EY = 2

�k

and VarY =

�

�

2

+

1

4

�

k

� 4

�k

.

Proof: Let X

1

; : : : ;X

k

be the independent identically distributed multiplication

factors for the k splitting operations performed (i.e. Y =

Q

k

i=1

X

i

). We know

that EX

i

=

1

2

and VarX

i

= EX

i

2

� (EX

i

)

2

= �

2

(or EX

i

2

= �

2

+

1

4

). Therefore,

EY = E

k

Y

i=1

X

i

=

k

Y

i=1

EX

i

= 2

�k

and

VarY = E

k

Y

i=1

X

i

!

2

� (EY)

2

=

k

Y

i=1

EX

i

2

� 4

�k

=

�

�

2

+

1

4

�

k

� 4

�k

:

An interesting question is how large subproblems can get. A simple way to

produce one of the largest (leaf-)subproblems is to always retain the largest sub-

problem after a split operation. Although the algorithm does not know which one

is the larger subproblem, there will always be exactly one subproblem generated

in this way.

Theorem 2 Let M be the size of a subproblem generated by k splits of a root

problem of size 1 where after a split the larger subproblems are retained. Then,

EM =

�

� +

1

2

�

k

.

Proof: De�ne X

i

as in the proof of Theorem 1. Let M

i

:= max(X

i

; 1�X

i

), then

EM

i

= Emax(X

i

; 1�X

i

) = E

�

1

2

+ max(X

i

�

1

2

;

1

2

�X

i

)

�

=

1

2

+E

�

�

�

�

X �

1

2

�

�

�

�

=

1

2

+�:

Since the M

i

are independent we get

EM = E

k

Y

i=1

M

i

=

k

Y

i=1

EM

i

=

�

� +

1

2

�

k

:

Ultimately we want to know how much the load of a PE (i.e. the sum of

the sizes of the subproblems allocated to it) varies. Answering this question is

complicated by the fact that the sizes of subproblems derived from the same root

problem are not independent. However, the variance of the sum of subproblem

sizes is not larger than the sum of their variances. (If the subproblem sizes were

independent, equality would hold.)

Theorem 3 Let Y

1

; : : : ; Y

m

be the sizes of m subproblems which are randomly

selected from a collection of 2

k

subproblems generated from the same root problem

of size 1, and let Z

km

=

P

m

i=1

Y

i

. Then,

VarZ

km

� m

"

�

�

2

+

1

4

�

k

� 4

�k

#

:

Proof: (By induction over k.)

Case k = 0: VarZ

0m

= 0 � 0 = m(1� 1) = m

�

�

�

2

+

1

4

�

0

� 4

�0

�

Case k � 1 �! k: We prove the equivalent proposition

EZ

2

km

� m

"

�

�

2

+

1

4

�

k

� 4

�k

#

+ (EZ

km

)

2

= m

"

�

�

2

+

1

4

�

k

� 4

�k

#

+m

2

4

�k

:

Let I denote the number or subproblems (out of the m subproblems considered)

wich are generated from the left child problem of the root problem, let X denote

the splitting factor for the root problem and let XZ

k�1;I

be the sum of the sizes of

these I subproblems and (1�X)Z

0

k�1;m�I

the sum of the sizes of the remaining

problems:

EZ

2

km

=

m

X

i=0

P [I = i]E (XZ

k�1;i

+ (1�X)Z

0

k�1;m�i

)

2

Using the independence of Z

k�1;i

and Z

0

k�1;m�i

and the facts E(1 � X)

2

=

�

�

2

+

1

4

�

, EX(1 �X) =

�

1

4

� �

2

�

, EZ

jl

= l2

�j

yields

EZ

2

km

=

m

X

i=0

P [I = i]

��

�

2

+

1

4

�

(EZ

2

k�1;i

+EZ

0

2

k�1;m�i

) + 2

�

1

4

� �

2

�

i(m� i)4

�(k�1)

�

:

By the induction hypothesis we have

EZ

2

k�1;i

� i

"

�

�

2

+

1

4

�

k�1

� 4

�(k�1)

#

+ i

2

4

�(k�1)

and

EZ

0

2

k�1;m�i

� (m� i)

"

�

�

2

+

1

4

�

k�1

� 4

�(k�1)

#

+ (m� i)

2

4

�(k�1)

or

�

�

2

+

1

4

�

�

EZ

2

k�1;i

+EZ

0

2

k�1;m�i

�

� m

�

�

2

+

1

4

�

k

�

�

�

2

+

1

4

�

4

�(k�1)

!

+

�

�

2

+

1

4

�

(i

2

+ (m� i)

2

)4

�(k�1)

:

Using

�

�

2

+

1

4

�

�

1

4

, i

2

+ (m � i)

2

�

m

2

2

, i(m � i) �

m

2

4

and

P

m

i=0

P [I = i] = 1

we get

EZ

2

km

� m

�

�

2

+

1

4

�

k

� 4

�k

!

+

�

�

2

+

1

4

�

m

2

2

+

�

1

4

� �

2

�

m

2

2

!

4

�(k�1)

= m

�

�

2

+

1

4

�

k

� 4

�k

!

+m

2

4

�k

5.2 Lower and upper bounds on k

In order to achieve good load balance on the average, the large subproblem de�ned

in Theorem 2 must not be larger than a constant factor � of the expected load of

a single PE. This means

EM =

�

� +

1

2

�

k

� �2

�n

or

k �

n� log �

log

1

�+1=2

:

Using asymptotic notation this result can be grasped in the following theorem:

Theorem 4 For good e�ciency on the average

2

k

2

�

2

n= log

1

�+1=2

�

is required.

The remainder of this section is concerned with proving the following coun-

terpart to Theorem 4 which gives an upper bound on k.

Theorem 5 Let Z

i

, (i 2 f1; : : : ; 2

n

g) be the load of PE i. If k =

2(n�log �)

log

1

2�

2

+1=2

then

E

n

max

i=1

Z

i

� (1 + 2�)2

�n

:

For good e�ciency on the average

2

k

2 O

�

2

2n= log

1

2�

2

+1=2

�

is therefore su�cient.

For this value of k we can conclude from Theorem 3:

Lemma 1 VarZ

i

� �

2

8

�n

.

Proof:

VarZ

i

� 2

k�n

�

�

2

+

1

4

�

k

� 4

�k

!

� 2

�n

�

2�

2

+

1

2

�

k

= 2

�n+2(n�log �)

log(2�

2

+1=2)

log

1

2�

2

+1=2

= �

2

8

�n

In order to exploit this knowledge, we need the following two results from the

literature:

Theorem 6 (Chebyshev Inequality [3]) For a random variable X with ex-

isting second moment:

P [jX �EXj � t] �

VarX

t

2

Lemma 2 ([10]) Let X

1

,. . . , X

l

be identically distributed random variables, and

a := inffxjP [X > x] � l

�1

g. Then, no matter how the X

i

are dependent

E

l

max

i=1

X

i

� a+ l

Z

1

a

P [X > x] dx:

The Chebyshev Inequality makes it possible to estimate the a from Lemma 2:

Lemma 3 P [Z

i

� (1 + �)2

�n

] � 2

�n

Proof:

P

h

Z

i

� (1 + �)2

�n

i

� P

h

jZ

i

� 2

�n

j � �2

�n

i

�

VarZ

i

(�2

�n

)

2

�

�

2

8

�n

�

2

4

�n

� 2

�n

Now we can prove Theorem 5:

Let a := inffzjP [Z

i

> z] � 2

�n

g. From Lemma 3 we know that a � (1 + �)2

�n

and Lemma 2 gives

E

2

n

max

i=1

Z

i

� a+ 2

n

Z

1

a

P [Z > z] dz

= a+ 2

n

Z

(1+�)2

�n

a

P [Z > z] dz + 2

n

Z

1

(1+�)2

�n

P [Z > z] dz:

By de�nition of a:

2

n

Z

(1+�)2

�n

a

P [Z > z] dz � (1 + �)2

�n

� a:

P [Z > z] can be estimated by again using the Chebyshev Inequality:

P [Z > z] � P

h

jZ � 2

�n

j � z � 2

�n

i

�

�

2

8

�n

(z � 2

�n

)

2

and therefore,

2

n

Z

1

(1+�)2

�n

P [Z > z] dz � �

2

4

�n

Z

1

(1+�)2

�n

1

(z � 2

�n

)

2

= �

2

4

�n

�

1

2

�n

� 1

+

2

n

�

�

� �2

�n

:

Putting everything together yields

E

2

n

max

i=1

Z

i

� a+ (1 + �)2

�n

� a+ �2

�n

= (1 + 2�)2

�n

5.3 Scalability analysis

The bounds on k derived in the preceding section can be used to assess the

performance of Algorithm 1. Let w be the total load, wZ

i

the load of PE i.

The root problem can be distributed in time �(d(N) + r(w)); producing 2

k�n

subproblems on each PE takes time k2

k�n

s(w) and processing problems takes time

wmax

N

i=1

Z

i

. We further assume that collecting the results is no more expensive

than distributing the root problem and computing � is no more expensive than

doing k splits. Then,

T

par

2 �(d(N) + r(w) + k2

k�n

s(w) + w

N

max

i=1

Z

i

)

If k is chosen in such a way that Emax

N

i=1

Z

i

2 O(2

�n

)) then Theorems 4 and 5

can be used to infer bounds on the expected parallel execution time:

ET

par

2

d(N) + r(w) + logNs(w)N

1

log

1

�+1=2

�1

+

w

N

!

ET

par

2 O

d(N) + r(w) + logNs(w)N

2

log

2

2�

2

+1=2

�1

+

w

N

!

Using these equations we can decide how large w must be in order to achieve

good e�ciency. We derive the isoe�ciency functions for the case that s(w) 2

�(log

a

w) (a � 1) and r(w) 2 O(d(n) + logNs(w)N

�

) (for some � > 0) which is

typical for search problems with exponential search space. As long as w remains

polynomial in N we can conclude that s(w) 2 �(log

a

N). And for � > 0 the

terms for network diameter and work splitting dominate r(w). It is now easy to

solve the equation E =

w

NT

par

for w:

w 2
(Nd(N) +N

1

log

1

�+1=2

log

a+1

N) (1)

and

w 2 O(Nd(N) +N

2

log

2

2�

2

+1=2

log

a+1

N): (2)

It is interesting to compare this result with random polling [9, 20], one of the

best available dynamic load balancing algorithms. Using the above notations and

additionally assuming r(w) 2 O(s(w)):

w 2 O(Nd(N) log

a+1

N)

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ex
po

ne
nt

sigma

Lower bound
Upper bound

Async. round robin on ring
Random polling on ring

Random polling on mesh

Figure 2: Exponent of polynomial part of isoe�ciency function depending on the

quality of the splitting function.

is su�cient for good e�ciency on the average

6

. Since d(N) 2 O(N) for any

interconnection network, random polling is strictly better than the upper bound

from Equation 2. However, for small � this lead is much smaller than the lead

to other popular load balancing algorithms like asynchronous round robin [9] or

even simple nearest neighbor schemes [17]. If the true performance turns out to

be closer to the lower bound from Equation 1, Algorithm 1 is better than random

polling for large network diameters and small �. Figure 2 shows the exponent of

the bounds on the isoe�ciency of Algorithm 1 due to load imbalance compared

to the exponent for some dynamic load balancing algorithms. It demonstrates

that the performance is heavily dependent on the quality of the splitting function

while dynamic load balancing is (at least asymptotically) una�ected by it. The

�gure also shows that there is a signi�cant gap in the analysis for small �.

6 Conclusions and future work

We have analyzed a randomized static load balancing algorithm for tree shaped

computations which is very space e�cient and requires no communication except

for a broadcast of the initial problem and for collecting results. The key to this

algorithm is a pseudo-random permutation which can be e�ciently generated in

parallel. This algorithm is scalable in the sense that a problem size polynomial

6

This result is derived for a di�erent load model but can be adapted to the case of a proba-

bilistic splitting function.

in the number of processors is su�cient for good e�ciency. However, the degree

of this polynomial is heavily dependent on the quality of the splitting function.

Therefore, the algorithm can only compete with state of the art dynamic load

balancing algorithms if a high quality splitting function is available and if com-

munication is slow.

The quantitative results about the behavior of the splitting process go be-

yond this particular algorithm because they might also help to understand other

algorithms. For example, in [18] a combined static/dynamic load balancing algo-

rithm is described which starts by allocating a constant number of subproblems

to each processor. Later, idle processors get work from nearby busy processors.

In this phase, subproblems are never split in order to avoid the negative e�ects of

splitting in the context of neighborhood communication described in [17]. How-

ever, the authors report problems due to uneven sizes of the subproblems. If we

assume that our probabilistic splitting model is applicable to the applications de-

scribed in [18] (e.g. iterative deepening search for solutions of the 15-puzzle) then

Theorem 4 can explain this problem: A number of subproblems polynomial in N

has to be allocated to each PE, or else we must expect to have one subproblem

which is so large that it dominates the execution time of the algorithm. This

also changes the analytical results for the isoe�ciency function of this algorithms

from O(Nd(N)) to O(d(N)N

1= log

1

�+1=2

).

Nevertheless, the general idea to combine static and dynamic load balancing

algorithms is promising for the future. For example, consider the following algo-

rithm: Each PE is randomly assigned exactly 1 subproblem. Then the PEs are

disconnected into log

�

N clusters (for some appropriate constant �) which locally

perform random polling dynamic load balancing. The results derived here can be

used to show that this algorithm has an isoe�ciency function w 2 O(N

1+1=u

) on

a u-dimensional mesh. This is asymptotically optimal.

Other interesting questions for the future are:

� Can the gap between upper and lower bounds be made smaller, perhaps

by making additional (reasonable) assumptions about the work splitting

process?

� How does the algorithm work in practice?

� Can the work splitting model be made more realistic? What, if the splitting

factor depends on the remaining problem size? What if subsequent split

operations are dependent?

References

[1] O. I. El-Dessouki and W. H. Huen. Distributed enumeration on between

computers. IEEE Transactions on Computers, C-29(9):818{825, September

1980.

[2] W. Ertel. Parallele Suche mit randomisiertem Wettbewerb in Inferenzsyste-

men. PhD thesis, TU M�unchen, 1992.

[3] W. Feller. An Introduction to Probability Theory and its Applications. Wiley,

3rd edition, 1968.

[4] P. Heidelberger. Discrete event simulations and parallel processing: Statis-

tical properties. SIAM Journal of Statistical Computation, 9(6):1114{1132,

1988.

[5] D. Henrich. Initialization of parallel branch-and-bound algorithms. In Pro-

ceedings of PPAI-93, 1993.

[6] D. Henrich. Lastverteilung f�ur Branch-and-bound auf eng-gekoppelten Par-

allelrechnern. PhD thesis, Universit�at Karlsruhe, 1994 (in preparation).

[7] D. E. Knuth. The Art of Computer Programming | Seminumerical Algo-

rithms, volume 2. Addison Wesley, 2nd edition, 1969.

[8] C. P. Kruskal and A. Weiss. Allocating independent subtasks on parallel

processors. IEEE Transactions on Computers, 11(10):1001{1016, 1985.

[9] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel

Computing. Design and Analysis of Algorithms. Benjamin/Cummings, 1994.

[10] T. Lai and H. Robbins. A class of dependent random variables and their

maxima. Zeitschrift f�ur Wahrscheinlichkeitstheorie, 42:89{111, 1978.

[11] R. L�uling and B. Monien. Load balancing for distributed branch & bound

algorithms. In Int. Parallel Processing Symposium (IPPS), 1992.

[12] R. P. Ma, F. S. Tsung, and M. H. Ma. A dynamic load balancer for a parallel

branch and bound algorithm. In 3rd Conference on Hypercubes, Concurrent

Computers, and Applications, pages 1505{1530, Pasadena, 1988. ACM.

[13] T. Minkwitz. Personal communication. Department of Informatics, Univer-

sit�at Karlsruhe, 1994.

[14] D. M. Nicol and J. H. Saltz. An analysis of scatter decomposition. IEEE

Transactions on Computers, 39:1337{1345, 1990.

[15] W. H. Press, S. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C. Cambridge University Press, 2nd edition, 1992.

[16] V. N. Rao and V. Kumar. Parallel depth �rst search. Part I. International

Journal of Parallel Programming, 16(6):470{499, 1987.

[17] V. N. Rao and V. Kumar. Parallel depth �rst search. Part II. International

Journal of Parallel Programming, 16(6):501{519, 1987.

[18] A. Reinefeld and V. Schnecke. Work-load balancing in highly parallel depth-

�rst search. In Scalable High Performance Computing Conference, pages

773{780, Knoxville, 1994.

[19] P. Sanders. Suchalgorithmen auf SIMD-Rechnern { Weitere Ergebnisse zu

Polyautomaten. Master's thesis, Universit�at Karlsruhe, August 1993.

[20] P. Sanders. Analysis of random polling dynamic load balancing. Technical

Report IB 12/94, Universit�at Karlsruhe, Fakult�at f�ur Informatik, April 1994.

