
Algorithm Engineering for Parallel Computation

David A. Bader1, Bernard M.E. Moret1, and Peter Sanders2

1 Departments of Electrical and Computer Engineering, and Computer Science, University of New Mexico,

Albuquerque, NM 87131 USA. dbader@eece.unm.edu, moret@cs.unm.edu.
2 Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany,

sanders@mpi-sb.mpg.de.

Abstract. The emerging discipline of algorithm engineering has primarily focussed on

transforming pencil-and-paper sequential algorithms into robust, efficient, well tested, and

easily used implementations. As parallel computing becomes ubiquitous, we need to extend

algorithm engineering techniques to parallel computation. Such an extension adds signifi-

cant complications. After a short review of algorithm engineering achievements for sequen-

tial computing, we review the various complications caused by parallel computing, present

some examples of successful efforts, and give a personal view of possible future research.

1 Introduction

The term “algorithm engineering” was first used with specificity in 1997, with the or-

ganization of the first Workshop on Algorithm Engineering (WAE 97). Since then, this

workshop has taken place every summer in Europe. The 1998 Workshop on Algorithms

and Experiments (ALEX98) was held in Italy and provided a discussion forum for re-

searchers and practitioners interested in the design, analysis and experimental testing of

exact and heuristic algorithms. A sibling workshop was started in the Unites States in

1999, the Workshop on Algorithm Engineering and Experiments (ALENEX99), which

has taken place every winter, colocated with the ACM/SIAM Symposium on Discrete

Algorithms (SODA). Algorithm engineering refers to the process required to transform

a pencil-and-paper algorithm into a robust, efficient, well tested, and easily usable im-

plementation. Thus it encompasses a number of topics, from modeling cache behavior

to the principles of good software engineering; its main focus, however, is experimenta-

tion. In that sense, it may be viewed as a recent outgrowth of Experimental Algorithmics

[54], which is specifically devoted to the development of methods, tools, and practices

for assessing and refining algorithms through experimentation. The ACM Journal of

Experimental Algorithmics (JEA), at URL www.jea.acm.org, is devoted to this area.

High-performance algorithm engineering focuses on one of the many facets of al-

gorithm engineering: speed. The high-performance aspect does not immediately imply

parallelism; in fact, in any highly parallel task, most of the impact of high-performance

algorithm engineering tends to come from refining the serial part of the code. For in-

stance, in a recent demonstration of the power of high-performance algorithm engi-

neering, a million-fold speed-up was achieved through a combination of a 2,000-fold

speedup in the serial execution of the code and a 512-fold speedup due to parallelism

(a speed-up, however, that will scale to any number of processors) [53]. (In a further

demonstration of algorithm engineering, further refinements in the search and bounding

strategies have added another speedup to the serial part of about 1,000, for an overall

speedup in excess of 2 billion [55].)



2 D.A. Bader, B.M.E. Moret, and P. Sanders

All of the tools and techniques developed over the last five years for algorithm engi-

neering are applicable to high-performance algorithm engineering. However, many of

these tools need further refinement. For example, cache-efficient programming is a key

to performance but it is not yet well understood, mainly because of complex machine-

dependent issues like limited associativity [72, 75], virtual address translation [65], and

increasingly deep hierarchies of high-performance machines [31]. A key question is

whether we can find simple models as a basis for algorithm development. For exam-

ple, cache-oblivious algorithms [31] are efficient at all levels of the memory hierarchy

in theory, but so far only few work well in practice. As another example, profiling a

running program offers serious challenges in a serial environment (any profiling tool

affects the behavior of what is being observed), but these challenges pale in comparison

with those arising in a parallel or distributed environment (for instance, measuring com-

munication bottlenecks may require hardware assistance from the network switches or

at least reprogramming them, which is sure to affect their behavior).

Ten years ago, David Bailey presented a catalog of ironic suggestions in “Twelve

ways to fool the masses when giving performance results on parallel computers” [13],

which drew from his unique experience managing the NAS Parallel Benchmarks [12],

a set of pencil-and-paper benchmarks used to compare parallel computers on numer-

ical kernels and applications. Bailey’s “pet peeves,” particularly concerning abuses in

the reporting of performance results, are quite insightful. (While some items are tech-

nologically outdated, they still prove useful for comparisons and reports on parallel

performance.) We rephrase several of his observations into guidelines in the frame-

work of the broader issues discussed here, such as accurately measuring and reporting

the details of the performed experiments, providing fair and portable comparisons, and

presenting the empirical results in a meaningful fashion.

This paper is organized as follows. Section 2 introduces the important issues in high-

performance algorithm engineering. Section 3 defines terms and concepts often used to

describe and characterize the performance of parallel algorithms in the literature and

discusses anomalies related to parallel speedup. Section 4 addresses the problems in-

volved in fairly and reliably measuring the execution time of a parallel program—a dif-

ficult task because the processors operate asynchronously and thus communicate non-

deterministically (whether through shared-memory or interconnection networks), Sec-

tion 5 presents our thoughts on the choice of test instances: size, class, and data layout in

memory. Section 6 briefly reviews the presentation of results from experiments in paral-

lel computation. Section 7 looks at the possibility of taking truly machine-independent

measurements. Finally, Section 8 discusses ongoing work in high-performance algo-

rithm engineering for symmetric multiprocessors that promises to bridge the gap be-

tween the theory and practice of parallel computing. In an appendix, we briefly discuss

10 specific examples of published work in algorithm engineering for parallel computa-

tion.

2 General Issues

Parallel computer architectures come in a wide range of designs. While any given paral-

lel machine can be classified in a broad taxonomy (for instance, as distributed memory

or shared memory), experience has shown that each platform is unique, with its own



High-Performance Algorithm Engineering for Parallel Computation 3

artifacts, constraints, and enhancements. For example, the Thinking Machines CM-

5, a distributed-memory computer, is interconnected by a fat-tree data network [48],

but includes a separate network that can be used for fast barrier synchronization. The

SGI Origin [47] provides a global address space to its shared memory; however, its

non-uniform memory access requires the programmer to handle data placement for ef-

ficient performance. Distributed-memory cluster computers today range from low-end

Beowulf-class machines that interconnect PC computers using commodity technologies

like Ethernet [18, 76] to high-end clusters like the NSF Terascale Computing System at

Pittsburgh Supercomputing Center, a system with 750 4-way AlphaServer nodes inter-

connected by Quadrics switches.

Most modern parallel computers are programmed in single-program, multiple-data

(SPMD) style, meaning that the programmer writes one program that runs concurrently

on each processor. The execution is specialized for each processor by using its processor

identity (id or rank). Timing a parallel application requires capturing the elapsed wall-

clock time of a program (instead of measuring CPU time as is the common practice in

performance studies for sequential algorithms). Since each processor typically has its

own clock, timing suite, or hardware performance counters, each processor can only

measure its own view of the elapsed time or performance by starting and stopping its

own timers and counters.

High-throughput computing is an alternative use of parallel computers whose ob-

jective is to maximize the number of independent jobs processed per unit of time. Con-

dor [49], Portable Batch System (PBS) [56], and Load-Sharing Facility (LSF) [62],

are examples of available queuing and scheduling packages that allow a user to easily

broker tasks to compute farms and to various extents balance the resource loads, han-

dle heterogeneous systems, restart failed jobs, and provide authentication and security.

High-performance computing, on the other hand, is primarily concerned with optimiz-

ing the speed at which a single task executes on a parallel computer. For the remainder

of this paper, we focus entirely on high-performance computing that requires non-trivial

communication among the running processors.

Interprocessor communication often contributes significantly to the total running

time. In a cluster, communication typically uses data networks that may suffer from

congestion, nondeterministic behavior, routing artifacts, etc. In a shared-memory ma-

chine, communication through coordinated reads from and writes to shared memory

can also suffer from congestion, as well as from memory coherency overheads, caching

effects, and memory subsystem policies. Guaranteeing that the repeated execution of

a parallel (or even sequential!) program will be identical to the prior execution is im-

possible in modern machines, because the state of each cache cannot be determined a

priori—thus affecting relative memory access times—and because of nondeterministic

ordering of instructions due to out-of-order execution and run-time processor optimiza-

tions.

Parallel programs rely on communication layers and library implementations that

often figure prominently in execution time. Interprocessor messaging in scientific and

technical computing predominantly uses the Message-Passing Interface (MPI) standard

[51], but the performance on a particular platform may depend more on the imple-

mentation than on the use of such a library. MPI has several implementations as open



4 D.A. Bader, B.M.E. Moret, and P. Sanders

source and portable versions such as MPICH [33] and LAM [60], as well as native,

vendor implementations from Sun Microsystems and IBM. Shared-memory program-

ming may use POSIX threads [64] from a freely-available implementation (e.g., [57])

or from a commercial vendor’s platform. Much attention has been devoted lately to

OpenMP [61], a standard for compiler directives and runtime support to reveal algorith-

mic concurrency and thus take advantage of shared-memory architectures; once again,

implementations of OpenMP are available both in open source and from commercial

vendors. There are also several higher-level parallel programming abstractions that use

MPI, OpenMP, or POSIX threads, such as implementations of the Bulk-Synchronous

Parallel (BSP) model [77, 43, 22] and data-parallel languages like High-Performance

Fortran [42]. Higher-level application framework such as KeLP [29] and POOMA

[27] also abstract away the details of the parallel communication layers. These frame-

works enhance the expressiveness of data-parallel languages by providing the user with

a high-level programming abstraction for block-structured scientific calculations. Us-

ing object-oriented techniques, KeLP and POOMA contain runtime support for non-

uniform domain decomposition that takes into consideration the two main levels (intra-

and inter-node) of the memory hierarchy.

3 Speedup

3.1 Why speed?

Parallel computing has two closely related main uses. First, with more memory and

storage resources than available on a single workstation, a parallel computer can solve

correspondingly larger instances of the same problems. This increase in size can trans-

late into running higher-fidelity simulations, handling higher volumes of information in

data-intensive applications (such as long-term global climate change using satellite im-

age processing [83]), and answering larger numbers of queries and datamining requests

in corporate databases. Secondly, with more processors and larger aggregate memory

subsystems than available on a single workstation, a parallel computer can often solve

problems faster. This increase in speed can also translate into all of the advantages listed

above, but perhaps its crucial advantage is in turnaround time. When the computation is

part of a real-time system, such as weather forecasting, financial investment decision-

making, or tracking and guidance systems, turnaround time is obviously the critical

issue. A less obvious benefit of shortened turnaround time is higher-quality work: when

a computational experiment takes less than an hour, the researcher can afford the luxury

of exploration—running several different scenarios in order to gain a better understand-

ing of the phenomena being studied.

3.2 What is speed?

With sequential codes, the performance indicator is running time, measured by CPU

time as a function of input size. With parallel computing we focus not just on running

time, but also on how the additional resources (typically processors) affect this running

time. Questions such as “does using twice as many processors cut the running time in

half?” or “what is the maximum number of processors that this computation can use ef-

ficiently?” can be answered by plots of the performance speedup. The absolute speedup

is the ratio of the running time of the fastest known sequential implementation to that of



High-Performance Algorithm Engineering for Parallel Computation 5

the parallel running time. The fastest parallel algorithm often bears little resemblance

to the fastest sequential algorithm and is typically much more complex; thus running

the parallel implementation on one processor often takes much longer than running the

sequential algorithm—hence the need to compare to the sequential, rather than the par-

allel, version. Sometimes, the parallel algorithm reverts to a good sequential algorithm

if the number of processors is set to one. In this case it is acceptable to report relative

speedup, i.e., the speedup of the p-processor version relative to the 1-processor ver-

sion of the same implementation. But even in that case, the 1-processor version must

make all of the obvious optimizations, such as eliminating unnecessary data copies be-

tween steps, removing self communications, skipping precomputing phases, removing

collective communication broadcasts and result collection, and removing all locks and

synchronizations. Otherwise, the relative speedup may present an exaggeratedly rosy

picture of the situation. Efficiency, the ratio of the speedup to the number of processors,

measures the effective use of processors in the parallel algorithm and is useful when de-

termining how well an application scales on large numbers of processors. In any study

that presents speedup values, the methodology should be clearly and unambiguously

explained—which brings us to several common errors in the measurement of speedup.

3.3 Speedup anomalies

Occasionally so-called superlinear speedups, that is, speedups greater than the number

of processors,1 cause confusion because such should not be possible by Brent’s princi-

ple (a single processor can simulate a p-processor algorithm with a uniform slowdown

factor of p). Fortunately, the sources of “superlinear” speedup are easy to understand

and classify.

Genuine superlinear absolute speedup can be observed without violating Brent’s

principle if the space required to run the code on the instance exceeds the memory of

the single-processor machine, but not that of the parallel machine. In such a case, the

sequential code swaps to disk while the parallel code does not, yielding an enormous

and entirely artificial slowdown of the sequential code. On a more modest scale, the

same problem could occur one level higher in the memory hierarchy, with the sequential

code constantly cache-faulting while the parallel code can keep all of the required data

in its cache subsystems.

A second reason is that the running time of the algorithm strongly depends on the

particular input instance and the number of processors. For example, consider searching

for a given element in an unordered array of n� p elements. The sequential algorithm

simply examines each element of the array in turn until the given element is found. The

parallel approach may assume that the array is already partitioned evenly among the

processors and has each processor proceed as in the sequential version, but using only

its portion of the array, with the first processor to find the element halting the execution.

In an experiment in which the item of interest always lies in position n� n=p+ 1, the

sequential algorithm always takes n�n=p steps, while the parallel algorithm takes only

one step, yielding a relative speedup of n� n=p� p. Although strange, this speedup

does not violate Brent’s principle, which only makes claims on the absolute speedup.

Furthermore, such strange effects often disappear if one averages over all inputs. In the

1 Strictly speaking, “efficiency larger than one” would be the better term.



6 D.A. Bader, B.M.E. Moret, and P. Sanders

example of array search, the sequential algorithm will take an expected n=2 steps and

the parallel algorithm n=(2p) steps, resulting in a speedup of p on average.

However, this strange type of speedup does not always disappear when looking at

all inputs. A striking example is random search for satisfying assignments of a proposi-

tional logical formula in 3-CNF (conjunctive normal form with three literals per clause):

Start with a random assignment of truth values to variables. In each step pick a random

violated clause and make it satisfied by flipping a bit of a random variable appearing

in it. Concerning the best upper bounds for its sequential execution time, little good

can be said. However, Schöning [74] shows that one gets exponentially better expected

execution time bounds if the algorithm is run in parallel for a huge number of (simu-

lated) processors. In fact, the algorithm remains the fastest known algorithm for 3-SAT,

exponentially faster than any other known algorithm. Brent’s principle is not violated

since the best sequential algorithm turns out to be the emulation of the parallel algo-

rithm. The lesson one can learn is that parallel algorithms might be a source of good

sequential algorithms too.

Finally, there are many cases were superlinear speedup is not genuine. For example,

the sequential and the parallel algorithms may not be applicable to the same range of

instances, with the sequential algorithm being the more general one—it may fail to take

advantage of certain properties that could dramatically reduce the running time or it

may run a lot of unnecessary checking that causes significant overhead. For example,

consider sorting an unordered array. A sequential implementation that works on every

possible input instance cannot be fairly compared with a parallel implementation that

makes certain restrictive assumptions—such as assuming that input elements are drawn

from a restricted range of values or from a given probability distribution, etc.

4 Reliable Measurements

The performance of a parallel algorithm is characterized by its running time as a func-

tion of the input data and machine size, as well as by derived measures such as speedup.

However, measuring running time in a fair way is considerably more difficult to achieve

in parallel computation than in serial computation.

In experiments with serial algorithms, the main variable is the choice of input

datasets; with parallel algorithms, another variable is the machine size. On a single

processor, capturing the execution time is simple and can be done by measuring the

time spent by the processor in executing instructions from the user code—that is, by

measuring CPU time. Since computation includes memory access times, this measure

captures the notion of “efficiency” of a serial program—and is a much better measure

than elapsed wall-clock time (using a system clock like a stopwatch), since the latter is

affected by all other processes running on the system (user programs, but also system

routines, interrupt handlers, daemons, etc.) While various structural measures help in

assessing the behavior of an implementation, the CPU time is the definitive measure in

a serial context [54].

In parallel computing, on the other hand, we want to measure how long the entire

parallel computer is kept busy with a task. A parallel execution is characterized by the

time elapsed from the time the first processor started working to the time the last proces-

sor completed, so we cannot measure the time spent by just one of the processors—such



High-Performance Algorithm Engineering for Parallel Computation 7

a measure would be unjustifiably optimistic! In any case, because data communication

between processors is not captured by CPU time and yet is often a significant compo-

nent of the parallel running time, we need to measure not just the time spent execut-

ing user instructions, but also waiting for barrier synchronizations, completing message

transfers, and any time spent in the operating system for message handling and other an-

cillary support tasks. For these reasons, the use of elapsed wall-clock time is mandatory

when testing a parallel implementation. One way to measure this time is to synchronize

all processors after the program has been started. Then one processor starts a timer.

When the processors have finished, they synchronize again and the processor with the

timer reads its content.

Of course, because we are using elapsed wall-clock time, other running programs on

the parallel machine will inflate our timing measurements. Hence, the experiments must

be performed on an otherwise unloaded machine, by using dedicated job scheduling (a

standard feature on parallel machines in any case) and by turning off unnecessary dae-

mons on the processing nodes. Often, a parallel system has “lazy loading” of operating

system facilities or one-time initializations the first time a specific function is called; in

order not to add the cost of these operations to the running time of the program, several

warm-up runs of the program should be made (usually internally within the executable

rather than from an external script) before making the timing runs.

In spite of these precautions, the average running time might remain irreproducible.

The problem is that, with a large number of processors, one processor is often delayed

by some operating system event and, in a typical tightly synchronized parallel algo-

rithm, the entire system will have to wait. Thus, even rare events can dominate the

execution time, since their frequency is multiplied by the number of processors. Such

problems can sometimes be uncovered by producing many fine-grained timings in many

repetitions of the program run and then inspecting the histogram of execution times. A

standard technique to get more robust estimates for running times than the average is

to take the median. If the algorithm is randomized, one must first make sure that the

execution time deviations one is suppressing are really caused by external reasons. Fur-

thermore, if individual running times are not at least two to three orders of magnitude

larger than the clock resolution, one should not use the median but the average of a

filtered set of execution times where the largest and smallest measurements have been

thrown out.

When reporting running times on parallel computers, all relevant information on the

platform, compilation, input generation, and testing methodology, must be provided to

ensure repeatability (in a statistical sense) of experiments and accuracy of results.

5 Test Instances

The most fundamental characteristic of a scientific experiment is reproducibility. Thus

the instances used in a study must be made available to the community. For this reason,

a common format is crucial. Formats have been more or less standardized in many

areas of Operations Research and Numerical Computing. The DIMACS Challenges

have resulted in standardized formats for many types of graphs and networks, while

the library of Traveling Salesperson instances, TSPLIB, has also resulted in the spread

of a common format for TSP instances. The CATS project [32] aims at establishing a



8 D.A. Bader, B.M.E. Moret, and P. Sanders

collection of benchmark datasets for combinatorial problems and, incidentally, standard

formats for such problems.

A good collection of datasets must consist of a mix of real and generated (artificial)

instances. The former are of course the “gold standard,” but the latter help the algorithm

engineer in assessing the weak points of the implementation with a view to improving

it. In order to provide a real test of the implementation, it is essential that the test suite

include sufficiently large instances. This is particularly important in parallel computing,

since parallel machines often have very large memories and are almost always aimed

at the solution of large problems; indeed, so as to demonstrate the efficiency of the im-

plementation for a large number of processors, one sometimes has to use instances of a

size that exceeds the memory size of a uniprocessor. On the other hand, abstract asymp-

totic demonstrations are not useful: there is no reason to run artificially large instances

that clearly exceed what might arise in practice over the next several years. (Asymp-

totic analysis can give us fairly accurate predictions for very large instances.) Hybrid

problems, derived from real datasets through carefully designed random permutations,

can make up for the dearth of real instances (a common drawback in many areas, where

commercial companies will not divulge the data they have painstakingly gathered).

Scaling the datasets is more complex in parallel computing than in serial computing,

since the running time also depends on the number of processors. A common approach

is to scale up instances linearly with the number of processors; a more elegant and

instructive approach is to scale the instances so as to keep the efficiency constant, with

a view to obtain isoefficiency curves.

A vexing question in experimental algorithmics is the use of worst-case instances.

While the design of such instances may attract the theoretician (many are highly non-

trivial and often elegant constructs), their usefulness in characterizing the practical be-

havior of an implementation is dubious. Nevertheless, they do have a place in the ar-

senal of test sets, as they can test the robustness of the implementation or the entire

system—for instance, an MPI implementation can succumb to network congestion if

the number of messages grows too rapidly, a behavior that can often be triggered by a

suitably crafted instance.

6 Presenting Results

Presenting experimental results for high-performance algorithm engineering should fol-

low the principles used in presenting results for sequential computing. But there are

additional difficulties. One gets an additional parameter with the number of processors

used and parallel execution times are more platform dependent. McGeoch and Moret

discuss the presentation of experimental results in the article “How to Present a Paper

on Experimental Work with Algorithms” [50]. The key entries include

– describe and motivate the specifics of the experiments

– mention enough details of the experiments (but do not mention too many details)

– draw conclusions and support them (but make sure that the support is real)

– use graphs, not tables—a graph is worth a thousand table entries

– use suitably normalized scatter plots to show trends (and how well those trends are

followed)

– explain what the reader is supposed to see



High-Performance Algorithm Engineering for Parallel Computation 9

This advice applies unchanged to the presentation of high-performance experimental

results. A summary of more detailed rules for preparing graphs and tables can also be

found in this volume.

Since the main question in parallel computing is one of scaling (with the size of

the problem or with the size of the machine), a good presentation needs to use suitable

preprocessing of the data to demonstrate the key characteristics of scaling in the prob-

lem at hand. Thus, while it is always advisable to give some absolute running times, the

more useful measure will be speedup and, better, efficiency. As discussed under testing,

providing an ad hoc scaling of the instance size may reveal new properties: scaling the

instance with the number of processors is a simple approach, while scaling the instance

to maintain constant efficiency (which is best done after the fact through sampling of

the data space) is a more subtle approach.

If the application scales very well, efficiency is clearly preferable to speedup, as it

will magnify any deviation from the ideal linear speedup: one can use a logarithmic

scale on the horizontal scale without affecting the legibility of the graph—the ideal

curve remains a horizontal at ordinate 1:0, whereas log-log plots tend to make ev-

erything appear linear and thus will obscure any deviation. Similarly, an application

that scales well will give very monotonous results for very large input instances—the

asymptotic behavior was reached early and there is no need to demonstrate it over most

of the graph; what does remain of interest is how well the application scales with larger

numbers of processors, hence the interest in efficiency. The focus should be on charac-

terizing efficiency and pinpointing any remaining areas of possible improvement.

If the application scales only fairly, a scatter plot of speedup values as a function

of the sequential execution time can be very revealing, as poor speedup is often data-

dependent. Reaching asymptotic behavior may be difficult in such a case, so this is the

right time to run larger and larger instances; in contrast, isoefficiency curves are not very

useful, as very little data is available to define curves at high efficiency levels. The focus

should be on understanding the reasons why certain datasets yield poor speedup and

others good speedup, with the goal of designing a better algorithm or implementation

based on these findings.

7 Machine-Independent Measurements?

In algorithm engineering, the aim is to present repeatable results through experiments

that apply to a broader class of computers than the specific make of computer system

used during the experiment. For sequential computing, empirical results are often fairly

machine-independent. While machine characteristics such as word size, cache and main

memory sizes, and processor and bus speeds differ, comparisons across different unipro-

cessor machines show the same trends. In particular, the number of memory accesses

and processor operations remains fairly constant (or within a small constant factor).

In high-performance algorithm engineering with parallel computers, on the other

hand, this portability is usually absent: each machine and environment is its own special

case. One obvious reason is major differences in hardware that affect the balance of

communication and computation costs—a true shared-memory machine exhibits very

different behavior from that of a cluster based on commodity networks.



10 D.A. Bader, B.M.E. Moret, and P. Sanders

Another reason is that the communication libraries and parallel programming envi-

ronments (e.g., MPI [51], OpenMP [61], and High-Performance Fortran [42]), as well

as the parallel algorithm packages (e.g., fast Fourier transforms using FFTW [30] or

parallelized linear algebra routines in ScaLAPACK [24]), often exhibit differing per-

formance on different types of parallel platforms. When multiple library packages exist

for the same task, a user may observe different running times for each library version

even on the same platform. Thus a running-time analysis should clearly separate the

time spent in the user code from that spent in various library calls. Indeed, if particular

library calls contribute significantly to the running time, the number of such calls and

running time for each call should be recorded and used in the analysis, thereby helping

library developers focus on the most cost-effective improvements. For example, in a

simple message-passing program, one can characterize the work done by keeping track

of sequential work, communication volume, and number of communications. A more

general program using the collective communication routines of MPI could also count

the number of calls to these routines. Several packages are available to instrument MPI

codes in order to capture such data (e.g., MPICH’s nupshot [33], Pablo [66], and Vam-

pir [58]). The SKaMPI benchmark [69] allows running-time predictions based on such

measurements even if the target machine is not available for program development. For

example, one can check the page of results2 or ask a customer to run the benchmark

on the target platform. SKaMPI was designed for robustness, accuracy, portability, and

efficiency; For example, SKaMPI adaptively controls how often measurements are re-

peated, adaptively refines message-length and step-width at “interesting” points, recov-

ers from crashes, and automatically generates reports.

8 High-performance algorithm engineering for shared-memory

processors

Symmetric multiprocessor (SMP) architectures, in which several (typically 2 to 8) pro-

cessors operate in a true (hardware-based) shared-memory environment and are pack-

aged as a single machine, are becoming commonplace. Most high-end workstations are

available with dual processors and some with four processors, while many of the new

high-performance computers are clusters of SMP nodes, with from 2 to 64 processors

per node. The ability to provide uniform shared-memory access to a significant number

of processors in a single SMP node brings us much closer to the ideal parallel computer

envisioned over 20 years ago by theoreticians, the Parallel Random Access Machine

(PRAM) (see, e.g., [44, 67]) and thus might enable us at long last to take advantage of

20 years of research in PRAM algorithms for various irregular computations. Moreover,

as more and more supercomputers use the SMP cluster architecture, SMP computations

will play a significant role in supercomputing as well.

8.1 Algorithms for SMPs

While an SMP is a shared-memory architecture, it is by no means the PRAM used in

theoretical work. The number of processors remains quite low compared to the poly-

nomial number of processors assumed by the PRAM model. This difference by itself

would not pose a great problem: we can easily initiate far more processes or threads than

2 http://liinwww.ira.uka.de/˜skampi/cgi-bin/run_list.cgi.pl



High-Performance Algorithm Engineering for Parallel Computation 11

we have processors. But we need algorithms with efficiency close to one and parallelism

needs to be sufficiently coarse grained that thread scheduling overheads do not dominate

the execution time. Another big difference is in synchronization and memory access: an

SMP cannot support concurrent read to the same location by a thousand threads without

significant slowdown and cannot support concurrent write at all (not even in the arbi-

trary CRCW model) because the unsynchronized writes could take place far too late

to be used in the computation. In spite of these problems, SMPs provide much faster

access to their shared-memory than an equivalent message-based architecture: even the

largest SMP to date, the 106-processor “Starcat” Sun Fire E15000, has a memory access

time of less than 300ns to its entire physical memory of 576GB, whereas the latency for

access to the memory of another processor in a message-based architecture is measured

in tens of microseconds—in other words, message-based architectures are 20–100 times

slower than the largest SMPs in terms of their worst-case memory access times.

The Sun SMPs (the older “Starfire” [23] and the newer “Starcat”) use a combination

of large (16� 16) data crossbar switches, multiple snooping buses, and sophisticated

handling of local caches to achieve uniform memory access across the entire physical

memory. However, there remains a large difference between the access time for an

element in the local processor cache (below 5ns in a Starcat) and that for an element

that must be obtained from memory (around 300ns)—and that difference increases as

the number of processors increases.

8.2 Leveraging PRAM Algorithms for SMPs

Since current SMP architectures differ significantly from the PRAM model, we need a

methodology for mapping PRAM algorithms onto SMPs. In order to accomplish this

mapping we face four main issues: (i) change of programming environment; (ii) move

from synchronous to asynchronous execution mode; (iii) sharp reduction in the number

of processors; and (iv) need for cache awareness. We now describe how each of these

issues can be handled; using these approaches, we have obtained linear speedups for a

collection of nontrivial combinatorial algorithms, demonstrating nearly perfect scaling

with the problem size and with the number of processors (from 2 to 32) [11].

Programming Environment: A PRAM algorithm is described by pseudocode parame-

terized by the index of the processor. An SMP program must add to this explicit syn-

chronization steps—software barriers must replace the implicit lockstep execution of

PRAM programs. A friendly environment, however, should also provide primitives for

memory management for shared-buffer allocation and release, as well as for contextu-

alization (executing a statement on only a subset of processors) and for scheduling n

independent work statements implicitly to p < n processors as evenly as possible.

Synchronization: The mismatch between the lockstep execution of the PRAM and the

asynchronous nature of parallel architecture mandates the use of software barriers.

In the extreme, a barrier can be inserted after each PRAM step to guarantee a lock-

step synchronization—at a high level, this is what the BSP model does. However,

many of these barriers are not necessary: concurrent read operations can proceed asyn-

chronously, as can expression evaluation on local variables. What needs to be synchro-

nized is the writing to memory—so that the next read from memory will be consistent

among the processors. Moreover, a concurrent write must be serialized (simulated);



12 D.A. Bader, B.M.E. Moret, and P. Sanders

standard techniques have been developed for this purpose in the PRAM model and the

same can be applied to the shared-memory environment, with the same log p slowdown.

Number of Processors: Since a PRAM algorithm may assume as many as nO(1) pro-

cessors for an input of size n—or an arbitrary number of processors for each parallel

step, we need to schedule the work on an SMP, which will always fall short of that

resource goal. We can use the lower-level scheduling principle of the work-time frame-

work [44] to schedule the W (n) operations of the PRAM algorithm onto the fixed num-

ber p of processors of the SMP. In this way, for each parallel step k, 1 � k � T (n),

the Wk(n) operations are simulated in at most Wk(n)=p+ 1 steps using p processors.

If the PRAM algorithm has T (n) parallel steps, our new schedule has complexity of

O(W (n)=p+T(n)) for any number p of processors. The work-time framework leaves

much freedom as to the details of the scheduling, freedom that should be used by the

programmer to maximize cache locality.

Cache-Awareness: SMP architectures typically have a deep memory hierarchy with

multiple on-chip and off-chip caches, resulting currently in two orders of magnitude of

difference between the best-case (pipelined preloaded cache read) and worst-case (non-

cached shared-memory read) memory read times. A cache-aware algorithm must effi-

ciently use both spatial and temporal locality in algorithms to optimize memory access

time. While research into cache-aware sequential algorithms has seen early successes

(see [54] for a review), the design for multiple processor SMPs has barely begun. In an

SMP, the issues are magnified in that not only does the algorithm need to provide the

best spatial and temporal locality to each processor, but the algorithm must also handle

the system of processors and cache protocols. While some performance issues such as

false sharing and granularity are well-known, no complete methodology exists for prac-

tical SMP algorithmic design. Optimistic preliminary results have been reported (e.g.,

[59, 63]) using OpenMP on an SGI Origin2000, cache-coherent non-uniform mem-

ory access (ccNUMA) architecture, that good performance can be achieved for several

benchmark codes from NAS and SPEC through automatic data distribution.

9 Conclusions

Parallel computing is slowly emerging from its niche of specialized, expensive hard-

ware and restricted applications to become part of everyday computing. As we build

support libraries for desktop parallel computing or for newer environments such as

large-scale shared-memory computing, we need tools to ensure that our library mod-

ules (or application programs built upon them) are as efficient as possible. Producing

efficient implementations is the goal of algorithm engineering, which has demonstrated

early successes in sequential computing. In this article, we have reviewed the new chal-

lenges to algorithm engineering posed by a parallel environment and indicated some of

the approaches that may lead to solutions.

Acknowledgments

This work was supported in part by National Science Foundation grants CAREER

ACI 00-93039 (Bader), ACI 00-81404 (Moret/Bader), DEB 99-10123 (Bader), EIA 01-

21377 (Moret/Bader), EIA 01-13095 (Moret), and DEB 01-20709 (Moret/Bader), and

by the Future and Emerging Technologies program of the EU under contract number

IST-1999-14186 (Sanders).



High-Performance Algorithm Engineering for Parallel Computation 13

References

[1] A. Aggarwal and J. Vitter. The Input/Output Complexity of Sorting and Related Problems. Commun.

ACM, 31:1116–1127, 1988.

[2] A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman. LogGP: Incorporating Long Messages

into the LogP Model - One step closer towards a realistic model for parallel computation. In Proc. 7th

Ann. Symp. Parallel Algorithms and Architectures, pages 95–105, Santa Barbara, CA, 1995. ACM.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Cros, A. Greenbaum, S. Hammarling,

A. McKenney, S. Ostouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA, 2nd

edition, 1995.

[4] D. A. Bader. An Improved Randomized Selection Algorithm With an Experimental Study. In Proc.

The 2nd Workshop on Algorithm Engineering and Experiments (ALENEX00), pages 115–129, San

Francisco, CA, 2000. www.cs.unm.edu/Conferences/ALENEX00/.

[5] D. A. Bader, D. R. Helman, and J. JáJá. Practical Parallel Algorithms for Personalized Communication

and Integer Sorting. ACM J. Experimental Algorithmics, 1(3):1–42, 1996. www.jea.acm.org/1996/

BaderPersonalized/.

[6] D. A. Bader and J. JáJá. Parallel Algorithms for Image Histogramming and Connected Components

with an Experimental Study. J. Parallel & Distributed Comput., 35(2):173–190, 1996.

[7] D. A. Bader and J. JáJá. Practical Parallel Algorithms for Dynamic Data Redistribution, Median

Finding, and Selection. In Proc. 10th Int’l Parallel Processing Symp., pages 292–301, Honolulu, HI,

1996.

[8] D. A. Bader and J. JáJá. SIMPLE: A Methodology for Programming High Performance Algorithms

on Clusters of Symmetric Multiprocessors (SMPs). J. Parallel & Distributed Comput., 58(1):92–108,

1999.

[9] D. A. Bader, J. JáJá, and R. Chellappa. Scalable Data Parallel Algorithms for Texture Synthesis Using

Gibbs Random Fields. IEEE Trans. Image Processing, 4(10):1456–1460, 1995.

[10] D. A. Bader, J. JáJá, D. Harwood, and L. S. Davis. Parallel Algorithms for Image Enhancement and

Segmentation by Region Growing with an Experimental Study. J. Supercomputing, 10(2):141–168,

1996.

[11] D.A. Bader, A.K. Illendula, B. M.E. Moret, and N. Weisse-Bernstein. Using PRAM algorithms on a

uniform-memory-access shared-memory architecture. In G.S. Brodal, D. Frigioni, and A. Marchetti-

Spaccamela, editors, Proc. 5th Int’l Workshop on Algorithm Engineering (WAE 2001), volume 2141

of Lecture Notes in Computer Science, pages 129–144, Århus, Denmark, 2001. Springer-Verlag.

[12] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg, P. Fred-

erickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga. The NAS

Parallel Benchmarks. Technical Report RNR-94-007, Numerical Aerodynamic Simulation Facility,

NASA Ames Research Center, Moffett Field, CA, 1994.

[13] D. H. Bailey. Twelve ways to fool the masses when giving performance results on parallel computers.

Supercomputer Review, 4(8):54–55, 1991.

[14] R.D. Barve and J.S. Vitter. A simple and efficient parallel disk mergesort. In Proc. 11th Ann. Symp.

Parallel Algorithms and Architectures, pages 232–241, Saint Malo, France, 1999. ACM.

[15] A. Bäumker, W. Dittrich, and F. Meyer auf der Heide. Truly efficient parallel algorithms: 1-optimal

multisearch for an extension of the BSP model. Theoretical Computer Science, 203(2):175–203, 1998.

[16] A. Bäumker, W. Dittrich, F. Meyer auf der Heide, and I. Rieping. Priority Queue Operations and

Selection for the BSP* Model. In Proc. 2nd Int’l Euro-Par Conf., volume 1124 of Lecture Notes in

Computer Science, pages 369–376, Lyon, France, 1996. Springer-Verlag.

[17] A. Bäumker, W. Dittrich, F. Meyer auf der Heide, and I. Rieping. Realistic Parallel Algorithms: Priority

Queue Operations and Selection for the BSP* Model. In Proc. 2nd Int’l Euro-Par Conf., pages 27–29,

Lyon, France, 1996. LIP, Ecole Normale Supérier de Lyon.

[18] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak, and C. V. Packer. Beowulf: A

Parallel Workstation For Scientific Computation. In Proc. Int’l Conf. Parallel Processing, volume 1,

pages 11–14, 1995.

[19] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,

G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaLAPACK Users’ Guide. SIAM,

Philadelphia, PA, 1997.



14 D.A. Bader, B.M.E. Moret, and P. Sanders

[20] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. A Comparison

of Sorting Algorithms for the Connection Machine CM-2. In Proc. Symp. Parallel Algorithms and

Architectures, pages 3–16. ACM, 1991.

[21] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. An experi-

mental analysis of parallel sorting algorithms. Theory of Computing Systems, 31(2):135–167, 1998.

[22] O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping. The Paderborn University BSP (PUB) library

- design, implementation and performance. In Proc. 13th Int’l Parallel Processing Symp. and the

10th Symp. Parallel and Distributed Processing (IPPS/SPDP), San Juan, Puerto Rico, 1999. www.

uni-paderborn.de/˜pub/.

[23] A. Charlesworth. Starfire: extending the SMP envelope. IEEE Micro, 18(1):39–49, 1998.

[24] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra library

for distributed memory concurrent computers. In The 4th Symp. the Frontiers of Massively Parallel

Computations, pages 120–127, McLean, VA, 1992.

[25] D. E. Culler, A. C. Dusseau, R. P. Martin, and K. E. Schauser. Fast Parallel Sorting Under LogP: From

Theory to Practice. In Portability and Performance for Parallel Processing, chapter 4, pages 71–98.

John Wiley & Sons, 1993.

[26] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and

T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In 4th Symp. Principles and

Practice of Parallel Programming, pages 1–12. ACM SIGPLAN, 1993.

[27] J. C. Cummings, J. A. Crotinger, S. W. Haney, W. F. Humphrey, S. R. Karmesin, J. V.W. Reynders,

S. A. Smith, and T. J. Williams. Rapid application development and enhanced code interoperabily

using the POOMA framework. In M. E. Henderson, C. R. Anderson, and S. L. Lyons, editors, Proc.

1998 Workshop on Object Oriented Methods for Inter-operable Scientific and Engineering Computing,

chapter 29. SIAM, Yorktown Heights, NY, 1999.

[28] P. de la Torre and C.P. Kruskal. Submachine locality in the bulk synchronous setting. In Proc. 2nd

Int’l Euro-Par Conf., pages 352–358, Lyon, France, 1996. LIP, Ecole Normale Supérier de Lyon.

[29] S. J. Fink and S. B. Baden. Runtime Support for Multi-Tier Programming of Block-Structured Ap-

plications on SMP Clusters. In Y. Ishikawa et al., editor, Proc. 1997 Int’l Scientific Computing in

Object-Oriented Parallel Environments Conf. (ISCOPE ’97), volume 1343 of Lecture Notes in Com-

puter Science, pages 1–8, Marina del Ray, California, 1997. Springer-Verlag.

[30] M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT. In Proc. IEEE

Int’l Conf. Acoustics, Speech, and Signal Processing, volume 3, pages 1381–1384, Seattle, WA, 1998.

[31] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In Proc.

40th Ann. Symp. Foundations of Computer Science (FOCS-99), pages 285–297, New York, NY, 1999.

IEEE Press.

[32] A.V. Goldberg and B.M.E. Moret. Combinatorial Algorithms Test Sets (CATS): the ACM/EATCS

platform for experimental research. In Proc. 10th Ann. Symp. Discrete Algorithms (SODA-99), pages

913–914, Baltimore, MD, 1999. ACM-SIAM.

[33] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Implementation of the

MPI Message Passing Interface Standard. Technical report, Argonne National Laboratory, Argonne,

IL, 1996. www.mcs.anl.gov/mpi/mpich/.

[34] S. E. Hambrusch and A. A. Khokhar. C3: A Parallel Model for Coarse-grained Machines. J. Parallel

& Distributed Comput., 32:139–154, 1996.

[35] D. R. Helman, D. A. Bader, and J. JáJá. A Parallel Sorting Algorithm With an Experimental Study.

Technical Report CS-TR-3549 and UMIACS-TR-95-102, UMIACS and Electrical Engineering, Uni-

versity of Maryland, College Park, MD, 1995.

[36] D. R. Helman, D. A. Bader, and J. JáJá. Parallel Algorithms for Personalized Communication and

Sorting With an Experimental Study. In Proc. 8th Ann. Symp. Parallel Algorithms and Architectures,

pages 211–220, Padua, Italy, 1996. ACM.

[37] D. R. Helman, D. A. Bader, and J. JáJá. A Randomized Parallel Sorting Algorithm With an Experi-

mental Study. J. Parallel & Distributed Comput., 52(1):1–23, 1998.

[38] D. R. Helman and J. JáJá. Sorting on clusters of SMP’s. In Proc. 12th Int’l Parallel Processing Symp.,

pages 1–7, Orlando, FL, 1998.

[39] D. R. Helman and J. JáJá. Designing Practical Efficient Algorithms for Symmetric Multiprocessors.

In Algorithm Engineering and Experimentation (ALENEX’99), volume 1619 of Lecture Notes in Com-

puter Science, pages 37–56, Baltimore, MD, 1999. Springer-Verlag.



High-Performance Algorithm Engineering for Parallel Computation 15

[40] D. R. Helman and J. JáJá. Prefix computations on symmetric multiprocessors. J. Parallel & Distributed

Comput., 61(2):265–278, 2001.

[41] D. R. Helman, J. JáJá, and D. A. Bader. A New Deterministic Parallel Sorting Algorithm With an

Experimental Evaluation. ACM J. Experimental Algorithmics, 3(4), 1997. www.jea.acm.org/1998/

HelmanSorting/.

[42] High Performance Fortran Forum. High Performance Fortran Language Specification, 1.0 edition,

1993.

[43] J.M.D. Hill, B. McColl, D.C. Stefanescu, M.W. Goudreau, K. Lang, S.B. Rao, T. Suel, T. Tsantilas,

and R. Bisseling. BSPlib: The BSP programming library. Technical Report PRG-TR-29-97, Oxford

University Computing Laboratory, 1997. www.BSP-Worldwide.org/implmnts/oxtool/.

[44] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company, New York,

1992.

[45] B. H.H. Juurlink and H. A.G. Wijshoff. A quantitative comparison of parallel computation models.

ACM Trans. Computer Systems, 13(3):271–318, 1998.

[46] S. N.V. Kalluri, J. JáJá, D. A. Bader, Z. Zhang, J. R.G. Townshend, and H. Fallah-Adl. High Perfor-

mance Computing Algorithms for Land Cover Dynamics Using Remote Sensing Data. Int’l J. Remote

Sensing, 21(6):1513–1536, 2000.

[47] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA highly scalable server. In Proc. 24th Ann.

Int’l Symp. Computer Architecture (ISCA’97), pages 241–251, Denver, CO, 1997.

[48] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V. Hill, W. D.

Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong-Chan, S.-W. Yang, and R. Zak. The

network architecture of the Connection Machine CM-5. J. Parallel & Distributed Comput., 33(2):145–

158, 199.

[49] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A Hunter of Idle Workstations. In Proc. 8th Int’l

Conf. on Distributed Computing Systems, pages 104–111, San Jose, CA, 1998.

[50] C.C. McGeoch and B.M.E. Moret. How to present a paper on experimental work with algorithms.

SIGACT News, 30(4):85–90, 1999.

[51] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Technical report,

University of Tennessee, Knoxville, TN, 1995. Version 1.1.

[52] F. Meyer auf der Heide and R. Wanka. Parallel bridging models and their impact on algorithm design.

In Proc. Int’l Conf. on Computational Science, Part II, volume 2074 of Lecture Notes in Computer

Science, pages 628–637, San Francisco, CA, 2001. Springer-Verlag.

[53] B.M.E. Moret, D.A. Bader, and T. Warnow. High-performance algorithm engineering for computa-

tional phylogenetics. J. Supercomputing, 22:99–111, 2002. Special issue on the best papers from

ICCS’01.

[54] B.M.E. Moret and H.D. Shapiro. Algorithms and experiments: The new (and old) methodology. J.

Universal Computer Sci., 7(5):434–446, 2001.

[55] B.M.E. Moret, A.C. Siepel, J. Tang, and T. Liu. Inversion medians outperform breakpoint medians

in phylogeny reconstruction from gene-order data. In Proc. 2nd Workshop Algs. in Bioinformatics

(WABI’02), volume 2542 of Lecture Notes in Computer Science, Rome, Italy, 2002. Springer-Verlag.

[56] MRJ Inc. The Portable Batch System (PBS). pbs.mrj.com.

[57] F. Müller. A Library Implementation of POSIX Threads under UNIX. In Proc. 1993 Winter USENIX

Conf., pages 29–41, San Diego, CA, 1993. www.informatik.hu-berlin.de/˜mueller/projects.

html.

[58] W.E. Nagel, A. Arnold, M. Weber, H.C. Hoppe, and K. Solchenbach. VAMPIR: visualization and

analysis of MPI resources. Supercomputer 63, 12(1):69–80, 1996.

[59] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopoulos, J. Labarta, and E. Ayguadé. Is data

distribution necessary in OpenMP. In Proc. Supercomputing, Dallas, TX, 2000. IEEE Press.

[60] Ohio Supercomputer Center. LAM / MPI Parallel Computing. The Ohio State University, Columbus,

OH, 1995. www.lam-mpi.org.

[61] OpenMP Architecture Review Board. OpenMP: A Proposed Industry Standard API for Shared Mem-

ory Programming. www.openmp.org, 1997.

[62] Platform Computing Inc. The Load Sharing Facility (LSF). www.platform.com.



16 D.A. Bader, B.M.E. Moret, and P. Sanders

[63] E. D. Polychronopoulos, D. S. Nikolopoulos, T. S. Papatheodorou, X. Martorell, J. Labarta, and

N. Navarro. An efficient kernel-level scheduling methodology for multiprogrammed shared mem-

ory multiprocessors. In 12th Int’l Conf. on Parallel and Distributed Computing Systems (PDCS), Ft.

Lauderdale, FL, 1999. ISCA.

[64] POSIX. Information technology—Portable Operating System Interface (POSIX)—Part 1: System Ap-

plication Program Interface (API). Portable Applications Standards Committee of the IEEE, 1996-07-

12 edition, 1996. ISO/IEC 9945-1, ANSI/IEEE Std. 1003.1.

[65] N. Rahman and R. Raman. Adapting radix sort to the memory hierarchy. In Proc. The 2nd Workshop

on Algorithm Engineering and Experiments (ALENEX00), pages 131–146, San Francisco, CA, 2000.

www.cs.unm.edu/Conferences/ALENEX00/.

[66] D.A. Reed, R.A. Aydt, R.J. Noe, P.C. Roth, K.A. Shields, B. Schwartz, and L.F. Tavera. Scalable

performance analysis: The Pablo performance analysis environment. In A. Skjellum, editor, Proc.

Scalable Parallel Libraries Conf., pages 104–113, Mississippi State University, 1993. IEEE Computer

Society Press.

[67] J. H. Reif, editor. Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers, 1993.

[68] R. Reussner, P. Sanders, L. Prechelt, and M. Müller. SKaMPI: A detailed, accurate MPI benchmark.

In EuroPVM/MPI see also liinwww.ira.uka.de/˜skampi/, number 1497 in Lecture Notes in

Computer Science, pages 52–59, 1998.

[69] R. Reussner, P. Sanders, and J. Träff. SKaMPI: A comprehensive benchmark for public benchmarking

of MPI. Scientific Programming, 2001. accepted, conference version with L. Prechelt and M. Müller

in Proc. EuroPVM/MPI 1998.

[70] P. Sanders. Load Balancing Algorithms for Parallel Depth First Search (In German: Lastverteilungsal-

gorithmen für parallele Tiefensuche). Number 463 in Fortschrittsberichte, Reihe 10. VDI Verlag,

Berlin, 1997.

[71] P. Sanders. Randomized priority queues for fast parallel access. J. Parallel & Distributed Comput.,

49(1):86–97, 1998. Special Issue on Parallel and Distributed Data Structures.

[72] P. Sanders. Accessing multiple sequences through set associative caches. In Proc. 26th Int’l Col-

loquium on Automata, Languages and Programming (ICALP’99), volume 1644 of Lecture Notes in

Computer Science, pages 655–664, Prague, Czech Republic, 1999. Springer-Verlag.

[73] P. Sanders and T. Hansch. On the efficient implementation of massively parallel quicksort. In Proc. 4th

Int’l Workshop On Solving Irregularly Structured Problem In Parallel (IRREGULAR 1997), volume

1253 of Lecture Notes in Computer Science, pages 13–24, Paderborn, Germany, 1997. Springer-Verlag.

[74] Uwe Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In 40th

IEEE Symp. Foundations of Computer Science, pages 410–414, 1999.

[75] S. Sen and S. Chatterjee. Towards a theory of cache-efficient algorithms. In Proc. 11th Ann. Symp.

Discrete Algorithms (SODA-00), pages 829–838, San Francisco, CA, 2000. ACM-SIAM.

[76] T.L. Sterling, J. Salmon, and D.J. Becker. How to build a Beowulf: A Guide to the Implementation and

Application of PC Clusters. MIT Press, Inc., Cambridge, MA, 1999.

[77] L. G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM, 33(8):103–111, 1990.

[78] J. S. Vitter and E. A.M. Shriver. Algorithms for parallel memory I: Two-level memories. Algorithmica,

12(2/3):110–147, 1994.

[79] J. S. Vitter and E. A.M. Shriver. Algorithms for parallel memory II: Hierarchical multilevel memories.

Algorithmica, 12(2/3):148–169, 1994.

[80] R. Whaley and J. Dongarra. Automatically tuned linear algebra software (ATLAS). In Proc.

Supercomputing 98, Orlando, FL, 1998. www.netlib.org/utk/people/JackDongarra/PAPERS/

atlas-sc98.ps.

[81] H. A.G. Wijshoff and B. H.H. Juurlink. A quantitative comparison of parallel computation models. In

Proc. 8th Ann. Symp. Parallel Algorithms and Architectures, pages 13–24, Padua, Italy, 1996. ACM.

[82] Y. Yan and X. Zhang. Lock bypassing: An efficient algorithm for concurrently accessing priority

heaps. ACM J. Experimental Algorithmics, 3(3), 1998. www.jea.acm.org/1998/YanLock/.

[83] Z. Zhang, J. JáJá, D. A. Bader, S. Kalluri, H. Song, N. El Saleous, E. Vermote, and J. Townshend.

Kronos: A Software System for the Processing and Retrieval of Large-Scale AVHRR Data Sets. Pho-

togrammetric Engineering & Remote Sensing, 66(9):1073–1082, 2000.



High-Performance Algorithm Engineering for Parallel Computation 17

A Examples of Algorithm Engineering for Parallel Computation

Within the scope of this paper, it would be difficult to provide meaningful and self-

contained examples for each of the various points we made. In lieu of such target ex-

amples, we offer here several references3 that exemplify the best aspects of algorithm

engineering studies for high-performance and parallel computing. For each paper or

collection of papers, we describe those aspects of the work that led to its inclusion in

this section.

1. The authors’ prior publications [53, 11, 4, 46, 8, 71, 68, 37, 41, 73, 36, 5, 10, 7, 6, 9]

contain many empirical studies of parallel algorithms for combinatorial problems

like sorting [5, 35, 41, 73, 36], selection [4, 71, 7], and priority queues [71], graph

algorithms [53], backtrack search [70], and image processing [46, 10, 6, 9].
2. JáJá and Helman conducted empirical studies for prefix computations [40], sorting

[38] and list-ranking [39] on symmetric multiprocessors. The sorting paper [38]

extends Vitter’s external Parallel Disk Model [1, 78, 79] to the internal memory

hierarchy of SMPs and uses this new computational model to analyze a general-

purpose sample sort that operates efficiently in shared-memory. The performance

evaluation uses 9 well-defined benchmarks. The benchmarks include input distri-

butions commonly used for sorting benchmarks (such as keys selected uniformly

and at random), but also benchmarks designed to challenge the implementation

through load imbalance and memory contention and to circumvent algorithmic de-

sign choices based on specific input properties (such as data distribution, presence

of duplicate keys, pre-sorted inputs, etc.)
3. In [20, 21] Blelloch et al. compare through analysis and implementation three sort-

ing algorithms on the Thinking Machines CM-2. Despite the use of an outdated

(and no longer available) platform, this paper is a gem and should be required read-

ing for every parallel algorithm designer. In one of the first studies of its kind, the

authors estimate running times of four of the machine’s primitives, then analyze the

steps of the three sorting algorithms in terms of these parameters. The experimental

studies of the performance are normalized to provide clear comparison of how the

algorithms scale with input size on a 32K-processor CM-2.
4. Vitter et al. provide the canonical theoretic foundation for I/O-intensive experi-

mental algorithmics using external parallel disks (e.g., see [1, 78, 79, 14]). Exam-

ples from sorting, FFT, permuting, and matrix transposition problems are used to

demonstrate the parallel disk model. For instance, using this model in [14], empiri-

cal results are given for external sorting on a fixed number of disks with from 1 to 10

million items, and two algorithms are compared with overall time, number of merge

passes, I/O streaming rates, using computers with different internal memory sizes.
5. Hambrusch and Khokhar present a model (C3) for parallel computation that, for a

given algorithm and target architecture, provides the complexity of computation,

communication patterns, and potential communication congestion [34]. This paper

is one of the first efforts to model collective communication both theoretically and

through experiments, and then validate the model with coarse-grained computa-

tional applications on an Intel supercomputer. Collective operations are thoroughly

3 We do not attempt to include all of the best work in the area: our selection is perforce idiosyn-

cratic.



18 D.A. Bader, B.M.E. Moret, and P. Sanders

characterized by message size and higher-level patterns are then analyzed for com-

munication and computation complexities in terms of these primitives.

6. While not itself an experimental paper, Meyer auf der Heide and Wanka demon-

strate in [52] the impact of features of parallel computation models on the design

of efficient parallel algorithms. The authors begin with an optimal multisearch al-

gorithm for the Bulk Synchronous Parallel (BSP) model that is no longer optimal

in realistic extensions of BSP that take critical blocksize into account such as BSP*

(e.g., [17, 16, 15]). When blocksize is taken into account, the modified algorithm

is optimal in BSP*. The authors present a similar example with a broadcast algo-

rithm using a BSP model extension that measures locality of communication, called

D-BSP [28].

7. Juurlink and Wijshoff [81, 45] perform one of the first detailed experimental ac-

counts on the preciseness of several parallel computation models on five parallel

platforms. The authors discuss the predictive capabilities of the models, compare

the models to find out which allows for the design of the most efficient parallel algo-

rithms, and experimentally compare the performance of algorithms designed with

the model versus those designed with machine-specific characteristics in mind. The

authors derive model parameters for each platform, analyses for a variety of algo-

rithms (matrix multiplication, bitonic sort, sample sort, all-pairs shortest path), and

detailed performance comparisons.

8. The LogP model of Culler et al. [26] (and its extensions such as logGP [2] for long

messages) provides a realistic model for designing parallel algorithms for message-

passing platforms. Its use is demonstrated for a number of problems, including

sorting [25]. Four parallel sorting algorithms are analyzed for LogP and their per-

formance on parallel platforms with from 32 to 512 processors is predicted by LogP

using parameter values for the machine. The authors analyze both regular and irreg-

ular communication and provide normalized predicted and measured running times

for the steps of each algorithm.

9. Yun and Zhang [82] describe an extensive performance evaluation of lock bypass-

ing for concurrent access to priority heaps. The empirical study compares three

algorithms by reporting the average number of locks waited for in heaps of 255 and

512 nodes. The average hold operation times are given for the three algorithms for

uniform, exponential, and geometric, distributions, with inter-hold operation delays

of 0, 160, and 640µs.

10. Several research groups have performed extensive algorithm engineering for high-

performance numerical computing. One of the most prominent efforts is that led

by Dongarra for ScaLAPACK [24, 19], a scalable linear algebra library for parallel

computers. ScaLAPACK encapsulates much of the high-performance algorithm en-

gineering with significant impact to its users who require efficient parallel versions

of matrix-matrix linear algebra routines. In [24], for instance, experimental results

are given for parallel LU factorization plotted in performance achieved (gigaflops

per second) for various matrix sizes, with a different series for each machine config-

uration. Because ScaLAPACK relies on fast sequential linear algebra routines (e.g.,

LAPACK [3]), new approaches for automatically tuning the sequential library (e.g.,

LAPACK) are now available as the ATLAS package [80].


