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Abstract

One of the fundamental tasks in automata theory is to look for transition-

tables that implement a given speci�cation. In principle, most of this task can

be performed by a computer. But a combinatorial explosion in the number of

possible transition-tables quickly renders brute force search impractical. This

paper demonstrates two approaches to extend the frontier of tractable problem

sizes. Firstly, an e�cient heuristic technique is used which dramatically prunes

the search space without giving up completeness. Secondly, a massively parallel

implementation is described which achieves near linear speedup on as many as

16384 Processors. These techniques yield some new results regarding two open

problems involving cellular automata and trellis automata.

1 Introduction

A recurring theme in computer science is the wish to automatically infer programs

from a problem speci�cation. In general, program inference is undecidable and even in

cases where it is decidable its computational complexity makes it prohibitive for most

applications. Nevertheless, the idea is so attractive that it appears to be worth looking

for niches of applicability.

The programming paradigm investigated in this paper are cellular automata or,

more generally, polyautomata. These collections of multiple interacting �nite automata

attract a lot of interest recently because they are simple and realistic models for parallel

computation and many other complex systems. Since programs for polyautomata are

simply tables and have a very clear semantics, it is possible to design e�cient and

reliable search algorithms (Section 2). These ideas date back to [1] but have almost been

forgotten since then. Two examples concerning cellular automata and trellis automata

for which search techniques have proved useful are presented in Section 3.

The complexity of transition-table search quickly exceeds the computational abilities

of a sequential computer. This makes it very attractive to use parallelism to boost

performance. Section 4 describes an implementation strategy suitable for massively
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parallel computers. An implementation on a MasPar MP-1 SIMD computer with 16384

processing elements (PEs) achieves near linear speedup. This result makes the parallel

implementation interesting on its own right because so far there have been few successful

implementations of parallel tree search on machines of this scale (e.g. [2]), most of which

appear to use toy examples like the 15-puzzle.

2 Search Strategies

The idea of searching for a transition-table realizing a given speci�cation can only be

carried out if the speci�cation has a form that is tractable and e�cient to implement.

Therefore, this paper restricts the speci�cations to use the following types of informa-

tion:

� A �nite set of inputs C

0

for which a given behavior is to be achieved. If the original

problem requires an in�nite number of potential inputs, the search algorithm can

only �nd candidate solutions which have to be veri�ed separately. However, the

search algorithm may be able to refute the existence of a solution.

� A speci�cation of the desired behavior of the automaton for a given input. This

information may involve �nal results, maximal and minimal number of steps and

constraints on intermediate results.

� A maximal number of di�erent symbols

1

to be used.

� A priori knowledge about the transition-function. For example, some entries of

the transition-table may be known in advance.

An Abstract Search Algorithm

A very simple search strategy is naive generate-and-test: Enumerate all transition-

tables for a given number of symbols and test all possible inputs for each table. A

simple back-of-the-envelope calculation shows that this is prohibitively expensive for

all but the most simple cases.

A better algorithm is based on the idea to overlap enumeration of solution candi-

dates and testing of their correctness. The abstract Algorithm 1 takes one input at a

time and tries to simulate the automaton's behavior for this input. A cellular automa-

ton for example is simulated by updating one cell at a time, e.g. in left to right order.

Whenever the program encounters a transition-table entry that is not yet de�ned, it

has to choose a value for this entry. When the simulation runs into a situation that

contradicts the problem speci�cation, one of the previous decisions has to be reverted

(by choosing another entry and restarting the simulation from this choicepoint). Even-

tually, a solution will be found (when all inputs have been processed) or the search runs

out of untried choices proving that no solution exists.

1

In general, automata of di�erent kinds may involve di�erent kinds of alphabets for representing

input, output, internal state, etc. For the sake of simplicity, this paper uses the term \symbol" to

subsume all these entities.
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set all unknown entries of � to ?

FOR each C 2 C

0

DO

WHILE C has not been processed completely DO

IF the next step in simulating the behavior for C is de�ned THEN

(*SIMULATION*)

execute it

IF the state of the automaton has become incorrect THEN

backtrack

ELSE

(*CHOICE POINT for backtracking*)

choose a result for the unde�ned entry of �

RETURN �

Figure 1: Abstract search algorithm.

Optimizations

Although Algorithm 1 is already vastly more e�cient than the naive approach, there

are a number of optimizations that turn out to be useful:

It is usually a good idea to try the shortest inputs �rst since this often facilitates

pruning after only a few transition-table entries have been tried.

Given a solution, it is possible to construct isomorphic solutions by swapping the

names of symbols which have no prede�ned meaning. These isomorphic solutions can be

excluded from enumeration if, at a choice point, only those alternatives are considered

which come from di�erent classes of undistinguishable symbols [1].

When backtracking occurs, Algorithm 1 moves back to the most recent choice point.

But it is possible that this choice point did not in
uence the failure of simulation that

provoked backtracking. In this case, the choice point can be removed completely (and

so forth). Although this heuristic sounds intuitive, care must be taken to implement it

correctly. A choice point may in
uence a failure indirectly by a�ecting another choice

point which might have been removed from the stack when it ran out of choices. A safe

way to make this backtrack decision is to tentatively remove the choice point and then

check whether enough information is available to reproduce the simulation failure. This

can be done by using a kind of simulation which uses the additional rule that unde�ned

transition-table entries produce a special symbol \?" for unde�ned. Since this \error

simulation" is costly, it is useful to identify special cases (which depend on the type of

polyautomata) for which the backtrack decisions are easier to make.

There are many more possible approaches to reducing the search space like non

depth-�rst tree traversal, more intelligent simulation ordering, : : : But one has to be

careful not to overdo it. Many heuristics that reduce the size of the search tree may

increase the actual computing time. (See Section 3.1 for some examples.)
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3 Applications

3.1 The Firing Squad Synchronisation Problem

The �ring squad synchronization problem (FSSP) is a classical problem of cellular

automata theory: Determine a class of one-dimensional cellular automata with von

Neumann-neighborhood and the following properties:

� The initial con�guration of interest has the form GZ

s�1

0

where G is called the general

state, Z

0

is the quiescent state and s is the size of the cellular array.

� The (local) transition-function � has the property that

�(Z

0

; Z

0

; Z

0

) = �(Z

0

; Z

0

;#) = Z

0

i.e. neither cells in the quiescent state nor the

right border
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are able to initiate any activity by themselves.

� After as few steps as possible the cellular array is to reach the con�guration F

s

.

F is called the �ring state.

� No cell �res before all others �re.

� The automaton shall use as few states as possible while working for arbitrary

sizes. This excludes trivial solutions using a counter in each cell.

The �gurative interpretation is that a general (the leftmost cell) wants to make all his

soldiers �re synchronously using neighborhood communication only. In [3] it has been

shown that at least 2s � 2 transitions are necessary to achieve synchronization and

time-optimal solutions have been developed in [3], [1], [4], and [5] employing 16, 8, 7,

and 6 states respectively (the border state is not counted).

Balzer [1] implemented a search algorithm in order to prove that there can be no four-

state solution. However, his interpretation of the backtrack heuristics from Section 2

was not correct, rendering the proof incomplete. The corrected heuristics increases the

search space from about 60 000 nodes to about 16 000 000 nodes.

3

But this is no

problem on today's machines.

Our implementation employs the heuristics described in Section 2. Many expensive

\error simulations" can be saved by using the following observation: If the choice point

under consideration was discovered for the same input for which the simulation ran

into a dead end, and, within the current space-time diagram, the error-point lies within

the event horizont of the choice point, then the choice point is guaranteed to in
uence

the error point (but not vice versa). The parallel implementation needs less than 11

seconds to prove that there is indeed no solution to the FSSP with four states. Figure 2

shows a four-state automaton that works up to array-size eight.

Once this result was obtained, measures were taken in order to solidify it. After

all, the new algorithm could still be wrong. First, a stripped-down sequential version

along the lines of the basic Algorithm 1 was written. After many hours it yielded the

same result. (The source code can be found in [6].) Furthermore, the search algorithm

2

\#" is a border state which is assumed to be immutable and which is only introduced in order to

avoid tedious treatment of special cases for the leftmost and rightmost cells.

3

This is still a small number compared to the 1:2 � 10

27

possibilities, a brute force algorithm would

have to consider.
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#G.# #G..# #G...# #G....# #G.....# #G......# #G.......#

#GG# #GX.# #GX..# #GX...# #GX....# #GX.....# #GX......#

#FF# #XXX# #XXG.# #XXG..# #XXG...# #XXG....# #XXG.....#

#GGG# #GX.G# #GX.X.# #GX.X..# #GX.X...# #GX.X....#

#FFF# #XXXX# #XXG.X# #XXG.G.# #XXG.G..# #XXG.G...#

#GGGG# #GX.GX# #GX.XXG# #GX.XXX.# #GX.XXX..#

#FFFF# #XXXXX# #XXG.XX# #XXG.G.X# #XXG.G.G.#

#GGGGG# #GX.G.G# #GX.XXGX# #GX.XXXXG#

#FFFFF# #XXXXXX# #XXG.XGX# #XXG.GGXX#

#GGGGGG# #GX.G.GX# #GX.XXGXG#

#FFFFFF# #XXXXXXX# #XXG.XGXX#

#GGGGGGG# #GX.G.GXG#

#FFFFFFF# #XXXXXXXX#

#GGGGGGGG#

#FFFFFFFF#

Figure 2: Space-time diagrams for a four-state \near miss".

was de�ned in a more formal way (using rewrite rules). This made it possible to prove

the completeness of the search algorithm at least on an abstract level. The remaining

question, whether one accepts the output of a C program as a proof, is a philosophical

question beyond the scope of this paper.

Naturally, it was also tried to resolve the question if there is a �ve-state solution

which would settle the FSSP for good. But it can be estimated that the best current

algorithm would take about 10

16

times the age of the universe on a MasPar.

It was also tried to devise better algorithms that are able to prune the search space

more e�ciently. For example, an algorithm has been implemented that can �nd the

e�ect of a new transition-table entry on all inputs quite e�ciently. But the reduction in

search space is not worth the additional overhead. Balzer [1] tried to apply AI methods

like constraint propagation with the same negative result.

Given that there is a solution to the �ve-state problem, some other approaches are

possible. First, if there were a very large number of solutions, a randomized search

algorithm would probably �nd one. But a 24-hour run on the MasPar did not produce

anything. An approach taken by Balzer is to postulate certain properties of a solution

and to search for a solution with these properties. But the wrong heuristics in Balzers

implementation made this approach look better than it is. Furthermore, his strongest

postulates do not hold for Mazoyer's six-state solution [5].

3.2 Recognition of fww

R

g and fwwg by Homogeneous Trellis

Automata

A very simple, yet interesting model of systolic computation are homogeneous trellis

automata [7]. In their simplest form they consist of identical nodes connected in a

conceptually in�nite, trellis-like triangular structure (Figure 3). Each node takes two

inputs from below which belong to a �nite alphabet A and computes a single output

using a function g : A � A ! A. The output is transmitted to the adjacent nodes in

the row above. All nodes work synchronously and they can be used to accept languages

over X � A. Words to be tested are input at a level corresponding to their length. A

word is accepted i� the top node outputs an accepting symbol from A

0

� A.

It is still an open question what exactly is the computational power of homogeneous
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trellis automata. A particularly interesting open problem is whether the language

fwwjw 2 fa; bg

+

g can be accepted. This is striking because the language is quite

simple and the very similar languages fww

R

jw 2 fa; bg

+

g (palindromes) and fw@wjw 2

fa; bg

+

g can be accepted.

The search algorithm was adapted for trellis automata in order to help answer this

question. All words over fa; bg up to a certain length are used as test inputs and they

are tried in order of increasing length. This has the advantage that a word xwy can be

tested very quickly: The automaton's behavior for xw and wy is already known and

all that remains to be determined is the output of the top-level node. Since there are

only two input symbols, the necessary computations can be done very e�ciently using

bit arithmetic.

Using this approach it was possible to show that no homogeneous trellis automaton

with less than seven symbols can accept fwwjw 2 fa; bg

+

g. Furthermore, if a seven-

symbol solution exists it will have exactly two accepting symbols.

This result is only meaningful if it can be compared to the number of symbols

necessary to accept the palindrome language. It turned out that the known solutions

use muchmore than seven symbols.

4

But the search algorithm was able to �nd solutions

using only �ve symbols. It yielded 16 candidate solutions which work for all inputs with

length up to 20. Figure 4 shows one of these solutions whose correctness has been proved

manually for inputs of arbitrary length.
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Figure 3: Homogeneous trel-

lis structure.

a b c d x

a x c c x

b c x x c

c d c c d a

d c d d c b

x d c b

x

b c

d x d

c a d c

c c x c c

c c b c c b

x d d x d d x

a d c a d c a d

c x c c x c c x c

a b b a b b a b b a

Figure 4: Solution of the palindrome problem

with an example.

We therefore have an (admittedly weak) result about the original question: Accept-

ing fwwjw 2 fa; bg

+

g takes at least two symbols more than accepting palindromes.

But the solution of the palindrome problem and its proof are also interesting for them-

selves. It can be claimed that the \ultimate" solution for a classical problem has been

found. Furthermore, it is quite interesting to look at a proof of a computer generated

algorithm. On the one hand, verifying such an algorithm might be considered as a

worst-case reverse-engineering problem since nothing is known about the \ideas" be-

hind the algorithm. On the other hand, it may be hoped that the search \discovered"

interesting principles because otherwise the solution would not be so short. It turned

out that both is true. On the one hand, the algorithm uses some quite involved informa-

tion encoding. On the other hand, it was possible to discover a quite simple invariant

which forms the backbone of the proof.

4

How many symbols are used exactly is hard to say, because often a di�erent interconnection scheme

is used.
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4 Parallel Search

The search algorithm is parallelized using a straightforward general approach. The

search-tree is decomposed into disjoint subtrees which can be searched independently [8,

2]. Section 4.1 shows how this decomposition can be made e�cient using an appropriate

(dynamic) load balancer. Section 4.2 discusses implementation issues which might also

be interesting since no comparable implementations on a MasPar are known to the

author. Another key issue is how a SIMD computer can e�ectively support the traversal

of independent subtrees in the context of complex control structures. This question,

which is orthogonal to the topics discussed here is covered in [6, 9].

4.1 Load Balancing

A sequential search algorithm starts with one single root node. In order to assign work

to all PEs, the search-tree has to be expanded to a su�cient degree and the generated

nodes should be evenly spread over all PEs. Interestingly, this is possible using only one

single broadcast of the root node and O(log(P )) node expansions (if P is the number

of PEs). All PEs start with the root node. Whenever a node is expanded, exactly

one successor is selected based on the information provided by the PE index. This

process is continued until no two PEs work on the same nodes. This mechanism can

be implemented using simple DIV and MOD arithmetics [10].

However, heuristic search trees in general and search trees for polyautomata in

particular often have a very irregular structure; therefore, this static load balancing

approach can only serve as an initialization method which prepares the ground for the

dynamic redistribution schemes described in the following.

General Principles of Dynamic Load Balancing

Dynamic load balancing comes in many guises. Therefore, it makes sense to �x a few

simple principles which have proved to make sense for the given application domain:

� In order to keep network tra�c low, work is sent from busy to idle PEs only.

� The search tree is partitioned by splitting the bottommost entry of the stack that

has open alternatives, because this is the place where large, untouched portions

of the search-tree are most likely to be found.

� A work exchange phase is initiated whenever the percentage of busy PEs drops

below a certain limit �. This scheme is simple and quite e�cient (e�ciencies of

around 80 % have been achieved).

What remains to be determined is which communication patterns are useful to �nd

partners for work exchange.

Random Permutations

A quite e�cient load balancing scheme can be implemented using an almost trivial idea:

Idle PEs simply choose a communication partner at random and probe it for work (e.g.
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[8]). For the SIMD setting, a slight modi�cation was introduced. Instead of selecting

communication partners independently, one global random number r 2 f1; : : : ; P�1g is

generated and an idle PE with number i communicates with PE i XOR r. (Assuming

that P is a power of 2.) This guarantees that no two PEs will try to fetch work from

the same place. (The function �i:i XOR r is bijective.) Although not all possible

permutations can be generated using this scheme, all PEs are treated equal and every

PE can reach all other PEs.

Another advantage is that it is very e�cient on a hypercube. Even if all PEs want

to communicate and if communication is possible only along one dimension at a time

(as for the Connection Machine) there will never be two messages that want to traverse

the same link into the same direction. Furthermore, at most one message needs to be

stored in a given node at a given time. The proof for all these properties is very simple:

Assume for a moment that r is a power of two. Then the permutation simply consists of

swapping messages along one hypercube dimension. The permutation for an arbitrary

r can be composed of k of these elementary permutations if k is the number of one-bits

in a binary representation of r.

Rendezvous

It was possible to speed up the search by another 13 % using a more informed load

distribution strategy.

5

The scheme proceeds in three phases: First, the addresses of all

idle PEs are stored in the PEs with lowest number. Then the busy PEs retrieve these

addresses. If there are less than 50 % idle PEs, those PEs which have the highest load

are served �rst. Load is estimated using the number of times a given piece of work has

been split. Finally, the busy PEs that received an address of an idle one share their

workload. Figure 5 gives an example of this process.

idle

marginally busy

busy

very busy

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

2 5 6

0 1 2 3 4 5 6 7

2 56

0 1 2 3 4 5 6 7

register idle

processors

find partners

for communication

exchange

work

Figure 5: Load distribution by rendezvous with sorting.

A multitude of reasons is responsible for making this rendezvous scheme perform

better than random permutations:

� As long as 50 % of the PEs are able to share work, all PEs will be busy after a

load balancing step.

5

This scheme was developed independently of the almost identical one in [2].
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� Larger pieces of work are transmitted on the average.

� The heuristics used in transition-table search make it possible that PEs traverse

parts of the search-tree which would be pruned by the sequential algorithm. This

becomes less likely as the search-tree is split nearer to the root.

� The overhead due to sorting and rendezvous can be made smaller than the time

spent for transmission of work. In part, this may be due to the fact that accessing

locally adressed memory is expensive on current SIMD machines. Accessing the

work to be transferred can therefore be as expensive as actually transmitting it.

4.2 Implementation Issues

The implementation was done using the data-parallel ANSI-C extension MPL and all

measurements were done on a 16384 PE MasPar MP-1 using the �ring squad synchro-

nization problem (see Section 3.1) with four states.

Besides the more fundamental optimizations described above, there were a large

number of more mundane but equally important opportunities for tuning: Packing

the data before transmission, using low-level router properties, providing appropriate

register annotations, replacing some && and || operators by & and |, choosing data

types of lowest possible precision, hand-coding a multi-dimensional array-access, and

replacing a function call by a table lookup.

What makes all these details interesting is that they would not have been necessary

on a sequential machine. The optimizations would be irrelevant or could be performed

by the compiler. It is not clear which optimizations could be automated by the compiler

of a (possibly higher level) parallel language.

All in all, the �nal version of the program was about 38 times faster than a SPARC-

station II. But the �rst parallel version without optimizations was no faster than a

workstation. Furthermore, only one optimization yielded a speedup of more than 100 %

(switching from a simple nearest neighbor communication scheme to random permu-

tation load balancing). The remaining order of magnitude in acceleration was due to

many small steps which look pretty limited in isolation (note that speedup factors do

not add, they multiply).

5 Conclusions

This paper centers around the idea of using heuristic search for determining transition-

tables of polyautomata. An abstract algorithm is presented that in principle works

for any kind of polyautomaton. Using this approach it is possible to correct Balzer's

proof that there is no four-state solution to the �ring squad synchronization problem.

The same search-method yields the smallest homogeneous trellis automata accepting

the palindrome language (involving only �ve symbols). One solution has been veri�ed

manually resulting in some interesting insights into computer generated algorithms. It

can also be proved that the very similar language fwwjw 2 fa; bg

+

g requires at least a

seven-symbol transition-table.
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Like all attempts to infer algorithms automatically, transition-table search su�ers

from a rapid combinatorial explosion. This can be observed for the �ve-state FSSP and

for seven-symbol trellis automata. Although some simple heuristics prove to be useful

in reducing the computational complexity, it often turns out that more sophisticated

heuristics incur an excessive overhead. This renders AI-like methods less useful than

clever implementation in an imperative language.

Transition-table search can be speeded up further by using parallelism. This proves

to be e�ective for massively parallel computers and even SIMD machines. A key issue

for parallel search is load balancing. A simple form of initialization can be realized

almost without communication. For dynamic load balancing, rendezvous with sorting

by workload proves to be very e�ective. A method that is similarly e�cient uses a

special kind of random permutations. It is very simple and has low communication

overhead. However, if the search algorithm is to yield a sizeable speedup over a state-

of-the-art workstation, careful optimization is necessary.
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