
On the E�cient Implementation of Massively

Parallel Quicksort

Peter Sanders, Thomas Hansch

Department of Computer Science

University of Karlsruhe, 76128 Karlsruhe, Germany

E-mail: sanders@ira.uka.de

Abstract

Parallel Quicksort is one of the most promising parallel sorting al-

gorithms from the point of view of scalability. However, actual imple-

mentations have been limited to very basic versions of the algorithm so

far and su�er from a number of de�ciencies. We have implemented a

high performance variant of parallel Quicksort which incorporates the

following optimizations: Stop the recursion at the right time, sort lo-

cally �rst, use accurate yet e�cient pivot selection strategies, stream-

line communication patterns, use locality preserving processor indexing

schemes and work with multiple pivots at once. In particular, on mesh-

connected computers, the resulting algorithm turns out to be among

the best practical sorting methods. It is about three times faster than

the basic algorithm and achieves a speedup of 810 on a 1024 processor

Parsytec GCel for the NAS parallel sorting benchmark of size 2

24

. The

optimized algorithm can also be shown to be asymptotically optimal on

meshes.

1 Introduction

Sorting has always been an important area of research both in theoretical and

practical computer science. A disappointing observation is that some of the

best practical algorithms like sample-sort are not very good from a theoretical

point of view. In particular, these algorithms only work well for large amounts

of data, i.e., they do not have a good scalability. On the other hand, there

are algorithms which are theoretically very scalable. For example, parallel

quicksort [18]. However, implementations of parallel quicksort (e.g. [8, 1]) are

so far more a proof of concept than a competitive practical sorting algorithm.

For large input sizes, simple implementations su�er from problems associated

with load balancing and they require a higher communication bandwidth than

other algorithms.

1

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 2

In this paper we describe our experiences with implementing a high per-

formance parallel quicksort. Our work has been in
uenced by a number of

interesting comparisons between parallel sorting algorithms regarding their

practical usefulness ([3, 9, 6]). However, rather than screening a number of

quite di�erent algorithms, we intensively study on one basic strategy { namely

parallel quicksort.

In Section 2 we introduce some notation and describe our experimental

setup. The basic algorithm for parallel quicksort is described in Section 3.

Section 4 discusses the simple yet important measure to switch from quicksort

to some specialized algorithm when few PEs are involved. Section 5 explains

why it is advantageous to sort the locally present data before starting the

main parallel algorithm. Particularly on mesh-connected machines, the local-

ity preserving PE indexing schemes discussed in Section 6 signi�cantly reduce

communication expense. Strategies for selecting good pivots as described in

Section 7 turn out to be a prerequisite for simpli�cations in the data exchange

patterns introduced in Section 8. Finally, using multiple pivots at once, opens

up a new world of algorithmic variants in Section 9. The bottom line per-

formance of the implementation is compared to previous work in Section 10.

After a short discussions of algorithmic variants for more general networks in

Section 11, Section 12 discusses the results and outlines additional optimiza-

tion opportunities. The Appendix contains a selection of the data sheets which

give more details of our measurements.

2 Basic terminology

We consider a distributed memory MIMD-machine with P PEs numbered 0

through P � 1. Often, we additionally assume the interconnection network to

be an r-dimensional mesh and that P

1=r

is a power of 2. (Generalizations are

outlined in Section 11.) Initially, each PE holds n data items. After sorting,

the PEs should collectively hold a permutation of the data such that the items

are sorted locally and items on PE i must not be larger than items on PE j

for i < j.

All measurements have been done on a Parsytec GCel with 16� 16 respec-

tively 32 � 32 PEs.

1

The programs are written in C and use a thin portable

communication layer [17] so that they run on many abstract machines (e.g.

MPI, PVM, Parix). On the GCel the parallel operating system Cosy [4] ist

used. The data items are generated according to the rules of the NAS Paral-

lel Benchmark [2]. We use the ANSI-C library function qsort for sequential

sorting.

1

We would like to thank the Paderborn Center for Parallel Computing for making this

machine available.

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 3

3 Parallel quicksort

We now describe a portable algorithm for parallel quicksort which is similar

to the algorithm described in [11] for 2D-Meshes. The sorting is performed

by a recursive procedure which is called on a segment of P

0

PEs numbered P

0

through P

0

+ P

0

� 1. Each PE holds local items d

i

for 0 � i < n

0

. Initially,

P

0

= 0, P

0

= P and n

0

= n. However, in general n

0

may take di�erent values

on each PE:

� If P

0

= 1 then sort locally and return.

� Else,

{ Collectively select one pivot p for all P

0

PEs in the segment.

{ Partition the d

i

into n

0

s

small items s

j

(0 � j < n

0

s

) and n

0

l

large

items l

k

(0 � k < n

0

l

) such that s

j

� p and l

k

� p.

{ Let N

0

s

denote the total number of small items and N

0

l

denote the

total number of large items. Split the PEs in the segment into

P

split

:= round

�

P

0

N

0

s

N

0

s

+N

0

l

�

PEs for the small items and P

0

� P

split

PEs for the large items.

{ Redistribute the items such that \small" PEs receive only small

items and \large" PEs receive only large items. Furthermore, each

\small" (\large") PE ends up with

j

N

s

P

split

k

or

l

N

s

P

split

m

(

j

N

l

P

0

�P

split

k

or

l

N

l

P

0

�P

split

m

) items.

{ Call quicksort recursively (in parallel) for the segments of \small"

and \large" PEs.

The necessary coordination between PEs can be performed using the col-

lective operations broadcast, reduce and pre�x sum on segments of PEs. It can

be shown that even for a very simple pivot selection strategies (i.e. random

pivots), the expected parallel execution time is bounded by

ET

par

2 O(n log n+ logP (T

routing

(n) + T

coll

))

where T

routing

(n) is the time required for exchanging n elments on each PE

and T

coll

is the time required for collective operations. The n log n term is

due to sequential sorting and the logP factor comes from the expeced recur-

sion depth. For example, on a Butter
y-network, this reduces to ET

par

2

O(n(log n+ (log P)

2

)).

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 4

4 Breaking the recursion

When the PEs segments are split, there will in general be a roundo� error with

the e�ect that one segment will get around n=2 more data items than the other

segment. This error happens for every split and �nally the PE which ends up

with the largest number of items, dominates the time required for local sorting.

We have observed a maximum�nal load between 1:77n and 3:16n depending on

n and the quality the pivot selection. (For example, refer to data sheets 1 and

12.) This problem can be alleviated by stopping the recursion for segments

of small size and switching to a di�erent sorting algorithm. We use merge-

splitting sort (e.g. [19]). Depending on other optimizations it turns out to be

best to stop the recursion for segment sizes between two and four. The �nal

algorithm has almost no data imbalance for large n.

5 Sort locally �rst

Imbalance of the �nal data distribution has several disadvantages, but for large

n its main impact on execution time is the increased time for local sorting which

grows superlinearly with the imbalance. This problem can be solved by doing

the local sorting initially before any communication takes place. To maintain

the invariant that all items are sorted locally, the sorted sequences of items

received during data redistributions are merged. The additional expense for

merging is o�set by the time saved for partitioning data. Partitioning is now

possible in logarithmic time using binary search. Furthermore, more accurate

pivot selection strategies are now feasible because the median of the locally

present items can be computed in constant time. For large n (2

15

), the overall

improvement due to this measure is about 20 %. (For example refer to data

sheets 37 and 55).

6 Locality preserving indexing schemes

In this section we assume that the interconnection network is a square mesh

and log

p

P 2 N. The usual way to number the PEs of a mesh is the row-major

ordering shown in Figure 1-(a), i.e., the PE at row i and column j is numbered

i

p

P + j. This has the disadvantage that the diameter of the subnetworks

involved in data exchange decreases only very slowly, although the number of

PEs involved decreases exponentially with the recursion depth. Even when

there are only a constant number of PEs left, they may be at a distance of

p

P .

A slight improvement is the snake-like ordering depicted in Figure 1-(b)

where a segment of k consecutive PEs never has a diameter of more than

k�1. But nevertheless there is only a constant factor decrease in the diameter

of segments until the segment sizes fall below

p

P .

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 5

0 0

63 6363 63

15

00

0 0 0

1515
15

0

(a) row major (b) snakelike (c) Hilbert (d) shuffle

Figure 1: PE numbering schemes for P = 16 and P = 64.

What we would like to have is a scheme where any segment of PEs num-

bered i,. . . , j has a diameter in O

�

p

j � i

�

. In [5, 14] it is shown that the

Hilbert-indexing [10] depicted in Figure 1-(c) has a worst case segment diame-

ter of exactly 3

p

j � i� 2. (Recently, even better indexing schemes have been

found. In [13] it is shown that a scheme based on a Sierpi�nski-curve has a

worst case segment diameter of

p

8

p

j � i� 2.) In [13] this result is also gen-

eralized for a three-dimensional Hilbert-indexing with a diameter of at most

4:73485

3

p

j � i� 3.

snakelike
row major

1 3 5 7 92 4 6 8 iteration

at 32768 items

[ms]
per processor

2000

1600

1200

800

400

communication time per iteration

Hilbert

Figure 2: Communication expense for each level of recursion for row-major,

snakelike and Hilbert indexing schemes (refer to data sheet 1{3 for details).

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 6

The consequence of using these three di�erent indexing schemes is shown

in Figure 2. For row-major and snakelike ordering, the communication ex-

pense for redistribution decreases only slowly with decreasing segments sizes.

For the Hilbert-indexing we have an exponential decrease of communication

expense with the recursion depth. This property of the Hilbert indexing also

has theoretical appeal. For example, it can be shown that using random pivot

selection the execution time is in O

�

n log n+ n

p

P

�

with high probability for

every legal input. This is asymptotically optimal. Analogous results can be

obtained for higher dimensions. However, we observe the practical problem

that in the �rst partitioning step, the Hilbert indexing is slowest. This is due

to a more irregular communication pattern and o�sets the advantage of the

Hilbert indexing for small P.

In conjunction with the optimizations described in the next two sections,

the shu�e indexing scheme depicted in Figure 1-(d) (also refer to [11]) is

also a good choice. Although it is not locality preserving in the strict sense

used above, its self similar and regular structure implies some advantages for

algorithms exploiting this structure.

7 Pivot selection

We have implemented a number of increasingly accurate pivot selection strate-

gies. In the simplest case we take the 3-median of d

0

, d

n

0

=2

and d

n

0

on PE P

0

.

On the other end of the spectrum, we use the median of the local medians

of all PEs. For small n (e.g. n = 128) local strategies are faster. Neverthe-

less, it always pays o� to invest more e�ort in median selection than using the

3-median. For large n, the more accurate global strategies are always prefer-

able. Very accurate pivot selection strategies are also a prerequisite for the

algorithmic simpli�cations described next.

8 Simplifying communication patterns

In [11] a very simple form of parallel quicksort for hypercubes is described.

But it can also be used on other machines. In particular when P is a power

of two: Simply set P

split

:= P

0

=2. A \small" PE with number i sends its large

items to PE i + P

split

. A \large" PE with number i sends its small items to

PE i � P

split

. This has the following advantages over the more complicated

algorithm:

� Ideally, only half the data is moved for each level of recursion.

� The pre�x sums and other collective communications are saved.

� Every PE sends and receives exactly one packet.

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 7

� The communication pattern is very regular. This e�ect signi�cantly in-

creases the e�ective network bandwidth.

� On a 2-D mesh, the overall distance traveled by a data item through all

logP levels of recursion is in O

�

p

P

�

even for row-major indexing. For

row-major and shu�e indexing it is at most 2

p

P � 2, i.e., the network

diameter thus matching a trivial lower bound. Since the latter two in-

dexings additionally imply more regular communication patterns than

the Hilbert indexing they are the best choice now.

The drawback of this simple approach is that the load imbalance can grow

exponentially with the recursion depth. But for randomly distributed data,

the median-of-medians pivot selection strategy described above is so accurate

that the resulting imbalance is quite tolerable. For randomly distributed data,

the imbalance even decreases. Apparently, the property of random data distri-

bution is destroyed by the pre�x sum based algorithm while it is maintained by

the simpli�ed algorithm. Figure 3 compares the �nal load imbalance and the

communication expense per recursion level with and without simpli�ed com-

munication. (256 PEs, row-major indexing, median of medians pivot selection.

For details refer to data sheets 41 and 50.)

irregular scheme
simple scheme

180 %

140 %

100 %

200 %

160 %

120 %

1 3 5 7 92 4 6 8 iteration
0

at 32768 items

[ms]
per processor

2000

1600

1200

800

400

communication time per iteration

simple scheme

irregular scheme

40 %

80 %

0 %

20 %

60 %

per processor256
512

1024
2048

4096
8192128 32768

16384
items

range of data volume

after sorting
per processor

Figure 3: Final load imbalance and communication expense per recursion level

with and without simpli�ed communication for 256 PEs, row-major indexing

and median of medians pivot selection. For details refer to data sheets 41 and

50.)

When the input is not randomly distributed, the simpli�ed algorithm can

still be applied by performing a random permutation of the data before starting

the sorting algorithm. For large n, the additional cost for this permutation

is o�set by saving more than 50 % of the communication costs in the main

algorithm.

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 8

9 Multiple pivots

Suppose we not only have an estimate for the median of the data items, but

estimates for the

i

k

-quantiles

2

of the data for 0 < i < k. Then we can split the

data into k partitions using a single redistribution. For k = P this technique

is known as selection sort. Some of the best sorting algorithms from the

theoretical point of view also use this approach with k � P [15]. By increasing

k, the recursion depth decreases but the data has to travel on longer paths and

in smaller packets. Furthermore, it becomes more and more di�cult to �nd

accurate pivots.

We have implemented a multi-pivot quicksort using the medians of the

local

i

k

-quantiles as pivots. Choosing k = 4 turned out to be the best choice in

all cases. This value is particularly \magical" for the shu�e indexing scheme.

Together with the simpli�ed communication scheme of the previous section it

turns out that the communication patterns of all iterations are identical except

that the distances are halved in each iteration. While the shu�e indexing did

not yield an improvement for the previously considered algorithmic variants,

it now turns out to be the overall \winner". (Although the improvement is

not very large in our measurements.) It implies a more regular communication

pattern than the Hilbert indexing and it is superior to row-major indexing

because it can exploit both horizontal and vertical network interconnections in

every iteration. Figure 4 shows the execution times per item per PE on 16�16

PEs for the simpli�ed communication pattern using k = 2 respectively k = 4.

Multiple pivots yield improvements for small and medium input sizes. In the

multi-pivot case, the shu�e indexing slightly outperforms row-major indexing.

(For a single pivot the timings are identical for both indexing schemes. Refer

to data sheets 50, 55, 66 and 69 for details.)

per processor

1000

256
512

1024
2048

4096
8192128 32768

16384
items

0

time per
item per
processor

800

600

400

200

µ[s]

3 Pivots, shuffle
3 Pivots, row-major
1 Pivot, row-major

Figure 4: Execution time for di�erent input sizes for k = 2 and k = 4. (For

details refer to data sheets 50, 55, 66 and 69.)

2

An �-quantile p

�

of m items has the property that �m items are not larger than p

�

and

(1� �)m items are not smaller than p

�

.

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 9

10 Overall performance

Figure 5-(a) compares the performance of the basic parallel quicksort (no spe-

cialized routine for small numbers of PEs, median-of-3 pivot of a single PE,

local sorting at the end) with the best variant we have implemented (merge-

splitting sort for two PEs, initial local sorting, 3 pivots using medians of quan-

tiles, simpli�ed communication, shu�e indexing) on 16 � 16 PEs. The �nal

algorithm is about three times faster than our basic algorithm. (Also compare

data sheets 1 and 69). For large n it also achieves a high e�ciency. Figure 5-(b)

and (c) show the speedup for 256 respectively 1024 PEs.

3

Figure 5-(d) compares our �nal algorithm on 32 � 32 PEs (data sheet 72)

with the timings measured in [6] for �ve other sorting algorithms on the same

machine

4

and the same measurement approach. The basic algorithm would

just barely be able to compete for medium n. The optimized algorithm is the

best algorithm for the entire range of n measured. For medium sized inputs it

is three times faster than the best of the other algorithms.

This demonstrates that quicksort has to be counted among the best prac-

tical sorting algorithms { in particular for meshes. However, it is too early to

claim its superiority over the other algorithms because we do not know how

careful they have been implemented. For example, for large n, sample-sort has

the advantage that items have to be moved only once. Although this is not a

big advantage on meshes, an implementation of sample-sort which employs a

carefully tuned routine for all-to-all message exchange, should be at least as

e�cient as quicksort for large n.

11 Coping with more general Networks

Adapting the algorithmic measures described above for meshes with higher

dimensions is straightforward. We only have to adapt the indexing schemes

accordingly. The same holds for non-square meshes as long as P is a power

of two. For other cases and small n, straightforward measures like concen-

trating (locally sorted) data in a square submesh might be adequate. But

at least for large n the available computation and communication capac-

ity should be fully exploited. Fortunately, for large numbers of randomly

distributed locally sorted items, we can adapt the pivot selection strategy.

Consider an a � b mesh. Split the data between four submeshes of size

ba=2c�bb=2c, ba=2c�db=2e, da=2e�bb=2c, da=2e�db=2e respectively. Choose

the medians of the local

ba=2cbb=2c

ab

-quantiles,

ba=2cbb=2c+ba=2cdb=2e

ab

-quantiles and

3

The dotted parts of the line could not be directly measured because there was not enough

memory to hold the data. Therefore, the sequential execution time has been estimated by

�tting a curve of the form an+bn logn to the execution time of the sequential qsort routine.

4

However, the Paderborn group uses Parix rather than Cosy as a communication system.

Parix has lower latencies so that our results look worse for small n. Cosy allows for a higher

communication bandwidth. But even arti�cially halving our communication bandwidth did

not change the relative performance of the algorithms.

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 10

256

512

768

1024

0

256

128

64

192

[s]µ

50
% 10

0%

20
0%

30
0%

per processor
items

per processor
items

finial version. (Refer to data sheets 1 and 69 for details.)

256
512

1024
2048

4096
8192128 32768

16384

0

1000

800

600

400

200

µ[s]

0

per processor256
512

1024
2048

4096
8192128 32768

16384
items

per processor256
512

1024
2048

4096
8192128 32768

16384
items

1500

1250

1750

625

750

875

375

313

438

2500

3000

3500

5000

6000

7000

250

500

1000

2000

4000

8000

grid sort

shear sort

bitonic sort

radix sort

sample sort

optimized quick sort
percentual gain

256
512

1024
2048

4096
8192128 32768

16384

For different algorithms

(a) Performance comparison of the basic algorithm and the

(b) Speedup on 256 PEs

(c) Speedup on 1024 PEs

(d) Time per item per PE (logarithmic)

time per item
per PE

basic strategy

(data sheet 1)

optimized strategy

(data sheet 69)

Figure 5: Overall performance of the optimized algorithms.

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 11

ba=2cbb=2c+ba=2cdb=2e+da=2ebb=2c

ab

-quantiles. Changes for higher-dimensional networks,

single pivots, etc. are straightforward. The single-pivot variant of this ap-

proach somewhat resembles the QSP-2-algorithm described in [18]. However,

the new algorithm avoids the large load imbalance observed for QSP-2 because

of better pivots and because the recursion is stopped for small meshes. Fur-

thermore, the QSP-2 is not a sorting algorithm in the strict sense since it does

not us a �xed PE-indexing.

Even networks which are not a mesh can pro�t from specialized subdivision

strategies. For example, a cluster computer often consists of multiple small

tightly coupled parallel machines interconnected by a relatively low bandwidth

network with high startup overheads. In this case, it makes sense to partition

the data in such a way that all subsequent communication is within the tightly

coupled subnetworks.

12 Conclusions and Future Work

Parallel quicksort is among the best parallel sorting algorithms known. From

a theoretical point of view, quicksort with locality preserving indexing schemes

is perhaps the simplest known algorithm for meshes which is asymptotically

optimal. Unlike other asymptotically optimal algorithms, the data items have

to be moved only O(logP) times. This makes the algorithm appealing from

a practical point of view because message startup overheads are high on to-

days machines. However, certain optimizations like breaking the recursion and

choosing good pivots are required for achieving high performances in terms of

constant factors. Sorting locally �rst reduces the impact of load imbalance and

simpli�es pivot selection. For randomly distributed inputs, a large improve-

ment can be achieved by simplifying the algorithm at the right place. These

improvements are so large, that it seems worthwhile to randomly permute the

data initially.

There is a large number of additional optimizations which might be inter-

esting for future research:

� If we are willing to accept that some PEs are responsible for two data

partitions, quicksort can be implemented without any imbalance at all.

This possibility has been considered in [18] but the required additional

communication is overestimated there for large n because a PE with a

partition boundary exchanges smaller messages.

� We could use better algorithms for small P . Sample sort might be a

good choice.

� Currently, the median selection strategies are implemented by gathering

the required data on a single PE. For large P , parallelizing pivot selection

could be an improvement. This is also a prerequisite for reconciling

the theoretical analysis with the practically useful optimizations. For

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 12

example, the parallel median selection algorithm described in [16] might

be useful.

� Try pivot selection strategies based on random samples which do not

require a random data distribution.

� Tune message exchange and merging steps such that copying is mini-

mized.

� Currently, we use a relatively simple, high level implementation for col-

lective communication. Exploiting tuned implementations (which are

available in high quality MPI-Implementations for example) should yield

signi�cant improvements for small n.

Ultimately, the goal could be a toolbox of reusable components which can

be con�gured to yield a very e�cient sorting algorithm on many di�erent

architectures and for di�erent input speci�cations. We expect that for very

large n or small P , sample sort or one of its deterministic relatives (e.g. [12])

will be the method of choice. For smaller n or for sorting samples, quicksort

will be better { in particular on meshes. For very small amounts of data,

specialized methods like the ones used in [16] can be used. Models for the

algorithmic components and the machines could be calibrated using pro�ling

data in order to make it possible to automatically plan an optimal combination

of methods for every situation.

References

[1] S. Aluru, S. Goil, and S. Ranka. Concatenated parallelism: A technique

for e�cient parallel divide and conquer. Technical Report SCCS-759,

NPAC Syracuse University, 1996.

[2] D. Bailey, E. Barszcz, J. Barton, D. Browning, and R. Carter. The NAS

parallel benchmarks. Technical Report RNR-94-007, RNR, 1994.

[3] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith,

and M. Zagha. A comparison of sorting algorithms for the connection

machine CM-2. In ACM Symposium on Parallel Architectures and Algo-

rithms, pages 3{16, 1991.

[4] R. Butenuth, W. Burke, and H.-U. Hei�. Cosy { an operating system for

highly parallel computers. ACM Operating Systems Review, 30(2):81{91,

1996.

[5] G. Chochia, M. Cole, and T. Heywood. Implementing the Hierarchical

PRAM on the 2D mesh: Analyses and experiments. In IEEE Symp. on

Parallel and Distributed Processing, 1995.

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 13

[6] R. Diekmann, J. Gehring, R. L�uling, B. Monien, M. N�ubel, and R. Wanka.

Sorting large data sets on a massively parallel system. In 6th IEEE Sym-

posium on Parallel and Distributed Processing, pages 2{9, 1994.

[7] T. Hansch. Sortieren gro�er Datenmengen auf Gittern mit Quicksort.

Diplomarbeit, 1996.

[8] J. Hardwick. An e�cient implementation of nested data parallelism for ir-

regurlar divide-and-conquer algorithms. In Workshop on High-Level Pro-

gramming Models and Supportive Environments, Honolulu, Hawaii, 1996.

[9] W. L. Hightower, J. F. Prins, and J. H. Reif. Implementations of random-

ized sorting on large parallel machines. In ACM Symposium on Parallel

Architectures and Algorithms, pages 158{167, 1992.

[10] D. Hilbert.

�

Uber die stetige Abbildung einer Linie auf ein Fl�achenst�uck.

Mathematische Annalen, 38:459{460, 1891.

[11] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel

Computing. Design and Analysis of Algorithms. Benjamin/Cummings,

1994.

[12] H. Li and K. C. Sevcik. Parallel sorting by overpartitioning. In ACM

Symposium on Parallel Architectures and Algorithms, pages 46{56, Cape

May, New Jersey, 1994.

[13] R. Niedermeier, K. Reinhard, and P. Sanders. Towards optimal locality

in mesh-indexings. submitted for publication, 1996.

[14] R. Niedermeier and P. Sanders. On the Manhattan-distance between

points on space-�lling mesh-indexings. Technical Report IB 18/96, Uni-

versit�at Karlsruhe, Fakult�at f�ur Informatik, 1996.

[15] S. Rajasekaran and S. Sen. Random sampling techniques and parallel

algorithm design. In H. Reif, editor, Synthesis of Parallel Algorithms,

chapter 9, pages 411{451. Morgan Kaufmann, 1993.

[16] P. Sanders. Fast priority queues for parallel branch-and-bound. In Work-

shop on Algorithms for Irregularly Structured Problems, number 980 in

LNCS, pages 379{393, Lyon, 1995. Springer.

[17] P. Sanders. A scalable parallel tree search library. In S. Ranka, edi-

tor, 2nd Workshop on Solving Irregular Problems on Distributed Memory

Maschines, Honolulu, Hawaii, 1996.

[18] V. Singh, V. Kumar, G. Agha, and C. Tomlinson. E�cient algorithms

for parallel sorting on mesh multicomputers. International Journal of

Parallel Programming, 20(2):95{131, 1991.

[19] T. Umland. Parallel sorting revisited. Parallel Computing, 20(1):115{124,

1994.

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 14

A Data sheets

We have done extensive measurements for a wide range of algorithmic vari-

ants using the same measurement regime. This appendix shows a selection

of 11 out of 72 data sheets which are particularly relevant for the points dis-

cussed here. The remaining data sheets are available on the WWW under

http://liinwww.ira.uka.de/~sanders/sorting/. We now give a short ac-

count on the meaning of the �elds in the tables. A more detailed discussion

can be found in [7] (also available under the above URL). All the values shown

below are averages over ten measurements. The topmost table de�nes the

algorithmic variant used: Initial or �nal local sorting? Machine used. Num-

ber of pivots used. Indexing scheme used. (Besides the row-major, snakelike,

Hilbert and shu�e indexing schemes described above, we have also exper-

imented with variants of the latter two called H-indexing and Z-indexing.)

Pivot selection strategy. Reduced communication, exact partitioning and exact

partners together constitute what we have called \simpli�ed communication

pattern" here. Data exchange inversion stands for a variant of the data re-

distribution phase which yields a more regular communication pattern for the

Hilbert indexing scheme.

In the middle of the sheet there are four graphs showing the parallel execu-

tion time divided by n, the maximal communication expense for the i-th level

of recursion, the �nal load balance and the relative amount of work invested

in local sorting. All graphs except the second show these values for n = 2

7

through n = 2

15

. The communication expense per recursion level is only shown

for n = 2

15

.

The table at the bottom of the sheet shows numeric measurements for the

di�erent input sizes. Namely, parallel execution time divided by n, parallel

execution time, time for the Quicksort recursion, time for local sorting, time

for merge splitting sort, minimum and maximum number of items ending up

on any PE, number of network packets sent, total path-length of all network

packets and average recursion depth reached.

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 15

Data Sheet 1

Quicksort with �nal local sorting

machine GCel with 256 processors

number of pivots 1 processor numbering row major

pivot selection 3-median of root processor

reduced communication no exact bisection no

exact partner processors no data exchange inversion no

305 281 316 264 273 246 267 271 248 local sorting

per processor256
512

1024
2048

4096
8192128 32768

16384
items

40 %

80 %

120 %

160 %

200 %

0 %

20 %

60 %

100 %

140 %

180 %

per processor256
512

1024
2048

4096
8192128 32768

16384
items

80 %

60 %

40 %

20 %

100 %

0 %

10 %

30 %

50 %

70 %

90 %

time division

per processor256
512

1024
2048

4096
8192128 32768

16384
items 1 3 5 7 92 4 6 8 iteration

0 0

time per
item per
processor

at 32768 items

[ms]
per processor

1000

800

600

400

200

2000

1600

1200

800

400

µ[s]

communication

range of data volume

after sorting
per processor

communication time per iteration

items per processor 128 256 512 1024 2048 4096 8192 16384 32768

time per item per processor [�s] 1976 1378 1081 944 924 942 859 917 931

total time [s] 0.25 0.35 0.55 0.97 1.89 3.86 7.05 15.04 30.54

time for communication [ms] 232 294 396 671 1344 2506 3856 7553 16362

time for local sorting [ms] 39 83 212 382 880 1689 4049 8813 17231

time for odd-even sort [ms] 0 0 0 0 0 0 0 0 0

minimum number of items 0 2 3 29 49 136 516 806 2682

maximal number of items 391 720 1620 2704 5588 10090 21900 44475 81214

number of data packets 6849 7167 6756 6827 9049 13920 23457 41581 84270

total path length of all data packets 34608 36224 34628 35120 46604 67850 114075 196278 409104

average recursion depth 9.62 10.10 9.48 9.51 9.82 9.74 9.48 9.07 9.60

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 16

Data Sheet 2

Quicksort with �nal local sorting

machine GCel with 256 processors

number of pivots 1 processor numbering snake-like

pivot selection 3-median of root processor

reduced communication no exact bisection no

exact partner processors no data exchange inversion no

285 285 302 290 257 256 245 266 260 local sorting

per processor256
512

1024
2048

4096
8192128 32768

16384
items

40 %

80 %

120 %

160 %

200 %

0 %

20 %

60 %

100 %

140 %

180 %

per processor256
512

1024
2048

4096
8192128 32768

16384
items

80 %

60 %

40 %

20 %

100 %

0 %

10 %

30 %

50 %

70 %

90 %

time division

per processor256
512

1024
2048

4096
8192128 32768

16384
items 1 3 5 7 92 4 6 8 iteration

0 0

time per
item per
processor

at 32768 items

[ms]
per processor

1000

800

600

400

200

2000

1600

1200

800

400

µ[s]

communication

range of data volume

after sorting
per processor

communication time per iteration

items per processor 128 256 512 1024 2048 4096 8192 16384 32768

time per item per processor [�s] 2077 1374 1159 913 903 815 830 878 887

total time [s] 0.27 0.35 0.59 0.94 1.85 3.34 6.80 14.39 29.10

time for communication [ms] 240 283 459 575 1313 1979 3821 6976 13645

time for local sorting [ms] 38 83 200 426 825 1780 3691 8563 18149

time for odd-even sort [ms] 0 0 0 0 0 0 0 0 0

minimum number of items 1 0 4 21 74 342 648 853 2049

maximal number of items 366 731 1545 2970 5280 10510 20139 43670 85506

number of data packets 6804 7286 7042 6836 8896 13302 23046 40781 80270

total path length of all data packets 30809 32701 32638 31290 41059 57847 98459 171073 337330

average recursion depth 9.59 10.25 9.85 9.51 9.70 9.40 9.36 8.92 9.17

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 17

Data Sheet 3

Quicksort with �nal local sorting

machine GCel with 256 processors

number of pivots 1 processor numbering Hilbert numbering

pivot selection 3-median of root processor

reduced communication no exact bisection no

exact partner processors no data exchange inversion no

281 275 284 263 258 254 275 240 278 local sorting

per processor256
512

1024
2048

4096
8192128 32768

16384
items

40 %

80 %

120 %

160 %

200 %

0 %

20 %

60 %

100 %

140 %

180 %

per processor256
512

1024
2048

4096
8192128 32768

16384
items

80 %

60 %

40 %

20 %

100 %

0 %

10 %

30 %

50 %

70 %

90 %

time division

per processor256
512

1024
2048

4096
8192128 32768

16384
items 1 3 5 7 92 4 6 8 iteration

0 0

time per
item per
processor

at 32768 items

[ms]
per processor

1000

800

600

400

200

2000

1600

1200

800

400

µ[s]

communication

range of data volume

after sorting
per processor

communication time per iteration

items per processor 128 256 512 1024 2048 4096 8192 16384 32768

time per item per processor [�s] 1577 1096 935 729 791 741 804 790 888

total time [s] 0.20 0.28 0.48 0.75 1.62 3.04 6.59 12.96 29.13

time for communication [ms] 176 211 320 436 922 1549 3248 6186 12417

time for local sorting [ms] 38 82 192 383 830 1749 4191 7681 19263

time for odd-even sort [ms] 0 0 0 0 0 0 0 0 0

minimum number of items 0 1 6 20 76 147 617 1238 1932

maximal number of items 360 705 1456 2698 5277 10405 22497 39281 90938

number of data packets 6891 7122 6722 6960 8844 13339 23220 42702 82651

total path length of all data packets 27368 28037 27440 27985 34109 49197 84703 154494 296643

average recursion depth 9.68 10.03 9.43 9.68 9.64 9.42 9.41 9.34 9.41

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 18

Data Sheet 12

Quicksort with �nal local sorting

machine GCel with 256 processors

number of pivots 1 processor numbering row major

pivot selection Median of

p

N -medians

reduced communication no exact bisection no

exact partner processors no data exchange inversion no

221 local sorting

per processor256
512

1024
2048

4096
8192128 32768

16384
items

40 %

80 %

120 %

160 %

200 %

0 %

20 %

60 %

100 %

140 %

180 %

per processor256
512

1024
2048

4096
8192128 32768

16384
items

80 %

60 %

40 %

20 %

100 %

0 %

10 %

30 %

50 %

70 %

90 %

time division

per processor256
512

1024
2048

4096
8192128 32768

16384
items 1 3 5 7 92 4 6 8 iteration

0 0

time per
item per
processor

at 32768 items

[ms]
per processor

1000

800

600

400

200

2000

1600

1200

800

400

µ[s]

communication

range of data volume

after sorting
per processor

communication time per iteration

items per processor 128 256 512 1024 2048 4096 8192 16384 32768

time per item per processor [�s] 1452 1022 784 695 663 614 597 610 611

total time [s] 0.19 0.26 0.40 0.71 1.36 2.52 4.90 10.04 20.05

time for communication [ms] 168 218 305 517 945 1571 2581 4661 9237

time for local sorting [ms] 29 52 117 248 547 1172 2552 5705 11727

time for odd-even sort [ms] 0 0 0 0 0 0 0 0 0

minimum number of items 17 74 151 426 840 1919 3813 8157 16812

maximal number of items 284 483 959 1855 3682 7267 14469 29788 57356

number of data packets 5764 5692 5706 5670 7278 11655 20062 36818 70216

total path length of all data packets 29686 30942 30967 30143 38225 57784 96999 164197 330664

average recursion depth 8.20 8.10 8.11 8.06 8.06 8.03 8.03 8.02 8.01

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 19

Data Sheet 37

Quicksort with �nal local sorting and odd-even sort for 2 Proc.

machine GCel with 256 processors

number of pivots 1 processor numbering Shu�e numbering

pivot selection Median of

p

N -medians

reduced communication yes exact bisection yes

exact partner processors yes data exchange inversion no

40 %

80 %

120 %

160 %

200 %

0 %

20 %

60 %

100 %

140 %

180 %

1000

320 214 local sorting

per processor256
512

1024
2048

4096
8192128 32768

16384
items

per processor256
512

1024
2048

4096
8192128 32768

16384
items

80 %

60 %

40 %

20 %

100 %

0 %

10 %

30 %

50 %

70 %

90 %

time division

per processor256
512

1024
2048

4096
8192128 32768

16384
items 1 3 5 7 92 4 6 8 iteration

0 0

time per
item per
processor

at 32768 items

[ms]
per processor

800

600

400

200

2000

1600

1200

800

400

µ[s]

communication

range of data volume

after sorting
per processor

communication time per iteration

items per processor 128 256 512 1024 2048 4096 8192 16384 32768

time per item per processor [�s] 1108 706 548 460 439 406 390 351 370

total time [s] 0.14 0.18 0.28 0.47 0.90 1.67 3.20 5.76 12.14

time for communication [ms] 100 110 140 194 350 548 900 1654 3092

time for local sorting [ms] 41 60 129 250 489 1019 2094 3756 8363

time for odd-even sort [ms] 10 10 20 32 60 111 208 363 722

minimum number of items 17 102 180 570 1133 2780 5875 11357 23794

maximal number of items 410 550 952 1829 3246 6220 11919 20796 41102

number of data packets 2048 2048 2048 2186 3475 5890 10616 20031 38765

total path length of all data packets 7680 7680 7680 7818 12527 21117 37376 69830 133696

average recursion depth 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 20

Data Sheet 41

Quicksort with initial local sorting

machine GCel with 256 processors

number of pivots 1 processor numbering row major

pivot selection Median of medians

reduced communication no exact bisection no

exact partner processors no data exchange inversion no

40 %

80 %

120 %

160 %

200 %

0 %

20 %

60 %

100 %

140 %

180 %

1000

local sorting

per processor256
512

1024
2048

4096
8192128 32768

16384
items

per processor256
512

1024
2048

4096
8192128 32768

16384
items

80 %

60 %

40 %

20 %

100 %

0 %

10 %

30 %

50 %

70 %

90 %

time division

per processor256
512

1024
2048

4096
8192128 32768

16384
items 1 3 5 7 92 4 6 8 iteration

0 0

time per
item per
processor

at 32768 items

[ms]
per processor

800

600

400

200

2000

1600

1200

800

400

µ[s]

communication

range of data volume

after sorting
per processor

communication time per iteration

items per processor 128 256 512 1024 2048 4096 8192 16384 32768

time per item per processor [�s] 1406 913 671 608 585 515 522 515 525

total time [s] 0.18 0.23 0.34 0.62 1.20 2.11 4.28 8.45 17.22

time for communication [ms] 171 220 300 506 940 1525 3005 5669 11237

time for local sorting [ms] 19 30 69 140 319 670 1524 3182 6905

minimum number of items 66 135 284 607 938 2319 4612 9216 18345

maximal number of items 218 485 963 1845 3696 7433 14987 31081 58893

number of data packets 5617 5639 5637 5642 7340 11493 19777 36510 69962

total path length of all data packets 26799 26039 24244 25567 31968 47915 83747 149185 284578

average recursion depth 8.01 8.03 8.02 8.02 8.02 8.01 8.02 8.02 8.03

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 21

Data Sheet 50

Quicksort with initial local sorting

machine GCel with 256 processors

number of pivots 1 processor numbering row major

pivot selection Median of medians

reduced communication yes exact bisection yes

exact partner processors yes data exchange inversion no

40 %

80 %

120 %

160 %

200 %

0 %

20 %

60 %

100 %

140 %

180 %

1000

local sorting

per processor256
512

1024
2048

4096
8192128 32768

16384
items

per processor256
512

1024
2048

4096
8192128 32768

16384
items

80 %

60 %

40 %

20 %

100 %

0 %

10 %

30 %

50 %

70 %

90 %

time division

per processor256
512

1024
2048

4096
8192128 32768

16384
items 1 3 5 7 92 4 6 8 iteration

0 0

time per
item per
processor

at 32768 items

[ms]
per processor

800

600

400

200

2000

1600

1200

800

400

µ[s]

communication

range of data volume

after sorting
per processor

communication time per iteration

items per processor 128 256 512 1024 2048 4096 8192 16384 32768

time per item per processor [�s] 929 585 449 371 345 312 313 311 322

total time [s] 0.12 0.15 0.23 0.38 0.71 1.28 2.57 5.11 10.58

time for communication [ms] 114 131 180 269 448 699 1299 2327 4591

time for local sorting [ms] 18 30 69 141 314 670 1524 3181 6906

minimum number of items 71 188 420 905 1835 3784 7869 15871 31905

maximal number of items 182 337 618 1161 2232 4330 8767 16945 33500

number of data packets 2048 2048 2048 2048 3511 5705 9988 18303 34775

total path length of all data packets 7680 7680 7680 7680 13300 21521 37530 68717 130452

average recursion depth 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 22

Data Sheet 55

Quicksort with initial local sorting

machine GCel with 256 processors

number of pivots 1 processor numbering Shu�e numbering

pivot selection Median of medians

reduced communication yes exact bisection yes

exact partner processors yes data exchange inversion no

40 %

80 %

120 %

160 %

200 %

0 %

20 %

60 %

100 %

140 %

180 %

1000

local sorting

per processor256
512

1024
2048

4096
8192128 32768

16384
items

per processor256
512

1024
2048

4096
8192128 32768

16384
items

80 %

60 %

40 %

20 %

100 %

0 %

10 %

30 %

50 %

70 %

90 %

time division

per processor256
512

1024
2048

4096
8192128 32768

16384
items 1 3 5 7 92 4 6 8 iteration

0 0

time per
item per
processor

at 32768 items

[ms]
per processor

800

600

400

200

2000

1600

1200

800

400

µ[s]

communication

range of data volume

after sorting
per processor

communication time per iteration

items per processor 128 256 512 1024 2048 4096 8192 16384 32768

time per item per processor [�s] 913 585 449 365 342 312 313 311 322

total time [s] 0.12 0.15 0.23 0.37 0.70 1.28 2.57 5.10 10.59

time for communication [ms] 110 130 180 260 446 694 1294 2322 4604

time for local sorting [ms] 19 30 69 141 319 670 1524 3182 6908

minimum number of items 71 188 420 905 1835 3784 7869 15871 31905

maximal number of items 182 337 618 1161 2232 4330 8767 16945 33500

number of data packets 2048 2048 2048 2048 3511 5705 9988 18303 34775

total path length of all data packets 7680 7680 7680 7680 13397 21586 37652 68797 130471

average recursion depth 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 23

Data Sheet 66

Quicksort with initial local sorting

machine GCel with 256 processors

number of pivots 3 processor numbering row major

pivot selection multi-median of pivot candidates

reduced communication yes exact partioning yes

exact partner processors yes data exchange inversion yes

40 %

80 %

120 %

160 %

200 %

0 %

20 %

60 %

100 %

140 %

180 %

1000

local sorting

per processor256
512

1024
2048

4096
8192128 32768

16384
items

per processor256
512

1024
2048

4096
8192128 32768

16384
items

80 %

60 %

40 %

20 %

100 %

0 %

10 %

30 %

50 %

70 %

90 %

time division

per processor256
512

1024
2048

4096
8192128 32768

16384
items 1 3 5 7 92 4 6 8 iteration

0 0

time per
item per
processor

at 32768 items

[ms]
per processor

800

600

400

200

2000

1600

1200

800

400

µ[s]

communication

range of data volume

after sorting
per processor

communication time per iteration

items per processor 128 256 512 1024 2048 4096 8192 16384 32768

time per item per processor [�s] 781 507 386 312 292 314 313 310 320

total time [s] 0.10 0.13 0.20 0.32 0.60 1.29 2.57 5.08 10.50

time for communication [ms] 18 110 150 210 340 707 1298 2301 4505

time for local sorting [ms] 100 30 69 142 314 670 1526 3181 6904

minimum number of items 81 181 388 913 1884 3818 7781 15866 31960

maximal number of items 190 330 603 1188 2248 4394 8711 16982 33560

number of data packets 4096 4096 4096 4096 4096 7019 11421 19919 36600

total path length of all data packets 12800 12800 12800 12800 12800 22121 35928 62385 114410

average recursion depth 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 24

Data Sheet 69

Quicksort with initial local sorting

machine GCel with 256 processors

number of pivots 3 processor numbering Shu�e numbering

pivot selection multi-median of pivot candidates

reduced communication yes exact partioning yes

exact partner processors yes data exchange inversion no

40 %

80 %

120 %

160 %

200 %

0 %

20 %

60 %

100 %

140 %

180 %

1000

local sorting

per processor256
512

1024
2048

4096
8192128 32768

16384
items

per processor256
512

1024
2048

4096
8192128 32768

16384
items

80 %

60 %

40 %

20 %

100 %

0 %

10 %

30 %

50 %

70 %

90 %

time division

per processor256
512

1024
2048

4096
8192128 32768

16384
items 1 3 5 7 92 4 6 8 iteration

0 0

time per
item per
processor

at 32768 items

[ms]
per processor

800

600

400

200

2000

1600

1200

800

400

µ[s]

communication

range of data volume

after sorting
per processor

communication time per iteration

items per processor 128 256 512 1024 2048 4096 8192 16384 32768

time per item per processor [�s] 781 503 372 302 283 303 307 308 321

total time [s] 0.10 0.13 0.19 0.31 0.58 1.24 2.53 5.06 10.54

time for communication [ms] 100 110 141 200 318 658 1250 2274 4555

time for local sorting [ms] 19 30 69 140 317 670 1526 3181 6904

minimum number of items 81 181 388 913 1884 3818 7780 15866 31959

maximal number of items 190 330 603 1188 2248 4394 8711 16982 33560

number of data packets 4096 4096 4096 4096 4096 7019 11421 19919 36600

total path length of all data packets 15360 15360 15360 15360 15360 26790 43506 75266 137601

average recursion depth 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

(January 8, 1997) P. Sanders, T. Hansch: On the E�cient Implementation of Massively Parallel Quicksort 25

Data Sheet 72

Quicksort with initial local sorting

machine GCel with 1024 processors

number of pivots 3 processor numbering Shu�e numbering

pivot selection multi-median of pivot candidates

reduced communication yes exact partioning yes

exact partner processors yes data exchange inversion no

40 %

80 %

120 %

160 %

200 %

0 %

20 %

60 %

100 %

140 %

180 %

1000

local sorting

per processor256
512

1024
2048

4096
8192128 32768

16384
items

per processor256
512

1024
2048

4096
8192128 32768

16384
items

80 %

60 %

40 %

20 %

100 %

0 %

10 %

30 %

50 %

70 %

90 %

time division

per processor256
512

1024
2048

4096
8192128 32768

16384
items 1 3 5 7 92 4 6 8 iteration

0 0

time per
item per
processor

at 32768 items

[ms]
per processor

800

600

400

200

2000

1600

1200

800

400

µ[s]

communication

range of data volume

after sorting
per processor

communication time per iteration

items per processor 128 256 512 1024 2048 4096 8192 16384 32768

time per item per processor [�s] 2093 1210 759 527 427 445 421 402 412

total time [s] 0.27 0.31 0.39 0.54 0.88 1.83 3.45 6.60 13.53

time for communication [ms] 269 290 340 422 616 1247 2182 3819 7595

time for local sorting [ms] 19 30 75 140 323 703 1526 3223 7123

minimum number of items 66 165 392 878 1803 3644 7742 15581 31892

maximal number of items 204 346 636 1221 2279 4457 8657 17036 33889

number of data packets 20480 20480 20480 20480 20480 34894 56920 99435 182799

total path length of all data packets 126976 126976 126976 126976 126976 221504 359614 622514 1137188

average recursion depth 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

