
Better Algorithms for Parallel Backtracking

Peter Sanders

Department of Computer Science

University of Karlsruhe, 76128 Karlsruhe, Germany

E-mail: sanders@ira.uka.de

March 26, 1995

Abstract

Many algorithms in operations research and arti�cial intelligence are

based on the backtracking principle, i.e., depth �rst search in implic-

itly de�ned trees. For parallelizing these algorithms, a load balancing

scheme is needed which is able to evenly distribute the parts of an ir-

regularly shaped tree over the processors. It should work with minimal

interprocessor communication and without prior knowledge of the tree's

shape.

Previously known load balancing algorithms for this problem either

require sending a message for each tree node or they only work e�ciently

for large search trees. This paper introduces new randomized dynamic

load balancing algorithms for tree structured computations, a generaliza-

tion of backtrack search. These algorithms only need to communicate

when necessary and have an asymptotically optimal scalability for hy-

percubes, butter
ies and related networks. The asymptotic scalability

for meshes is better by a logarithmic factor than for the best previously

known algorithms. For \not too irregular" problems this is also optimal.

Similar algorithms lead to improved scalability for hierarchical networks

like fat trees.

1

Peter Sanders: Better Algorithms for Parallel Backtracking 2

1 Introduction

Load balancing is one of the central issues in parallel computing. Since for

many applications it is almost impossible to predict how much computation

a given subproblem involves, dynamic load balancing strategies are needed

which are able to keep the processors (PEs) busy without incurring an undue

overhead.

We discuss this in the following context (for a more detailed explication

refer to Section 2.1): There are n PEs which interact by exchanging messages

through a network of diameter d. The problems to be load balanced are tree

shaped computations : Initially, there is only one large root problem. Subprob-

lems can be generated by splitting existing problems into two independent

subproblems; nothing is known about the relative size of the two parts. Fur-

thermore, a subproblem can be worked on sequentially. The only thing the

load balancer knows about a subproblem is whether it is exhausted or not.

The performance analysis is based on the total sequential execution time T

seq

and a bound h on the height of the binary tree de�ned by splitting the root

problem into atomic pieces.

One application domain for which this is a useful model is parallel depth

�rst tree search (backtracking). Search trees are often very irregular and the

size of a subtree is hard to predict, but it is easy to split the search space

into two parts (even if the underlying tree is not binary.) Note that backtrack

search is a central aspect of many AI and OR applications and of parallel

functional and logical programming languages.

We now go on by describing receiver induced tree splitting , a simple and

successful scheme for parallelizing tree shaped computations in Section 1.1

which is compared to other approaches found in the literature in Section 1.2.

An overview of the remainder of the paper concludes this introduction.

Peter Sanders: Better Algorithms for Parallel Backtracking 3

put the root problem on PE 0

DOPAR on all PEs

WHILE not �nished DO

IF subproblem is empty THEN

get new work from load balancer

WHILE subproblem is not empty DO

IF there is a load request THEN

split subproblem

send one part to the initiator of the request

do some work on subproblem

Figure 1: Receiver induced tree splitting.

1.1 Receiver induced tree splitting

The basic principle of Receiver induced tree splitting is that a PE only works

on a single subproblem at a time and only activates the load balancer when

this subproblem is exhausted. The load balancer supplies new subproblems

by requesting other PEs to split their subproblem. Idle PEs receiving a re-

quest either reject the request or redirect it to another PE. Figure 1 shows

pseudocode for such a generic tree splitting algorithm.

This approach has proved useful under a variety of circumstances [7, 24,

25, 13, 5, 21, 14, 29, 27, 2, 10, 28]. A major advantage of receiver induced tree

splitting is that load balancing only takes place when necessary. If the sequen-

tial execution time T

seq

is large, the average size of a transmitted subproblem

is also fairly large (i.e. it represents a large execution time). Productive work

done on a migrated subproblem therefore makes up for the expense of com-

munication. For su�ciently large problem sizes, most receiver induced tree

splitting schemes can achieve e�ciencies arbitrarily close to 1, i.e., the parallel

execution time T

par

can be written as (1 + �)

T

seq

n

+ (lower order terms) for

Peter Sanders: Better Algorithms for Parallel Backtracking 4

arbitrary � > 0. However, in practice it is crucial how the problem size has

to be scaled with the number of PEs in order to achieve a desired e�cien-

cy. In this respect there are large di�erences between di�erent load balancing

strategies. We use the behavior of the lower order terms as a measure for the

scalability of an algorithm { the smaller these terms the smaller is the problem

size required for good e�ciency.

In [25] it is shown that sending requests to neighboring PEs has a quite

poor scalability except for the combination of low diameter interconnection

networks (e.g. hypercubes) and a work splitting function which produces

subproblems of nearly equal size. The basic problem of these neighborhood

polling schemes is that highly loaded PEs are quickly surrounded by a cluster of

busy PEs and are therefore unable to transmit work; subproblem transmissions

at the border of these clusters only involve small subproblems which are not

worth the e�ort of communicating them.

In [13, 14] a variety of other partner selection schemes is analyzed. There

seems to be a dilemma between schemes based on local information on the

one hand which may produce many vain requests to idle PEs, and global

selection schemes on the other hand which incur additional message tra�c

and often su�er from contention at centralized schedulers. But random polling ,

i.e., selecting communication partners uniformly at random is identi�ed as a

promising scheme. Good speedups are reported for up to 1024 PEs. In [27]

it is proved that random polling works in time (1 + �)

T

seq

n

+ O(dh) with high

probability for crossbars, butter
ies, meshes and many other architectures.

This is asymptotically optimal for networks with constant diameter because

the sequential component for following the maximum depth branch implies a

lower bound of

T

par

2

�

T

seq

n

+ h

�

: (1)

In [28] the asymptotic in
uence of message lengths and atomic grain sizes of

subproblems is also investigated. Most other authors assume it to be constant.

Peter Sanders: Better Algorithms for Parallel Backtracking 5

We also start with this assumption in order to free the analysis from rather

uninteresting details. But in Section 6 we discuss consequences of a more

detailed model. In [2] random polling is generalized to fully strict multithreaded

computations allowing certain interactions between subproblems. An expected

execution time in O

�

T

seq

n

+ T

1

�

is proved for fully connected networks. (T

1

denotes the sequential component of a problem.)

On SIMD computers, load balancing is done in separate load balancing

phases initiated by some triggering condition [21, 29, 10]. The best schemes

use the ability of many SIMD computers to quickly compute pre�x-sums:

Communication partners can be matched by enumerating the busy and idle

PEs respectively. Good speedups have been observed for up to 32K PEs.

1.2 Other related work

Another approach which are applicable to tree shaped computations are dy-

namic tree embedding algorithms [18, 23, 9]. Using our terminology, these

algorithms are based on splitting the root problem into a maximum number

of atomic subproblems. The tree generated by this process is on-line embedded

into the interconnection network.

Building on results from [18], it is shown in [23] how randomized dynamic

tree embedding algorithms can be used to perform backtracking on butter
ies

and hypercubes in time O

�

T

seq

n

+ h

�

with high probability. These algorithms

achieve constant e�ciency for problems of size
(nh) meeting the lower bound

from Equation (1). However, if communicating an atomic subproblem is ex-

pensive compared to solving it, the e�ciency of these algorithms is limited

to a quite small constant value and this �gure does not improve for larger

subproblems where algorithms like random polling can achieve very high e�-

ciencies.

The situation is even worse if tree embedding is to be used on meshes

because this is not possible with constant dilation. In [9], it is demonstrat-

Peter Sanders: Better Algorithms for Parallel Backtracking 6

ed how trees with O(n) leaves can be deterministically embedded into an

r-dimensional mesh in time O

�

r

p

nh

�

. It is not clear however, how useful the

methods used there are for larger problem sizes.

On the other side of the spectrum, load balancing can be done with very

little communication by broadcasting the root problem to all PEs and local-

ly splitting it into individual pieces based on the PE number. Applied in a

straightforward way, this technique leads to poor load balancing [3], but using

it as an initialization for dynamic load balancers can yield a signi�cant im-

provement. In [30], it is shown that for certain search trees with h 2 O(logT

seq

)

the combination of a randomized initialization scheme and a variant of ran-

dom polling on meshes achieves execution times in (1 + �)

T

seq

n

+ O(n

1=r

) on

the average. For T

seq

2
(dn) this is asymptotically optimal. By randomly

chopping the tree into much more pieces than PEs it is even possible to devise

an e�cient static load balancing scheme for tree shaped computations which

uses a single broadcast of the root problem as the only nonlocal operation.

(Plus collecting results.)

1.3 Overview

The goal of this paper is to present receiver induced tree splitting algorithms

which are as scalable as dynamic tree embedding schemes but retain the ad-

vantage of low communication overhead. The emphasis is on algorithms which

are not only interesting from a theoretical point of view but also simple and

e�cient in practice.

We start by introducing a simple yet realistic model of the machine and the

application in Section 2 which is later generalized in Section 6. Then, Section 3

presents a hypercube based algorithm. The PEs perform receiver induced tree

splitting; communication is done with neighboring PEs. By iterating through

the dimensions of the hypercube, it can be guaranteed that the load remains

evenly distributed as long as \fresh" dimensions of the hypercube are available.

Peter Sanders: Better Algorithms for Parallel Backtracking 7

When all dimensions are exhausted, the subproblems are randomly permuted

and the cycle can start again. Execution times are in (1 + �)

T

seq

n

+ O(h) with

high probability.

The algorithm is adapted to butter
ies (and related constant degree net-

works), r-dimensional meshes and hierarchical networks like fat trees in Sec-

tion 4. Execution times are in (1 + �)

T

seq

n

+O(h), (1 + �)

T

seq

n

+ O(h)

n

1=r

logn

and

(1 + �)

T

seq

n

+O(h)

p

log n respectively with high probability.

Section 5 shows how the expensive random permutations can be avoided as

long as PE utilization is good. A su�ciently accurate estimate of the global

load can be maintained with very little communication: A PE falling idle

only informs a supervising PE with probability O(1=n). Finally, Section 7

summarizes the results and compares them to known lower bounds.

2 Notation

2.1 Machine and Application Model

We consider a message passing MIMD computer with n PEs numbered 0

through n� 1. The PEs operate asynchronously but for simplicity we assume

the existence of a global time. A message packet can be communicated to

a neighboring PE in unit time. We assume the packet switching model of

communication, i.e., sending a packet to a PE k hops away takes time k. The

network diameter is denoted by d.

Initially, a data structure describing the entire problem (the root problem)

is located on PE 0. Let T

seq

denote the root problem's sequential execution

time or size. We do not want to look at very small problems; we assume that

T

seq

2
(n). Any subproblem can be worked on sequentially such that after

working on a subproblem of size T for time t we get a subproblem of size T� t.

The splitting function is able to split a subproblem S of size T into two

subproblems S

1

and S

2

of size T

1

and T

2

in unit time. For the analysis we

Peter Sanders: Better Algorithms for Parallel Backtracking 8

assume that T

1

+ T

2

= T regardless when and where the subproblems are

processed. The generation gen(S) of a subproblem is inductively de�ned by

gen(root problem) = 0 and gen(S

1

) = gen(S

2

) = gen(S)+ 1. A subproblem S

with gen(S) � h must be guaranteed to be reduced to a constant atomic size

T

atomic

or smaller. An immediate consequence of the above de�nitions is that

h 2
(logn) :

(logn means log

2

n throughout this paper.) Splitting an atomic subproblem

yields the same subproblem plus an empty subproblem. All other properties

of the splitting function can be chosen by an adversary. We do not discuss

termination detection and reporting results because they are not a bottleneck

if implemented properly. Finally, we assume that a description of a subproblem

�ts into a single network packet.

2.2 Randomized Algorithms

The analysis of the randomized algorithms described here is based on the

notion of behavior with high probability. Among the various variants of this

notions we have adopted the one from [22].

De�nition 1 A random variable X is in O(f(n)) with high probability

| or X 2

~

O (f(n)) for short | i�

9c > 0; n

0

> 0 : 8� � 1; n � n

0

: P [X > c�f(n)] � n

��

;

i.e., the probability that X exceeds the bound f by more than a constant

factor is polynomially small and the factor grows only linearly with the desired

exponent. In this paper, the variable used to express high probability is always

n | the number of PEs.

A keystone of many probabilistic proofs are the following Cherno� bounds

which give quite tight bounds on the probability that the sum of 0=1-random

variables deviates from the expected value by some factor.

Peter Sanders: Better Algorithms for Parallel Backtracking 9

0 1 2 0 1 2 0 1 2

local computation phase neighborhood polling random permutationi

time

Figure 2: Two cycles of hypercube poll-and-shu�e for n = 2

4

.

Lemma 1 (Cherno� bounds) Let the random variableX represent the num-

ber of heads after n independent
ips of a loaded coin where the probability for

a head is p. Then [22, 17]:

P [X � (1� �)np] � e

��

2

np=3

for 0 < � < 1 (2)

P [X � �np] � e

(

1�

1

�

�ln�

)

�np

for � > 1 (3)

3 Hypercube poll-and-shu�e

3.1 The basic algorithm

Consider a logn-dimensional hypercube network. Every PE performs receiver

induced tree splitting. Computation time is partitioned into phases of constant

length T

phase

. Idle PEs are only allowed to send requests after a phase. After

phase number i, requests go to the neighbor along dimension i (i.e. PE k sends

a request to PE k xor 2

i

). When we have reached phase log n, we are out

of fresh dimensions for communication. Therefore, we randomly permute the

subproblems (we say that idle PEs contain empty subproblems) and start a

new cycle by resetting the phase counter to 0. Figure 2 shows this partitioning

of the time line for n = 2

4

and 2 cycles.

Using this schedule, we can guarantee that after \most" phases with low PE

utilization subproblems have a certain likelihood of receiving a request:

Lemma 2 For any
 2 (0; 1), for any subproblem S, and for any phase with

a number less than logn � log

2

, if at any point during this phase at least
n

Peter Sanders: Better Algorithms for Parallel Backtracking 10

PEs are idle, then after this phase S receives a request with a probability of at

least
=2.

Proof: Since the number of busy PEs can only decrease during a phase, at

least
n PEs will issue a request after the phase under consideration. Let

i < logn � log

2

denote the number of the hypercube dimension to be used

next. During the current cycle, S can only have interacted with the 2

i

<

2

n

PEs reachable over links f0; : : : ; i� 1g. (We call such i-dimensional subcubes

i-cubes.) Therefore, there are at least

2

n idle PEs with which S did not

interact in the current cycle.

What remains to be proved is that every of these n � 2

i

independent

subproblems T is equally likely to be S's neighbor along dimension i (S

i

| T

for short), and hence, S receives a request with probability at least
=2. More

precisely, we show that

P

2

6

4

S

i

| T

�

�

�

�

�

�

�

at least
n PEs are idle after phase i ^

S and T are in di�erent i-cubes

3

7

5

=

1

n � 2

i

(4)

for any S, T , i and
, and regardless of the adversary's choice of the splitting

function. (All subproblems | even empty ones | are regarded as di�erent.)

Let M denote the subgroup of permutations generated by exchanges of

entire i-cubes and re
ections of i-cubes (i.e. exchanging all subproblems in an

i-cube which are neighbors along a �xed dimension j 2 f0; : : : ; i� 1g). Basic

group theory tells us that M can be used to partition the permutations into

equivalence classes

C

�

:= �M = f�m :m 2Mg :

All elements of a class C

�

are indistinguishable for the adversary during the

�rst i phases because the same pairings for split requests occur. (If the adver-

sary is allowed to use randomization we de�ne a separate partition for each

possible sequence of random bits used. Therefore we can assume a determin-

istic behavior of the adversary within an equivalence class.) In particular, PE

Peter Sanders: Better Algorithms for Parallel Backtracking 11

utilization after i-phases is identical for all permutations within C

�

and the

same set of subproblems is present.

Let S denote the set of subproblems present in C

�

after phase i. Let S 2 S

denote an arbitrary but �xed subproblem and let fT; T

0

g 2 S be subproblems

not in S's i-cube. We can partition C

�

into n�2

i

subsets C

T

:= f� 2 C

�

: S

i

|

Tg. What remains to be shown is that all the C

T

have the same cardinality.

Although this can be proved directly by counting jC

T

j we choose the simpler

and more elegant approach to construct an injection f

TT

0

: C

T

! C

T

0

for any

T and T

0

. It is easily seen that the following function is such an injection:

1. Re
ect the i-cube where T

0

is located such that T

0

has the same position

in its i-cube as S.

2. Exchange the i-cubes where T and T

0

are located.

Building on this we can bound the number of phases necessary to reduce

all subproblems to atomic size.

Lemma 3 For any constant
 > 0,

~

O (h) phases with at least
n idle PEs and

a phase number less than logn � log

2

are su�cient such that every existing

subproblem S has gen(S) � h.

Proof: Suppose there have been c�h phases with low dimension number and

with at least
n idle PEs. (For � � 1 and some constant c we are free to

choose.) Let S denote the set of all existing subproblems. We need to show

that

P [9S 2 S : gen(S) < h] � n

��

:

First, we look at the probability that one particular subproblem S has

gen(S) < h. According to Lemma 2, in each of the c�h phases under consider-

ation the uniquely determined ancestor of S receives a request with probability

at least
=2. Let the random variable X denote the number of requests received

Peter Sanders: Better Algorithms for Parallel Backtracking 12

by the ancestors in the phases under consideration; obviously gen(S) � X .

Since the phases are independent, we can apply the Cherno� bound (2) to

estimate

P [gen(S) < h] � P [X < h] = P

�

X <

�

1�

�

1�

2

c�

��

c�h

2

�

� e

�

�

1�

2

c�

�

2

c�h

6

:

Since h 2
(logn), there is a constant k > 0 such that h � k ln n for su�ciently

large n and we can write

P [gen(S) < h] � n

�

�

1�

2

c�

�

2

c�k

6

:

Since this bound holds for all S 2 S we can now approach the original

problem

P [9S 2 S : gen(S) < h] �

X

S2S

P [gen(S) < h]

� n � n

�

�

1�

2

c�

�

2

c�k

6

= n

1�

�

1�

2

c�

�

2

c�k

6

:

A trivial but tedious calculation shows that there is a choice of c depending

on
 and k only such that for all � � 1

n

1�

�

1�

2

c�

�

2

c�k

6

� n

��

:

So, at the end of each cycle there is a constant number of phases about

which we cannot say very much. The other phases either do productive work

or they reduce the size of the remaining subproblems. Furthermore, if we make

the phases su�ciently long, the time for doing productive work and issuing

requests will dominate the time for routing the random permutations. Based

on this observation we can bound the parallel execution time:

Theorem 1 Let T

par

denote the execution time of the hypercube poll-and-

shu�e algorithm. For every � > 0 there is a choice of the phase length T

phase

such that

T

par

2 (1 + �)

T

seq

n

+

~

O (h) :

Peter Sanders: Better Algorithms for Parallel Backtracking 13

Proof: Let
 2 (0; 1) be a constant we are free to choose. In order to determine

an appropriate value for T

phase

, we consider it an additional variable. We �rst

bound the number of phases with at most
n and with more than
n idle PEs

respectively. There can be at most

T

seq

T

phase

n(1�
)

phases with high PE utilization since in this number of phases n(1�
) active

PEs are able process the entire problem.

Using the results of Lemma 3 we see that

~

O (h) phases with numbers less

than log n� log

2

are su�cient to reduce all subproblems to atomic size. If we

choose T

phase

> T

atomic

all work will be completed in the next phase. Putting

this together we see that

T

seq

T

phase

n(1�
)

+

~

O (h)

logn � log

2

cycles are su�cient to process the entire problem. A complete cycle takes time

(T

phase

+O(1)) logn+ logn+ o(logn) 2 (T

phase

+O(1)) logn: There are logn

phases per cycle; after every phase we need time for a request a split and a

reply; a random permutation can be completed in time logn + o(logn) with

high probability using an appropriate routing algorithm [17, Theorem 3.27].

Putting all this together we get a bound for the execution time:

T

par

2

T

seq

T

phase

n(1�
)

+

~

O (h)

logn� log

2

(T

phase

+ O(1)) logn

This can be rewritten as

logn

log n� log

2

T

phase

+O(1)

T

phase

(1�
)

�

T

seq

n

+

~

O (h)

�

:

We choose
 =

�

2

. The factor

logn

logn�log

2

gets arbitrarily close to 1 for su�-

ciently large n. For su�ciently large T

phase

the factor

T

phase

+O(1)

T

phase

(1�
)

is smaller

than (1 + �). Therefore,

T

par

2 (1 + �)

T

seq

n

+

~

O (h) :

Peter Sanders: Better Algorithms for Parallel Backtracking 14

Hypercube poll-and-shu�e is asymptotically optimal because its execution

time meets the lower bound of Equation (1). The algorithm is better than

any known tree embedding scheme because e�ciencies arbitrarily close to 1

are possible even if T

atomic

� 1, and it is better than previously known tree

splitting algorithms because the lower order term

~

O (h) is smaller than the

~

O (h logn) term for random polling.

3.2 Random permutations

Choosing a permutation uniformly at random is not as easy as it sounds.

(n logn) random bits are necessary to de�ne a random permutation. Al-

though this can be done in time O(logn) if we assume an independent source

of random bits in every PE, we still need to coordinate the information in such

a way that every PE knows where to send its information.

One possibility works as follows: First, every PE chooses a PE number

uniformly at random and sends its subproblem to this PE. From the analysis

of randomized routing algorithms (e.g. [17]) we know that the maximum

number of subproblems destined for the same PE is in

~

O (logn). Now, every

PE sequentially permutes the locally present subproblems in time

~

O (logn).

We then enumerate the subproblems using a parallel pre�x sum of the number

of subproblems in each PE (time O(logn)). Finally, every subproblem is sent

to the PE de�ned by its number (time

~

O (logn)).

In practice, it might be better to replace this quite expensive procedure by

some kind of pseudorandom permutations. For example, it is common prac-

tice in computational group theory [20] to precompute a small set of random

permutations which have the property of generating the entire group (in this

case the symmetric group S

n

of all permutations over PE numbers). Then,

a pseudorandom permutation is constructed by combining a small randomly

selected sample of these precomputed permutations.

Peter Sanders: Better Algorithms for Parallel Backtracking 15

4 Other Networks

Our starting point is the idea to adapt the hypercube poll-and-shu�e algo-

rithm to other networks by embedding a hypercube into the real network in

such a way that poll-and-shu�e works e�ciently.

This is quite easy for hypercubic networks in the sense of [17] (e.g. butter-

ies, cube-connected-cycles, perfect shu�e, DeBruijn) because poll-and-shu�e

uses the hypercube dimensions one after the other. Using the quite general

results from [16] on routing and [17, Section 3.3.3] on emulating normal hy-

percube algorithms we can conclude:

Theorem 2 Hypercube poll-and-shu�e can be adapted to constant degree hy-

percubic networks in such a way that

T

par

2 (1 + �)

T

seq

n

+

~

O (h) :

Proof: Neighborhood polling and permutation routing takes a constant factor

longer than on the hypercube. But this can be compensated by making T

phase

correspondingly larger. Everything else is completely analogous to the proof

of Theorem 1.

By introducing some minor modi�cations into the poll-and-shu�e concept

we can also derive good algorithms for meshes and hierarchical networks like

fat trees.

4.1 Meshes

Consider an r-dimensional mesh (n a power of 2, d = r2

dlogn=re

� r and r

constant). A hypercube can be embedded in such a way that every j-cube is

embedded into a submesh of diameter r2

dj=re

�r (e.g. [14, Figure 6.11]). Using

this embedding, a simple calculation shows that the communication necessary

for logn phases of poll-and-shu�e can be performed in time O(n

1=r

). Routing

can also be performed in time O(n

1=r

) [17].

Peter Sanders: Better Algorithms for Parallel Backtracking 16

The only complication we have to deal with is that the proof of Theo-

rem 1 only works for phases of equal length. In fact, if we used a phase length

proportional to the communication expense it would be conceivable that the

short phases have good PE utilization and the long phases have low PE uti-

lization, resulting in a poor overall e�ciency. The solution is quite simple: We

omit the last r log logn phases of each cycle and set T

phase

:= c

n

1=r

logn

, that is,

a constant times the communication expense of the most expensive remain-

ing phase. (The embedding of a logn � r log logn-dimensional subcube has

diameter r2

d

log n�r log log n

r

e

� r 2 O

�

n

1=r

logn

�

):

Theorem 3 Let T

par

denote the execution time of the hypercube poll-and-

shu�e algorithm simulated on an r-dimensional mesh with the last r log logn

phases of each cycle omitted. For every � > 0 there is a choice of the constant

c such that

T

par

2 (1 + �)

T

seq

n

+

~

O

h

n

1=r

logn

!

:

Proof: Analogous to the proof of Theorem 1. r log logn takes the role of

log

2

and we have to substitute the appropriate execution times for polling

and random permutations.

Using the results from [1] on emulating mesh algorithms on the mesh of

trees network we can conclude that same performance is possible on meshes

of trees.

4.2 Fat trees

We can use a similar approach as for meshes in order to derive a fairly good

load balancing algorithm for fat trees [19]. We partition the network into sub

fat trees of height

p

logn (with 2

p

logn

PEs each). Setting T

phase

to c

p

log n,

we can perform

p

log n poll-phases in time O(logn). Since routing is also

possible in logarithmic time, we get:

Peter Sanders: Better Algorithms for Parallel Backtracking 17

Theorem 4 Let T

par

denote the execution time of the hypercube poll-and-

shu�e algorithm simulated on a fat tree performing only

p

logn phases per

cycle. For every � > 0 there is a choice of the constant c such that

T

par

2 (1 + �)

T

seq

n

+

~

O

�

h

p

logn

�

:

Proof: (Outline) Similar to proof of Theorem 3. This time we need a factor

O(

p

logn) more cycles than for the hypercube case. But a cycle takes no more

time than in the hypercube case.

The same pattern can be applied to any network: If possible, embed sub-

cubes into subnetworks in such a way that intra-subnetwork routing is faster

than global routing. If the saving is su�ciently large to make up for the

random permutations, we get an algorithm superior to random polling.

5 Adaptively initiating permutations

The periodically invoked random permutation is a quite expensive operation

during which no work on the subproblems is possible. In addition, there is

actually no reason to redistribute subproblems as long as the PE utilization

is good. A simple approach to avoiding unnecessary work is to determine the

average number of idle PEs during a cycle and to trigger a random permu-

tation only if PE utilization is low. For example, we can trigger when the

average number of idle PEs raises above
n for some appropriate constant

. More sophisticated triggering conditions, which take the current cost for

load balancing and the past development of PE utilization into account, are

described in [21, 10].

A simple way to implement this idea is to count the number of idle phases

during a cycle on each PE and to determine the average number of idle PEs

by globally adding all these values after each cycle. But although a global add

may be considerably cheaper than migrating all subproblems, we would still

have an expensive global operation which is invoked periodically even though

Peter Sanders: Better Algorithms for Parallel Backtracking 18

PE utilization may be fairly stable.

Counting can be made more adaptive by letting idle PEs notify a monitor-

ing PE (say PE 0) about their idleness. (Refer to [15] for another approach to

adaptively determining global load changes which is used in the context of bal-

ancing independent work packets.) However, if every idle PE sent a message,

the monitoring PE would become a terrible bottleneck. Here, randomization

comes to the rescue again: Whenever a PE becomes idle or an idle PE enters

a new phase, it noti�es PE 0 with probability

1
c

n

(for some constant c still to

be determined). If PE 0 receives m noti�cations during k phases, the average

number of idle PEs can be estimated to be

mn

ck

. (The e�ect of message latency

is compensated by only using noti�cations from phases su�ciently far back

such that all their messages must have arrived with high probability.)

We �rst show that the arrival rate of noti�cations is su�ciently low in

order to avoid contention at PE 0.

Lemma 4 The number of noti�cations sent during logn phases is in

~

O (logn).

Proof: The decisions whether a noti�cation is sent can be viewed as indepen-

dent Bernoulli trials with success probability

c

n

. Since there are only n PEs

and logn phases, there cannot be more than n logn trials. Let X denote the

number of successes after n logn trials. Let a denote some positive constant

to be determined later. Using the Cherno� bound (3) we see:

P

�

X � a�n log n

c

n

�

� e

�

1�

1

a�

�ln a�

�

a�n logn

c

n

= e

�

1�

1

a�

�ln a�

�

ac� logn

for a� > 1:

If we choose a � e

2

and � � 1 we have

�

1�

1

a�

� ln a�

�

� (1�ln a�) � �1.

If we additionally choose a �

ln 2

c

, e.g., a = max(e

2

;

ln 2

c

), we get

P [X � ac� logn] � e

�ac� logn

� e

�

ln 2

c

c� logn

= e

�� lnn

= n

��

for � � 1 :

1

For fat trees, the probability needs to be set to c

p

log n=n in order to achieve the right

balance of messages. For meshes we can choose some higher probability in O(n

1=r

) without

creating a hot spot.

Peter Sanders: Better Algorithms for Parallel Backtracking 19

Since logn 2 O(d(n)) for all the networks we are considering, the contention

at PE 0 will not asymptotically change the message latency.

We go on by showing that a signi�cant underestimation of the fraction of

idle PEs is improbable.

Lemma 5 Let �
 denote the average fraction of idle PEs over � logn phases

(� > 0). Let
̂ denote the estimate of �
 based on the noti�cations sent by idle

PEs. For every � > 0 there is a choice of the constant c such that
̂ � �
 � �

with probability at least 1�

1

n

.

Proof: The decisions whether a noti�cation is sent can be viewed as inde-

pendent Bernoulli trials with success probability

c

n

. During the � logn phases

under consideration, there were a total of �
�n log n trials. Let X denote the

number of successes. By the de�nition of
̂ and X we get

P [
̂ < �
 � �] = P

�

X

c� logn

< �
 � �

�

= P

�

X <

�

1�

�

�

�

�
c� logn

�

:

Using the Cherno� bound (2) we get

P [
̂ < �
 � �] � e

�

�

2

3�

2

�
�c logn

�

1

n

using the fact that �
 < 1 and choosing c �

3 ln2

�

2

�

.

Finally, the e�ect of overestimations of the number of idle PEs can be com-

pensated by never initiating random permutations after less than logn phases.

We now have all the required components for analyzing a variant of poll-and-

shu�e which bases triggering decisions on the estimate of the fraction of idle

PEs.

Theorem 5 Let T

par

denote the execution time of the poll-and-shu�e algo-

rithm with probabilistic triggering of shu�ing. For every � > 0 there is a

choice of the phase length T

phase

, the constant c, and a triggering policy such

that

T

par

2 (1 + �)

T

seq

n

+

~

O (h) :

Peter Sanders: Better Algorithms for Parallel Backtracking 20

Proof: The proof is similar to the proof of Theorem 1 but more involved in

a rather uninteresting way. We therefore only give a rough outline:

Due to message latencies there is a fraction of the current cycle about

which PE 0 is not informed. T

phase

must be su�ciently large such that this

fraction is small. c must be su�ciently large such that the number of phases

needed to accumulate su�ciently many noti�cations is small compared to

logn. Lemma 4 shows that contention of noti�cation messages at PE 0 is

not an issue if c � T

phase

. We can use Lemma 5 in order to show that with

high probability only a small number of cycles with low PE utilization will

go undetected. A possible strategy for triggering permutations is to trigger

whenever the estimate for the number of idle PEs exceeds

�

2

n. In order to

avoid an accumulation of estimation errors, outdated information has to be

discarded from time to time, for example by considering only the last � logn

phases for some appropriate �.

6 Generalizing the problem model

In Section 2 we made a lot of simplifying assumptions about the machine and

problem model in order to concentrate on load balancing, irregularity and

locality. Now we want to outline how relaxing some of these assumptions

a�ects the performance of our algorithms.

6.1 Message lengths

For many backtracking applications our assumption of constant message lengths

is quite realistic: Requests, rejections and other control information only need

a constant number of machine words. And, if we initially broadcast the root

problem to all PEs, subproblems can often be represented by sequences of

O(h) bits indicating how to derive the subproblem from the root problem

by subsequent split operations (e.g. [11]). Under the usual assumption that

O(logn) bits �t into a machine word our assumption is strictly justi�ed for the

Peter Sanders: Better Algorithms for Parallel Backtracking 21

frequent case [14] h 2 O(logT

seq

) and T

seq

polynomial in n (Larger problems

are easy to load balance anyway).

Still, in other cases it is better to treat the message length as an additional

variable of the problem.

2

Let us assume that l is an upper bound on the

length of the representation of a subproblem depending on the root problem

only. If we stick to packet routing, we can easily adapt our analysis by charging

O(dl) instead of O(d) time for transmitting a message. But we might be able

to do better by using cut-through routing [14] (i.e. chopping messages into

constant size pieces) which makes it possible to send a subproblem in time

O(l + d) as long as there is no network contention. For networks with a high

bisection width of
(n) (e.g. hypercubes, fat trees, multi-stage butter
ies) and

long messages (l 2
(d)) poll-and-shu�e now has no advantage over random

polling since the transmission time is in

~

O (l) regardless of the distance between

communication partners. (Refer to [28] for a discussion why the network tra�c

is su�ciently uniform to justify this conclusion.)

However, for networks with limited bisection width like meshes or butter-

ies, cut-through routing has no asymptotic advantage over packet routing

when the network is highly loaded. And indeed, any e�cient receiver induced

tree splitting algorithm must sometimes handle
(nh) load transfers which is

a constant fraction of the total number of messages for random polling and

poll-and-shu�e: To see this (in a rough outline) consider the splitting tree

depicted in Figure 3. Assume that the small triangles represent subtrees con-

taining a negligible amount of work and the large triangles represent perfectly

balanced subtrees of size 2

T

seq

n

. Further assume that h � log

T

seq

T

atomic

2
(h),

i.e., h is not too close to its lower bound. In order to achieve an e�ciency

above 1=2 every of the large triangles has to be split at least once. But before

2

Note that the tree embedding schemes from Section 1.2 can only achieve an e�ciency in

O

�

1

l

�

for nonconstant message lengths.

Peter Sanders: Better Algorithms for Parallel Backtracking 22

... n/2

log n - 1

h

2T
nT

seq

atomic
log

1 2 3

Figure 3: Splitting tree with many necessary splits for n = 16.

this happens

n

2

(h� (logn � 1)� log

2T

seq

nT

atomic

) =

n

2

(h� log

T

seq

T

atomic

) 2
(nh)

small subtrees must be split of, and every split is associated with a load trans-

fer.

This observation has a consequence of some practical importance. One

might be tempted to regard poll-and-shu�e as only of theoretical interest since

many contemporary machines with mesh architecture have a low latency hard-

ware router such that the physical distance between communication partners

is only of secondary importance for the case of low network load. But poll-

and-shu�e can nevertheless yield a signi�cant improvement on these machines

because the usable bandwidth per message is higher than for random polling:

For example, consider the poll-and-shu�e algorithm for r-dimensional meshes

Peter Sanders: Better Algorithms for Parallel Backtracking 23

from Section 4.1. During every phase of a cycle at least
(n

r�1

r

log n) PEs can

communicate in parallel via cut-through routing without any contention while

for random polling the �gure is only O(n

r�1

r

).

6.2 The splitting function

In Section 2 we assumed that the splitting function is able to split a subproblem

of size T into two subproblems of size T

1

and T

2

in unit time such that that

T

1

+ T

2

= T regardless when and where the subproblems are processed.

Relaxing the assumption that the splitting function takes unit time does

not yield anything new as long as splitting a subproblem does not take longer

than communicating it. For example, this is always the case if T

split

2 O(l),

i.e., splitting is linear in the length of a the representation of a subprob-

lem. Similarly, the e�ect that splitting often performs productive work on

the ancestor problem in order to �nd an acceptable place for splitting is quite

uninteresting.

However, T

1

and T

2

can be quite dependent on the order of subproblem

evaluation in general. Usually, the reason is that the evaluation of one sub-

problem yields information which can be used to prune (or reduce in size)

other subproblems. The resulting speedup anomalies are a complex issue by

themselves. For some classes of problems, large superlinear speedups (com-

pared to sequential depth �rst search) can be achieved [4, 26], others show

wildly varying speedups over several orders of magnitude [31] and search al-

gorithms with strong pruning heuristics like game tree search are very hard to

parallelize e�ciently [6]. We did not incorporate these e�ects into our mod-

el because they are quite application dependent and because we wanted to

concentrate on the load balancing aspect of parallel search.

Also, there are many applications for which our model is quite accurate:

All but the last iteration of iterative deepening search algorithms like IDA*

[12] are independent of the evaluation order, and in the last iteration it is a

Peter Sanders: Better Algorithms for Parallel Backtracking 24

quite good approach to work on several randomly selected subproblems until

the �rst solution is found [8, 4, 26].

A practically useful application of branch-and-bound is to verify that a

known (heuristic) solution is within a certain percentage of the optimum. In

this case the search tree does not depend on the execution order. Similarly,

in many applications optimal solutions are usually found quickly but verifying

their optimality takes very long such that our assumption holds for the main

part of the search.

6.3 Local versus global time

The assumption of a global clock is convenient for the de�nition of phas-

es but not really necessary. We only need to make sure that requests are

always exchanged between PEs in the same phase. This can be achieved by

local synchronization. Figure 4 shows pseudocode for a simple poll-and-shu�e

algorithm with explicit local synchronization. In practice, one would addition-

ally make sure that PEs waiting for synchronization can work on their local

subproblem (e.g. using multithreading).

6.4 Problem granularity

If we consider T

atomic

to be an additional problem variable, we trivially get an

additional lower bound T

par

2
(T

atomic

) and it is quite simple to change the

analysis of our algorithms to show that there is simply an additional O(T

atomic

)

term in the upper bound for the parallel execution time if T

seq

2
(nT

atomic

).

(For random polling this has been done in [28].)

7 Conclusion

The load balancing algorithms for tree shaped computations presented in this

paper are a promising family of algorithms. For low diameter networks they

achieve e�ciencies arbitrarily close to 1 for a per PE load in O(h). This

Peter Sanders: Better Algorithms for Parallel Backtracking 25

put the root problem on PE 0

DOPAR on all PEs

WHILE not �nished DO

FOR i:=0 TO logn� 1 DO

IF subproblem is not empty THEN

work on subproblem for time T

phase

or until exhausted

send message \phase i finished" along dimension i

wait for message \phase i finished" along dimension i

IF subproblem is empty THEN

send a request along dimension i

reject incoming requests

receive new subproblem or a reject message

ELSE

IF a request arrives THEN

split subproblem

send one part to the initiator of the request

ENDFOR

participate in randomly permuting the subproblems

Figure 4: Poll-and-shu�e with local synchronizations.

is asymptotically optimal since the sequential component of the problem in-

stances is of the same order. Therefore, the new algorithms are at the same

time asymptotically as scalable as tree embedding techniques and have the

same communication economy as earlier tree splitting based algorithms which

require larger problem sizes for good e�ciency.

For meshes, the algorithms have a better scalability (by a factor O(logn))

than the best previously known algorithms. In the important case of loga-

Peter Sanders: Better Algorithms for Parallel Backtracking 26

rithmic depth trees (h 2 O(logn)), the PE load of O(d) required for constant

e�ciency is asymptotically optimal. The new algorithms for fat trees are by

a factor

p

logn better than the best previously known ones.

In fact, the algorithms turn out to be optimal in so many cases that we

were tempted to title this paper \Towards asymptotically optimal algorithms

for parallel backtracking." However, the discussion in Section 6 shows that

optimality is so dependent on the underlying model that such a title would be

misleading.

8 Acknowledgements

I would like to thank H. Rust, A. C. Achilles, H. Fernau, T. Minkwitz and

T. Worsch for many constructive discussions which helped to shape the algo-

rithms and their analysis.

References

[1] A.-C. Achilles. Optimal emulation of meshes on meshes-of-trees. Submit-

ted for publication, Jan. 1995.

[2] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computa-

tions by work stealing. In FOCS, 1994.

[3] O. I. El-Dessouki and W. H. Huen. Distributed enumeration on between

computers. IEEE Transactions on Computers, C-29(9):818{825, Septem-

ber 1980.

[4] W. Ertel. Parallele Suche mit randomisiertem Wettbewerb in Inferenzsys-

temen. PhD thesis, TU M�unchen, 1992.

[5] R. Feldmann. Game Tree Search on Massively Parallel Systems. PhD

thesis, Universit�at Paderborn, August 1993.

Peter Sanders: Better Algorithms for Parallel Backtracking 27

[6] R. Feldmann, P. Mysliwietz, and B. Monien. Distributed game tree search

on a massively parallel system. In T. O. B. Monien, editor, Data structures

and e�cient algorithms: Final report on the DFG special joint initiative,

volume LNCS 594, pages 270{288. Springer-Verlag, Sept. 1991.

[7] R. Finkel and U. Manber. DIB| A distributed implementation of back-

tracking. ACM Trans. Prog. Lang. and Syst., 9(2):235{256, Apr. 1987.

[8] V. K. Janakiram, E. F. Gehringer, D. P. Agrawal, and R. Mehotra. A

randomized parallel branch-and-bound algorithm. International Journal

of Parallel Programming, 17(3):277{301, 1988.

[9] C. Kaklamanis and G. Persiano. Branch-and-bound and backtrack search

on mesh-connected arrays of processors. In ACM Symposium on Parallel

Architectures and Algorithms, 1992.

[10] G. Karypis and V. Kumar. Unstructured tree search on SIMD paral-

lel computers. IEEE Transactions on Parallel and Distributed Systems,

5(10):1057{1072, 1994.

[11] J. C. Kergommeaux and P. Codognet. Parallel logic programming sys-

tems. ACM Computing Surveys, 26(3):295{336, 1994.

[12] R. E. Korf. Depth-�rst iterative-deepening: An optimal admissible tree

search. Arti�cial Intelligence, 27:97{109, 1985.

[13] V. Kumar and G. Y. Ananth. Scalable load balancing techniques for

parallel computers. Technical Report TR 91-55, University of Minnesota,

1991.

[14] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel

Computing. Design and Analysis of Algorithms. Benjamin/Cummings,

1994.

Peter Sanders: Better Algorithms for Parallel Backtracking 28

[15] T. Lauer. Adaptive dynamische Lastbalancierung. PhD thesis, Max

Planck Institute for Computer Science Saarbr�ucken, 1995 (to appear).

[16] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. Randomized

routing and sorting on �xed-connection networks. Journal of Algorithms,

17:157{205, 1994.

[17] T. Leighton. Introduction to Parallel Algorithms and Architectures. Mor-

gan Kaufmann, 1992.

[18] T. Leighton, M. Newman, A. G. Ranade, and E. Schwabe. Dynamic

tree embeddings in butter
ies and hypercubes. In ACM Symposium on

Parallel Architectures and Algorithms, pages 224{234, 1989.

[19] C. E. Leiserson. Fat trees: Universal networks for hardware e�cient su-

percomputing. In International Conference on Parallel Processing, pages

393{402, 1985.

[20] T. Minkwitz. Personal communication. Department of Informatics, Uni-

versity of Karlsruhe, 1995.

[21] C. Powley, C. Ferguson, and R. E. Korf. Depth-�st heuristic search on a

SIMD machine. Arti�cial Intelligence, 60:199{242, 1993.

[22] S. Rajasekaran. Randomized algorithms for packet routing on the mesh.

In L. Kronsj�o and D. Shumsheruddin, editors, Advances in Parallel Al-

gorithms, pages 277{301. Blackwell, 1992.

[23] A. Ranade. Optimal speedup for backtrack search on a butter
y network.

Mathematical Systems Theory, pages 85{101, 1994.

[24] V. N. Rao and V. Kumar. Parallel depth �rst search. Part I. International

Journal of Parallel Programming, 16(6):470{499, 1987.

[25] V. N. Rao and V. Kumar. Parallel depth �rst search. Part II. International

Journal of Parallel Programming, 16(6):501{519, 1987.

Peter Sanders: Better Algorithms for Parallel Backtracking 29

[26] V. N. Rao and V. Kumar. On the e�ciency of parallel backtracking.

IEEE Transactions on Parallel and Distributed Systems, 4(4):427{437,

April 1993.

[27] P. Sanders. Analysis of random polling dynamic load balancing. Technical

Report IB 12/94, Universit�at Karlsruhe, Fakult�at f�ur Informatik, April

1994.

[28] P. Sanders. A detailed analysis of random polling dynamic load balanc-

ing. In International Symposium on Parallel Architectures Algorithms

and Networks, pages 382{389, Kanazawa, Japan, 1994. IEEE.

[29] P. Sanders. Massively parallel search for transition-tables of polyautoma-

ta. In Parcella 94, VI. International Workshop on Parallel Proccessing

by Cellular Automata and Arrays, pages 99{108, Potsdam, 1994.

[30] P. Sanders. Randomized static load balancing for tree shaped compu-

tations. In Workshop on Parallel Processing, TR Universit�at Clausthal,

Lessach, Austria, 1994 (to appear).

[31] A. P. Sprague. Wild anomalies in parallel branch and bound. Technical

Report CIS-TR-91-04, CIS UAB, Birmingham, AL 35294, 1991.

