
Optimizing the Emulation of MIMD Behavior on

SIMD Machines

Peter Sanders

Universit�at Karlsruhe, D-76128 Karlsruhe

E-mail: sanders@ira.uka.de

Abstract

SIMD computers have proved to be a useful and cost e�ective approach

to massively parallel computation. On the other hand, there are algorithms

which are very ine�cient when directly translated into a data-parallel pro-

gram. This paper presents a number of simple transformations which are

able to reduce this SIMD overhead to a moderate constant factor. In par-

ticular, this factor is often much smaller than the factor incurred by the

previously used technique of interpreting machine instruction sets. The pa-

per also introduces techniques for reducing the remaining overhead using

Markov chain models of control
ow. The optimization problems involved

turn out to be NP-hard in general but there are many useful heuristics, and

closed form optimizations for a probabilistic variant.

1 Introduction

Single Instruction Multiple Data computers are a quite e�ective approach to mas-

sively parallel computation. Since instructions are stored and decoded centrally,

the processing elements (PEs) do not need instruction memory or a control unit.

This makes it feasible to integrate many simple PEs on an area normally required

for one single processor of a MIMD machine. In addition, the synchronous nature

of SIMD processing often makes programming easier.

On the other hand, there are algorithms which are very ine�cient when directly

translated into a data-parallel program. This happens whenever there is a loop

with a small number of iterations on most PEs for which there is at least one PE

with a much larger number of iterations. In this case, all PEs have to wait until

the last PE �nishes. For programs whose execution time is dominated by such

loops, a SIMD computer performs very poorly. A simple example is the task to

compute the Mandelbrot set [13]; the number of iterations necessary to compute

a point varies widely. In [6] methods for restructuring nested loops which are

typical for numerical applications are discussed. Even more complex control
ow

patterns can be observed for irregular non-numeric applications. In the following,

depth-�rst tree search is used as an example.

The pseudo-code in Figure 1 gives the kernel of a non-recursive, parallel depth-

�rst search algorithm which searches for leaves constituting a solution. It is as-

sumed that a load balancer takes care that each PE gets a di�erent subtree of

the search space (e.g. refer to [11]). A subtree is represented by its root. Interior

nodes are expanded by pushing their �rst successor on the stack. For leaf nodes,

1

Peter Sanders: Optimizing the Emulation of MIMD Behavior on SIMD Machines 2

Let s be a stack containing only the root node

of a subtree to be processed on this processor

LOOP

IF isLeaf(top(s)) THEN

IF isSolution(top(s)) THEN printSolution(top(s))

WHILE noMoreSiblings(top(s)) DO

pop(s)

IF isEmpty(s) THEN stop

replace top(s) with nextSibling(top(s))

ELSE push(�rstSuccessor(top(s)))

Figure 1: Nonrecursive generic depth-�rst search.

it is checked whether they constitute a solution. Then the program backtracks to

the next node with unsearched siblings.

For many problems, the while-loop responsible for backtracking performs very

few iterations on the average; but on some PEs the number of iterations may be the

full depth of the tree. Additional complications could be introduced by heuristics,

or by loops inside the application-speci�c functions isLeaf, �rstSuccessor, etc.

This paper presents techniques for removing the o�ending loops and producing

an equivalent, more e�cient program. It is a generalization of [10] which focuses

on a probabilistic model of SIMD-emulation for which closed-form solutions can

be derived. Here we show that even a special case of the more accurate deter-

ministic emulation models leads to NP-hard optimization problems. We also give

a more complete treatment of heuristic techniques which can be used to improve

performance manually or by the compiler.

Section 2 presents the basic techniques and a number of ideas for optimization.

Then Section 3 models control
ow of programs using Markov chains. The results

make it possible to �nd optimizations with less trial and error. Section 4 discusses

a di�erent approach to transforming programs into synchronous form which is

used by many other researchers. It turns out that it can be viewed as a special

case of our transformation approach and that the Markov chain models again yields

interesting insights. It is also proved that even for this special case, one of the basic

optimization problems considered is NP-hard. Section 5 summarizes some results

on probabilistic test loops for which the corresponding optimization problem has

simple closed form solutions. In Section 6 we report on implementation experiences

where these techniques are applied to open problems in cellular automata theory

and to game tree search. Section 7 summarizes the results.

2 Transformation into synchronous form

The general idea for \SIMD-izing" an algorithm is very simple. Every MIMD

program can be transformed into a SIMD program of the general form of a test

loop given in Figure 2. The o

i

are elementary operations (still to be determined)

which do not contain loops. (Loops with a globally known number of iterations

are no problem.) The statement IF g

i

THEN o

i

is a test for operation o

i

.

1

1

More generally, for many applications it makes sense to decompose the program (possibly

dynamically) into a sequence of test loops | each with a di�erent arrangement of tests | but,

Peter Sanders: Optimizing the Emulation of MIMD Behavior on SIMD Machines 3

initialization

LOOP

IF g

1

THEN o

1

IF g

2

THEN o

2

.

.

.

IF g

n

THEN o

n

Figure 2: Test loop suitable for a SIMD machine.

initialize as in Algorithm 1

state := Search

LOOP

IF state = Search THEN

IF isLeaf(top(s)) THEN

IF isSolution(top(s)) THEN state := Solution

ELSE state := GetNextChoice

ELSE state := MakeChoicePoint

IF state = MakeChoicePoint THEN

push(�rstSuccessor(top(s))); state := Search

IF state = GetNextChoice THEN

IF noMoreSiblings(top(s)) THEN

pop(s)

IF isEmpty(s) THEN stop

state := GetNextChoice

ELSE top(s) := nextSibling(top(s)); state := Search

IF state = Solution THEN

printSolution(top(s)); state := GetNextChoice

Figure 3: Depth-�rst search controlled by an automaton.

If the control logic of an algorithm can be implemented by a �nite automaton

then the test loop can be constructed by introducing one elementary operation

for each state. For example, Algorithm 1 can be transformed into the test loop

depicted in Figure 3. The key observation is that every problem can be cast into

this shape:

1. Without loss of generality assume that all PEs run the same process (Single

Program Multiple Data programming model).

2. Eliminate calls to procedures which contain loops with a varying number of

iterations. This can be done by inlining or by replacing procedure calls by

appropriate stack manipulations and control structures.

3. Implement loop control by goto-statements.

4. The code sections between goto-labels now constitute the set of elementary

operations, i.e., a code section label: code is replaced with

IF state = LABEL THEN code and a jump goto label is replaced with the

assignment state := LABEL. (The labels are replaced with unique constants.)

since the loops can be investigated one at a time, we can restrict ourselves to one loop.

Peter Sanders: Optimizing the Emulation of MIMD Behavior on SIMD Machines 4

This transformation could, for example, be performed by a compiler. For manual

use however, it is better to step back and select states which have a meaningful

interpretation in the application domain.

Note that there are two di�erent kinds of control
ow. One is the control
ow of

the problem to be emulated. We call this the asynchronous control
ow or simply

control
ow. The other is the control
ow of the test loop which deterministically

cycles through the tests. Here we talk about the position in the test loop.

A test loop along the pattern of Figure 2 still contains two sources of ine�-

ciency: First, the required number of iterations through the outer loop can vary

from PE to PE. But this problem of load imbalance is a general problem of paral-

lel computing which also occurs on MIMD computers. Therefore, load balancing

strategies are not discussed here. Furthermore, during a test for an operation o

i

,

all PEs for which g

i

does not hold, are deactivated. (We call this an unproductive

test.) This remaining SIMD overhead depends on the complexity of the program

and not on the problem size. Therefore, every MIMD program can be emulated

by a SIMD program with constant overhead. Still, in practice it is important to

keep this constant small in order to be competitive with MIMD machines.

2.1 Optimizing the test loop

So far, we have always considered test loops which test for every operation exactly

once in some arbitrary order. But we are free to select any order of tests. We

can even duplicate tests if this helps. As a general heuristics, it is a good idea to

test for cheap, frequently needed operations more often than for expensive, rarely

needed ones. Also, the tests should be ordered in such a way that a maximum

total number of productive tests per iteration of the test loop is performed.

For example, let us assume that interior nodes of the trees to be traversed

by Algorithm 3 have many descendents, that there are very few solutions and

that operation Solution takes 10 units (of time) while all other operations cost 1

unit. The control
ow is therefore dominated by subsequences of the form Search;

GetNextChoice; Search; GetNextChoice; . . . The test loop Search; GetNextChoice;

MakeChoicepoint; Solution takes 13 units and about 2 productive tests per iteration

are performed. The test loop Search; GetNextChoice; Search; GetNextChoice; Make-

Choicepoint; Solution on the other hand, takes 15 units but about 4 productive

tests per iteration are performed | it is almost two times more e�cient.

Similar ideas are discussed in [2, 1, 8]. In [8] it is argued that duplicating tests

is useless since some PEs are actually delayed due to large deviations from the

average control
ow. But this is not always a problem. Often all PEs have quite

similar control
ow characteristics, and even if there are PEs which are delayed,

this only means that operation duplication increases load imbalance which only

results in a longer execution time if the load balancer is not able to cope with the

additional imbalance. Depth-�rst tree search for example, can be a very irregular

problem anyway and a load balancer which works for a simple test loop has no

trouble handling the minor additional imbalance from test duplication.

2.2 Selecting Operations

So far, we have assumed that the set of operations is �xed. However, there are a

number of useful transformations on operations which help to increase e�ciency:

Splitting: An operation of the form

Peter Sanders: Optimizing the Emulation of MIMD Behavior on SIMD Machines 5

�

IF c THEN �

can be replaced with the following three operations:

o

�

: �; state := (IF c THEN o

�

ELSE o

)

o

�

: �; state := o

o

:

This is useful if the branch � is rarely taken or very expensive. Since � is an

operation of its own now, it can be tested for less frequently than other cheaper

or more important operations. For the case discussed in Section 2.1 for example,

it is a good thing to have an independent operation Solution instead of making

it part of the operation Search. Sometimes the inverse operation of incorporating

an operation into another is also useful in order to decrease control overhead.

It should have become clear now that it is not clear at all when to apply what

transformation. This is the reason why Sections 3 and 4 develop mathematical

models which help to make these decisions.

Simpli�cation: In traditional programs, most code need not be �ne-tuned since

only the small fraction of code in the inner loop is critical. In our approach the

entire test loop is the inner loop. So, tuning rarely used operations can have

an unexpected impact on performance. On the other hand, traditional programs

often pro�ts from optimized treatment of some special cases. In a SIMD program

however, this approach may back�re since the code for the special case incurs

additional SIMD overhead. In a sense, removing optimizations is sometimes the

better optimization.

Merging: If two operations are almost identical like

o

1

: �; state := o

0

1

o

2

: �; state := o

0

2

they can be merged into the single operation

o

12

: �; state := follow

if other operations assign the proper value to follow before setting state to o

12

. This

transformation reduces the number of operations and therefore decreases SIMD

overhead. Often, splitting and simpli�cation of operations can be used to produce

candidates for merging. Essentially, merging is a primitive kind of procedure call

and the idea can be expanded to nested calls and recursion by introducing a return

stack. In [2] a method called common subexpression induction is mentioned which

automatically recognizes mergeable parts of code.

3 Modeling control
ow with Markov chains

It can involve a lot of trial and error to apply the optimizations in Sections 2.1

and 2.2. Therefore, this section develops mathematical tools which help to select

appropriate transformations.

The �rst step is to abstract from the problem of load balancing which is ap-

plication dependent and not a speci�c problem of SIMD computing. This can

conveniently be done by assuming in�nite load on every processor. Performance is

then naturally expressed as the average number of productive tests per unit of time

(throughput). The choice of the next operation depends on the current operation

and some unknown (hidden) computation we assume to be random. Under these

Peter Sanders: Optimizing the Emulation of MIMD Behavior on SIMD Machines 6

assumption the operations can be identi�ed with the states of a Markov chain.

Let p

ij

designate the transition probability i.e. the probability that the operation

o

i

follows o

j

in the asynchronous control
ow. Let c

i

be the cost of testing for

operation o

i

. This model was developed independently from [8] where it is used in

a slightly di�erent and simpli�ed setting.

A quite di�erent model is considered in [3]. Here the instruction trace of all

PEs over the entire computation is supposed to be known. A very long test loop

speci�cally tuned for this speci�c instruction trace is to be determined. We have

cooperated with the group of Professor Wilsey in proving that this problem isNP-

hard but still prefer the simpler model which only uses measurements of operation

frequencies. This makes realistically short test loops possible which work for a

range of related problem instances rather than one speci�c computation for which

a trace was measured.

3.1 Assessing the performance of a test loop

Using the Markov chain model above it is possible to predict the performance

of a candidate test loop. This can be done using a kind of symbolic execution:

Given the transition probabilities and a vector containing the probabilities that

the asynchronous control
ow is currently in a given state, it is possible to compute

the impact of the next test on this vector. By keeping track of the cost of tests

and the fraction of PEs which do productive tests and by iterating a few times

through the test loop, a cost function expressing the average cost per productive

test can be approximated. (For details refer to [10].)

This is equivalent to modeling asynchronous control
ow and a speci�c test

loop by a Markov chain: A state s

ik

represents a situation where o

i

is the opera-

tion needed next and k is the current position in the test loop. Using this approach,

the cost function can be computed by solving a large, sparse eigenvector equation.

The above symbolic execution approach can be viewed as an iterative solver for

this eigenvalue equation which implicitly exploits the sparseness of the transition

matrix. Either way, we now have a tool for quickly screening a number of alter-

native test loops without having to run the program once the parameters p

ij

and

c

i

have been measured for typical input data. Unfortunately, the task of �nding

an optimal test loop for a given control
ow turns out to be NP-hard. In order

to make this more precise we formulate our problem as a decision problem in the

format of [5]:

TEST LOOP SCHEDULING

INSTANCE: Operations o

1

; : : : ; o

n

and costs c

i

2 N

0

; transition probabilities p

ij

2

Q, a test loop length m and a cost bound C 2 Q

+

.

QUESTION: Is there a test loop of length m for which the Markov chain model

predicts a cost C

0

� C?

TEST LOOP SCHEDULING is NP-hard because it is a generalization of

the SUBINTERPRETER SCHEDULING problem to be discussed in Section 4.2.

Even for moderate numbers of operations we therefore have to resort to heuristics

like hill climbing or genetic algorithms in order to arrive at good test loops.

4 A special case: Interpreter loops

There is quite a number of papers on emulating MIMD behavior (e.g. [2, 1, 8,

3]) which on the �rst glance are based on a slightly di�erent road to solving the

Peter Sanders: Optimizing the Emulation of MIMD Behavior on SIMD Machines 7

initialization

LOOP

IF currentInstruction = I

1

THEN execute I

1

.

.

.

IF currentInstruction = I

n

THEN execute I

n

IF TRUE THEN

save results

fetch next instruction

fetch operands

Figure 4: MIMD interpreter as a test loop.

problem: The SIMD machine can interpret a locally stored program written in a

RISC like machine language. However, Figure 4 shows that such an interpreter

can be viewed as a special case of the general test loop of Figure 2. So far, we

have not used this approach because it has a number of problems: In order to limit

SIMD overhead there can only be a small number of simple instructions. Accessing

instructions and operands requires several indirect memory accesses which are very

slow on contemporary SIMD machines. Typically this takes one or two orders of

magnitude more time than executing an instruction like add. Finally, many of

the operations which are used for the applications described in Section 6 would

correspond to hundreds of machine instructions which would have to be interpreted

one by one. It is not even clear whether a complex program would �t into the local

memory of a SIMD computer.

For all these reasons, a pure interpreter approach cannot be expected to yield

practically useful performance on todays machines. On the other hand, interpreters

have the conceptual appeal that they can handle arbitrarily complex programs

with a �xed number of instruction, whereas the number of operations derived

from the control
ow of a program can in principle grow without bound. For some

applications it might therefore be a good idea to take the best out of both worlds:

A small general purpose instruction set for
exibility, and additional coarse-grained

instructions speci�cally tuned for the program to be executed which do most of

the real computation.

We now apply the techniques derived in the preceding sections to the interpreter

approach. This can also serve as an example how these techniques can be adapted

to incorporate other kinds of additional knowledge about control
ow.

4.1 Modeling interpreters by Markov chains

In [1] interpreters are modeled using a Markov chain by assuming that instruc-

tions are independent and that an instruction I

i

can be fully characterized by its

probability of occurrence p

i

and its cost c

i

. This can be viewed as a special case

of our Markov model for arbitrary test loops from Section 3. We introduce one

operation for each instruction plus one special operation o

0

for accessing instruc-

tions and operands (with cost c

0

). We know the control
ow of the interpreter. An

instruction is always followed by o

0

and o

0

is followed by one of the instructions

according to their probabilities. All other transitions are impossible.

p

ij

=

8

>

<

>

:

1 : i = 0 and j > 0

p

i

: i > 0 and j = 0

0 : all other cases

Peter Sanders: Optimizing the Emulation of MIMD Behavior on SIMD Machines 8

As in Section 2.1, performance can be increased by optimizing the test loop.

The special structure of control
ow implies that every sensible test loop can be

written as S

1

;o

0

;S

2

;o

0

;. . . ;S

k

;o

0

(up to cyclic permutation). Where each S

j

is a

nonempty subset (called subinterpreter in [2]) of the instruction set. Its instruc-

tions can be tested for in some arbitrary order. Test loops of a di�erent form

would contain tests which can never be successful.

4.2 The NP-hardness of subinterpreter scheduling

The interpreter loops described in Section 4.1 have a considerably simpler structure

than general test loops. So, we might hope that there are e�cient methods for

optimizing them. We now show that this is not the case. Consider the decision

version of our optimization problem:

SUBINTERPRETER SCHEDULING

INSTANCE: Instructions I

1

; : : : ; I

n

and costs fc

0

; c

1

; : : : ; c

n

g � N; probabilities

p

i

2 Q

+

(

P

n

i=1

p

i

= 1), a subinterpreter count k 2 N, a test loop length m and a

cost bound C 2 Q

+

.

QUESTION: Is there a test loop with k subinterpreters and k+

P

k

j=1

jS

j

j = m for

which the expected cost per executed instruction is C � C?

Theorem 1 SUBINTERPRETER SCHEDULING is NP-hard.

Proof: Consider the well known NP-complete partition problem (quoted from

[5]):

PARTITION

INSTANCE: A �nite set A and a \size" s(a) 2 Z

+

for each a 2 A.

QUESTION: Is there a subset A

0

� A such that

X

a2A

0

s(a) =

X

a2A�A

0

s(a) ?

We now transform an instance of PARTITION into an instance of SUBINTER-

PRETER SCHEDULING:

Let n = jAj, fI

1

; : : : ; I

n

g = A, c

0

= 0, c

1

= � � � = c

n

= 1, p

i

= s(I

i

)=

P

a2A

s(a),

k = 2, m = n + 2 and C =

3

4

n. This is a legitimate instance of the SUBINTER-

PRETER SCHEDULING problem and it can be constructed in polynomial time.

Consider an optimal test loop for this instance. Because k = 2, m = n + k and

p

i

6= 0 it must have the form S

1

;o

0

;S

2

;o

0

with S

1

[S

2

= A and S

1

\ S

2

= ;. Let

� =

P

I

i

2S

1

p

i

. It is su�cient to show that the cost measure C is

3

4

n if � =

1

2

and

larger in all other cases.

The test loop can be modeled using a Markov chain with the following four

states:

A

1=2

: About to interpret S

i

and control
ow waits for an instruction from S

i

.

W

1=2

: About to interpret S

i

but control
ow waits for an instruction from S

i

.

When the Markov chain is in state A

1

we can next book the successful execution of

an instruction and the test loop will next be ready to interpret an instruction from

S

2

. With probability 1 � � the control
ow will also wait for an instruction from

Peter Sanders: Optimizing the Emulation of MIMD Behavior on SIMD Machines 9

S

2

now, resulting in a transition to state A

2

. In a similar way the other transition

probabilities can be found resulting in the following Markov chain:

W

2

1

�!

 �

�

A

1

1��

�!

 �

�

A

2

1��

�!

 �

1

W

1

Markov-chain theory (For details refer to [12]) yields the equilibrium probability

to �nd the Markov chain in either of the active states A

1

or A

2

:

a =

1

2(�

2

� �+ 1)

:

Each traversal of the test loop incurs a cost n and results in two state changes

of the Markov chain. Therefore the expected cost per executed instruction is

C =

n

2a

= n(�

2

� �+ 1). This cost measure takes the minimum

3

4

n for � =

1

2

.

2

5 Optimal probabilistic test loops

Since assembling optimal test loops turns out to be intractable, it is a logical idea

to further simplify the model in order to be able to derive closed form results. We

now summarize the results of an approach which is discussed in more detail in [12].

The idea is to abstract from the execution order in the asynchronous control
ow

and the test loop. Operations are characterized by their frequency p

i

of occurrence

in the asynchronous control
ow. (It can be measured by counting how often an

operation is actually executed.) We want to know at which frequency f

i

operation

o

i

should be tested for in order to achieve optimal throughput. This frequency

is de�ned by a probabilistic test loop which randomly decides which operation is

tested for next:

LOOP choose i with probability f

i

; IF g

i

THEN o

i

ENDLOOP

It can be shown that the choice

f

j

=

q

p

j

c

j

P

n

i=1

q

p

i

c

i

: (1)

yields an optimal probabilistic test loop. Unfortunately it turns out that an opti-

mal probabilistic test loop usually performs worse than even a naive deterministic

test loop. Nevertheless, the frequencies calculated by Equation (1) can be used as

a hint how many duplications of an operation might be useful. Furthermore, the

calculations also yields an estimate for the achievable improvement by operation

duplication.

The above result can be modi�ed to accurately model probabilistic test loops

for the interpreter case by taking the special role of the operation o

0

into account.

The optimal testing frequencies again follow Equation (1).

6 Implementation experiences

We know summarize some experiences with two applications of the concepts devel-

oped here to parallel depth �rst search on SIMD-machines. Section 6.1 is devoted

to an algorithm looking for transition tables of a cellular automaton which solves

Peter Sanders: Optimizing the Emulation of MIMD Behavior on SIMD Machines 10

the �ring squad synchronization problem with a minimum number of states. A

more detailed description of the application can be found in [11]. Section 6.2

discusses the SIMD related experiences made with massively parallel game tree

search [7].

Both applications have in common that all known data parallel algorithms for

them are based on exhaustive search and would be prohibitively ine�cient. So the

only choice is either to use the technique of emulating MIMD-behavior or not to

use a SIMD machine at all. Considering the fact that there are currently no large

scale SIMD machines with state of the art technology on the market, the choice

for a real production application would probably be \don't use SIMD". But this

situation might change again. At the time these applications were developed the

2

14

PE MasPar MP-1 used for the implementation was the most powerful machine

available at the University of Karlsruhe and the SIMD-overhead did not change

this situation. Furthermore, there might be applications whose computations are

mostly well suited for SIMD-machines but which have a small MIMD-component

which might be a bottleneck without our techniques.

6.1 The �ring squad synchronization problem

The �ring squad synchronization problem (FSSP) is a classical problem of cellular

automata theory. The task is to �nd a transition table for a one dimensional

cellular automaton which causes all cells at once to enter a \�ring" state. One is

interested in solutions which work in minimal time and which employ a minimal

number of states. We have devised a heuristic (but complete) backtrack search

procedure which is able to e�ciently search the space of possible transition tables.

With this algorithm it was possible to settle the question whether there is a time-

optimal solution with four states. The answer is \no".

The FSSP-algorithm cannot directly be translated into an e�cient data-parallel

algorithm because it consists of three interwoven asynchronous loops for the par-

tial simulation of a cellular automaton, backtracking and a relatively complicated

pruning heuristics. Several sets of operations for SIMD emulation of this algo-

rithm have been developed. The �nal set consists of seven operations whose cost

varies by a factor of four and whose relative importance varies by a factor of 16

(with the exception of one very rarely used operation.) This set performs by a

factor of about 1:7 better than another operation set it was derived from using

some nontrivial instances of the transformation rules described in Section 2.2. By

duplicating some of the operations in the test loop and (manually) ordering the

operations an improvement by a factor 1:6 in e�ciency compared to a naive or-

dering was possible. It is noteworthy that either duplicating important operations

alone or cleverly ordering the test loop yields improvements of only about 10 %.

This not only refutes the assertion in [8] that duplication is useless but might also

explain the small improvements achieved there by using loop ordering alone.

The control overhead for the test loop is negligible because the state of control

can be held in a register and because the operations are rather coarse grained.

We expect that an implementation using an interpreter loop would be at least an

order of magnitude slower.

Together with an e�ective dynamic load balancing scheme for distributing sub-

trees (see [11, 9]) which achieves a processor utilization of more than 80 % and

incurs a communication overhead of less than 15 %, the program achieves about 38

times the performance of a sequential implementation on a SPARC-2 workstation.

Peter Sanders: Optimizing the Emulation of MIMD Behavior on SIMD Machines 11

6.2 Game tree search

This application implements the ��-heuristics for game tree search together with

the \Young Brothers Wait" concept for parallelization described in [4]. It uses

synthetic game trees of varying shape in order to answer the question how far

the results for up to 1024 PEs achieved on a MIMD-machine can be transferred

to exploit even more massive parallelism. For very large search trees with little

move-ordering information, speedups up to 5850 were achieved and the algorithm

executed 27 times faster than on a 85 MHz SPARC 5. For smaller and more

irregular search trees the results are less promising. But the main problem lies in

the fact that there are no known parallel game tree search algorithms which are

able to exploit massive parallelism without incurring a substantial increase in the

number of expanded nodes.

In addition to three operations implementing the sequential ��-heuristics three

communication operations for load balancing, passing results and pruning subtrees

have been incorporated into the process of �nding an e�cient test loop. Choosing

the test loop can a�ect the e�ciency by a factor of 2{3. This choice depends on

the size and shape of the tree. This is no problem for game tree search because

for a given game and search time the size and shape of the trees for subsequent

moves are similar. The overall SIMD-overhead can be as small as 22% if the node

evaluation function is amenable to a data-parallel implementation.

7 Conclusions

There is no clear-cut border between SIMD algorithms and MIMD algorithms. A

program with asynchronous control
ow can be decomposed into a number of ele-

mentary operations which can emulate asynchronous behavior on a SIMD machine.

For many applications, a small number of coarse-grained operations is su�cient

resulting in an acceptable emulation overhead. However, more complicated pro-

grams may require a large number of operations or the decomposition into very

�ne-grained operations which resemble a machine instruction set. In this case, the

overhead may become prohibitive.

Using the techniques developed here, it is possible to transform a program into

a form more suitable for SIMD execution. The transformations can be applied

manually but the most important ones are also su�ciently well de�ned in order

to be performed by a compiler. Using a mixture of quantitative and qualitative

tools, the emulation can be made considerably more e�cient than a straightforward

approach.

The most interesting quantitative tools used here are Markov chain models of

control
ow. They model the behavior of a test loop in a quite general setting

and for probabilistic test loops it is even possible to derive closed form expressions

for optimal testing frequencies. They also play a key role in proving that �nding

optimal deterministic test loops is an NP-hard problem.

Acknowledgments

I would like to thank S. Egner, H. Hopp, M. U. Mock, R. Vollmar, P. A. Wilsey

and T. Worsch for the many interesting discussions which helped to develop and

re�ne the ideas described here.

Peter Sanders: Optimizing the Emulation of MIMD Behavior on SIMD Machines 12

References

[1] N. Abu-Ghazaleh, P. A. Wilsey, X. Fan, and D. Hensgen. Variable instruction

issue for e�cient MIMD interpretation on SIMD machines. In H. J. Siegel,

editor, Eight International Parallel Processing Symposium, Cancun, 1994.

[2] H. G. Dietz and W. E. Cohen. A massively parallel mimd implemented by

simd hardware. Technical Report TR-EE 92-4, Purdue University, 1992.

[3] X. Fan, N. N. Abu-Ghazaleh, and P. A. Wilsey. On the complexity of schedul-

ing MIMD operations for SIMD interpretation. Journal of Parallel and Dis-

tributed Computing, 29:91{95, 1995.

[4] R. Feldmann, P. Mysliwietz, and B. Monien. Studying overheads in massively

parallel min/max-tree evaluation. In ACM Symposium on Parallel Architec-

tures and Algorithms, pages 94{103, 1994.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman and

Company, New York, 1979.

[6] R. v. Hanxleden and K. Kennedy. Relaxing SIMD control
ow constraints

using loop transformations. SIGPLAN Notices, pages 188{199, 1992.

[7] H. Hopp and P. Sanders. Parallel game tree search on SIMD machines. In

Workshop on Algorithms for Irregularly Structured Problems, number 980 in

LNCS, pages 349{361, Lyon, 1995. Springer.

[8] M. Nilsson and H. Tanaka. MIMD execution by SIMD computers. Journal

of Information Processing, 13(1):58{61, 1990.

[9] C. Powley, C. Ferguson, and R. E. Korf. Depth-�rst heuristic search on a

SIMD machine. Arti�cial Intelligence, 60:199{242, 1993.

[10] P. Sanders. Emulating MIMD behavior on SIMD machines. In Interna-

tional Conference Massively Parallel Processing Applications and Develop-

ment, Delft, 1994. Elsevier.

[11] P. Sanders. Massively parallel search for transition-tables of polyautomata. In

Parcella 94, VI. International Workshop on Parallel Proccessing by Cellular

Automata and Arrays, pages 99{108, Potsdam, 1994.

[12] P. Sanders. E�cient emulation of MIMD behavior on SIMD machines. Tech-

nical Report IB 29/95, Universit�at Karlsruhe, Fakult�at f�ur Informatik, 1995.

[13] S. Tomboulian and M. Pappas. Indirect addressing and load balancing for

faster solution to Mandelbrot set on SIMD architectures. In 3rd Symposium

on the Frontiers of Massively Parallel Computation, pages 188{199, 1992.

