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Abstract

High performance applications involving large data sets

require the e�cient and 
exible use of multiple disks.

In an external memory machine with D parallel, inde-

pendent disks, only one block can be accessed on each

disk in one I/O step. This restriction leads to a load

balancing problem that is perhaps the main inhibitor

for adapting single-disk external memory algorithms to

multiple disks. This paper shows that this problem can

be solved e�ciently using a combination of randomized

placement, redundancy and an optimal scheduling algo-

rithm. A bu�er of O(D) blocks su�ces to support e�-

cient writing of arbitrary blocks if blocks are distributed

uniformly at random to the disks (e.g., by hashing). If

two randomly allocated copies of each block exist, N ar-

bitrary blocks can be read within dN=De+1 I/O steps

with high probability. In addition, the redundancy can

be reduced from 2 to 1 + 1=r for any integer r. These

results can be used to emulate the simple and power-

ful \single-disk multi-head" model of external comput-

ing [1] on the physically more realistic independent disk

model [33] with small constant overhead. This is faster

than a lower bound for deterministic emulation [3].

1 Introduction

Despite of ever larger internal memories, even larger

data sets arise in important applications like video-on-

demand, data mining, electronic libraries, geographic

information systems, computer graphics, or scienti�c

computing. Often, no size limits are in sight. In this

context, it is necessary to e�ciently use multiple disks

in parallel in order to achieve high bandwidth.

This situation can be modeled using the one proces-

sor version of Vitter and Shriver's parallel disk model :

A processor with M words of internal memory is con-

nected to D disks. In one I/O step, each disk can read

or write one block of B words. For simplicity, we also

assume that I/O steps are either pure read steps or pure

write steps (Section 6.1 gives more details).

�

Max-Planck-Institute for Computer Science, Im Stadtwald,

66123 Saarbr�ucken, Germany, sanders@mpi-sb.mpg.de.

y

Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA

Eindhoven, The Netherlands, {sebastian.egner,jan.korst}@

philips.com.

E�cient single-disk external memory algorithms

are available for a wide spectrum of applications (e.g.

[32]), yet parallel disk versions are not always easy

to derive. We face two main tasks: �rstly to expose

enough parallelism so that at least D blocks can be

processed concurrently and secondly to ensure that the

blocks to be accessed are evenly distributed over the

disks. In the worst case, load imbalance can completely

spoil parallelism increasing the number of I/O steps by

a factor of D. This paper solves the load balancing

problem by placing blocks randomly, and, in the case of

reading, by using redundancy.

1.1 Summary of Results. In Section 2, we use

queuing theory, Cherno� bounds and the concept of

negative association [10] to show that writing can be

made e�cient if a pool of O(D=�) blocks of internal

memory are reserved to support D write queues. This

su�ces to admit (1 � �)D new blocks to the write

queues during nearly every write step. Subsequent read

requests to blocks that have not yet been written, can

be served from the write queues.

Since our model assumes separate read and write

steps, these two issues can be analyzed separately. A

parallel read is more di�cult to schedule since it has

to wait until all requested blocks have been read. In

Section 3, we investigate random duplicate allocation

(RDA) that uses two randomly allocated copies of each

logical block. Which of the two copies is to be read is

optimally scheduled using maximum 
ow computations.

We show thatN blocks can be retrieved using dN=De+1

parallel read steps with high probability (whp). In

Section 4 we explain why the optimal schedules can

be found much faster than the worst-case bounds of

maximum 
ow algorithms would suggest.

RDA is generalized in Section 5. Instead of writing

two copies of each logical block, we split the logical block

into r sub-blocks and produce an additional parity sub-

block that is the exclusive-or of these sub-blocks. These

r + 1 sub-blocks are then randomly placed as before.

When reading a logical block, it su�ces to retrieve

any r out of the r + 1 pieces|a missing sub-block

is always the exclusive-or of the retrieved sub-blocks.

Mixed workloads with di�erent degrees of redundancy

are possible. Much of the analysis also goes through as



before. At the price of increasing the logical block size

by a factor of r, we reduce the redundancy of RDA from

2 to 1 + 1=r.

The techniques for reading and writing can be

joined to a far-reaching result, namely that Aggarwal

and Vitter's multi-head disk model [1] that allows

access to D arbitrary blocks in each I/O step, can

be emulated on the independent disk model [33] using

only small linear overhead factors. This is faster than

a lower bound on deterministic emulation by Armen

[3] which shows that 
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I/O steps are

needed for emulating T I/O steps of a multi-head

algorithm for a problem of size N . In Section 6,

we summarize how this can be exploited and adapted

to yield improved parallel disk algorithms for many

\classical" external memory algorithms for sorting, data

structures and computational geometry, as well as for

newer applications like video-on-demand or interactive

computer graphics.

1.2 Related Work. The predominant general tech-

nique to deal with parallel disks in practice is striping

[27, 24]. In our terminology this means using logical

blocks of size DB, which are split into D sub-blocks of

size B|one for each disk. This yields a perfect load

balance but is only e�ective if the application can make

use of huge block sizes. For example, at currently real-

istic values of D = 64 and B = 256 KByte we would get

logical blocks of 16 MByte. Refer to [17] for a detailed

discussion why this is costly in video servers. In many

external memory algorithms striping converts a factor

log

M=B

N in the I/O bound to a factor log

M=(DB)

N

which can be signi�cantly larger.

Reducing access contention by random placement

is a well-known technique. For example, Barve et al.

[5] use it for a simple parallel disk sorting algorithm.

However, in order to access N blocks in (1 + �)N=D

steps, N must be at least 


�
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) logD
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. If N =

�(D), some disk will have to access �(logD= log logD)

blocks. Apparently, it has not been proven before that

in the case of writing, a small bu�er solves this problem.

Our results are also interesting from a more ab-

stract point of view independent of the external mem-

ory model. Load balancing when two randomly chosen

locations of load units are available has been studied

using several models { usually for the case N = D or

N = �(D). Azar et al. [4] show that an optimal on-

line strategy commits each arriving request to the least

loaded unit. This strategy achieves a maximum load

of O(log logD) whp. They also state that load O(1)

can be achieved using o�ine scheduling. In Section 4.2

we review how such o�ine algorithms can be used to

get approximately optimal schedules in linear time. For

PRAM simulation, fast parallel scheduling algorithms

have been developed even earlier [15]. PRAM simula-

tion using a 3-collision protocol achieves maximum load

3 for N = D using O(log logD) iterations [20, Sec-

tion 3]. This already works for O

�

(logD)

3

�

-universal

classes of hash functions. Similar results hold for allo-

cation strategies with lower redundancy such as the ones

we describe in Section 5. We reduce the gap between

dN=De and the maximal load from a a constant factor

to the additive constant one

Heuristic load balancing algorithms using redun-

dant storage are used by a number of authors in mul-

timedia applications [30, 31, 17, 21]. Even the idea of

a parity sub-block built out of r data sub-blocks has

been used by several researchers [6, 7]. The �rst op-

timal scheduling algorithm for RDA was presented in

[17]. This and other papers give convincing experimen-

tal evidence that RDA is a good policy yet no closed

form results were known which prove that the same is

true for systems of arbitrary size or which explain why

RDA is so good. Our results close this gap. We prove

the optimality of the scheduling algorithm, generalize

it to parity encoding, analyze the quality achieved, and

speed up the scheduling algorithm.

2 Queued Writing

This section shows that a fraction of 1 � � of the

peak bandwidth for writing can be reached by making

W = O(D=�) blocks of internal memory available

to bu�er write requests. This holds for any access

pattern (Theorem 2.1), assuming that logical blocks are

mapped to disks with a random hash function

1

. The

bu�er consists of queues Q

1

; : : : ; Q

D

, one for each disk.

Initially, all queues are empty. Then the application

invokes the following procedure to write up to (1� �)D

blocks. (In practice one can simply use � = 0 refer to

Section 6.2 for a discussion.)

write((1� �)D blocks):

append blocks to Q

1

; : : : ; Q

D

;

write-to-disks(Q

1

; : : : ; Q

D

);

while jQ

1

j+ � � �+ jQ

D

j > W do

write-to-disks(Q

1

; : : : ; Q

D

).

1

The hash function hmaps block number i, starting at external

memory address iB, to disk h(i). The assumption that the hash

function behaves like a true random function is quite similar to

the usual assumption of randomized algorithms that the pseudo-

random number generators used in practice produces true random

numbers. However, in our case we can do even better. We could

simply use a RAM resident directory with random entries for each

block. This is possible since we need only a few bytes of RAM for

a disk block with hundreds of kilobytes. The additional hardware

cost for this RAM is negligible in many practical situations.



After each invocation of write, the queues con-

sume at most W internal memory

2

. The procedure

write-to-disks stores all �rst blocks of the non-empty

queues onto the disks in parallel. Note that read re-

quests to blocks pending in the queues can be serviced

directly from internal memory.

3

The remainder of this section contains the proof of

the following statement which represents the main result

on writing, namely that a global bu�er size W which is

linear in D su�ces to ensure that on the average, a call

of the write procedure incurs only about one I/O step.

Theorem 2.1. Consider W = (ln 2 + �)D=� for some

constant � > 0 and let n

(t)

be the number of calls to

write-to-disks during the t-th invocation of write.

Then En
(t)

� 1 + e

�
(D)

:

The idea behind the analysis: By reducing the

arrival rate to 1 � � we can bound the queues by

the stationary distribution of a queuing system with

batched arrivals. This means that the while-loop is

entered infrequently (Lemma 2.2) for a suitably chosen

W . As the �rst step, we derive the expected queue

length and a Cherno�-type tail bound for one queue.

Lemma 2.1. Let Q

(t)

i

be the length of Q

i

at the t-

th invocation of write after the new blocks have been

appended Then EQ
(t)

i

� 1=(2�) and

P

h

Q

(t)

i

> q

i

< 2e

��q

for all q > 0.

Proof. Clearly, the queues can only become shorter if

the while-loop is entered. Hence, it is su�cient for an

upper bound on the queue length to consider the case

where W is so large that this never happens.

Let X

(t)

i

denote the number of blocks that are ap-

pended to Q

i

at the t-th invocation of write. Then,

X

(1)

i

;X

(2)

i

; : : : are independent B((1 � �)D; 1=D) bino-

mially distributed random variables. We describe the

queue Q

i

together with its input X

(1)

i

;X

(2)

i

; : : : as a

queuing system with batched arrivals. In particular, one

block can leave per time unit and a B((1� �)D; 1=D)-

distributed number of blocks arrives per time unit. We

�rst derive the probability generating function (pgf) of

Q

i

for the stationary state by adapting the derivation

2

During the execution of write more thanW blocks may reside

in the queues. The additional memory is borrowed from the block

bu�ers handed over by the calling application program.

3

If one insists on �nding the result of the entire computation

in the external memory, then the queues have to be 
ushed

at the very end of the program. However, this e�ort can be

amortized over the entire computation, and using Lemma 2.1 it

is easy to show that max(Q

(t)

1

; : : : ;Q

(t)

D

) = O

�

logD

�

�

with high

probability.

from [23, Section 12-2] to the case of batched arrivals.

Let G

t

(z) be the pgf of Q

(t)

i

. Then, G

0

(z) = 1 and for

all t 2 f0; 1; : : :g

G

t+1

(z) =

�

z

�1

G

t

(z) + (1� z

�1

)G

t

(0)

�

�H(z)

where H(z) = (z=D + 1� 1=D)

(1��)D

is the pgf of the

binomially distributed variable X

(t)

i

. Since the average

rate of arrival is 1 � � and the rate of departure is

1, a stationary state exists. In the stationary state

G

t+1

= G

t

and by normalizing G(1) = 1 we �nd the

stationary pgf

G(z) =

(1� z)�

1� zH(z)

�1

:

We now show that the stationary distribution is an

upper bound on the distribution of Q

(t)

i

for all t in the

sense

P

h

Q

(t)

i

> q

i

� P

h

Q

(1)

i

> q

i

for all q > 0,

where Q

(1)

i

is a G-distributed random variable describ-

ing the steady state. To see the bound, consider two

queues processing identical input but with di�erent ini-

tial length. Then in any step, the di�erence in length

either remains the same or gets reduced by one. This

continues until (possibly) the lengths become equal for

the �rst time and from then on the queues coincide for

all time because they process the same input.

Thus, EQ
(t)

i

� EQ
(1

i

) = G

0

(1) and

G

0

(1) =

1

2�

�

1� �+D�

2

2D�

�

1

2�

:

For the tail bound, note that ln(1+x) < x for x > 0

implies lnH(e

�

) < (1� �)(e

�

� 1). Thus

G(e

�

) <

�(1� e

�

)

1� exp(�� (1� �)(e

�

� 1))

< 2:

The tail bound follows from the general tail inequality

P

h

Q

(1)

i

> q

i

< G(e

�

)e

��q

for all q > 0 (from [13,

Exercise 8.12a]).

Based on Lemma 2.1 we give an upper bound on the

probability that the while-loop is entered for a given

limit W = qD of internal memory.

Lemma 2.2. Let Q

(t)

= Q

(t)

1

+ � � � + Q

(t)

D

with Q

(t)

i

as

in Lemma 2.1. Then EQ
(t)

� D=(2�) and

P

h

Q

(t)

> qD

i

< e

�(�q�ln 2)D

for all q > 0.



Proof. The technical problem here is that Q

(t)

1

; : : : ;Q

(t)

D

are not independent. However, the variables are nega-

tively associated (NA) in the sense of [10, De�nition 3]

4

as we will now show.

De�ne the indicator variable B

(t)

i;k

= 1 if the k-th

request of the t-th invocation of write is placed in Q

i

and B

(t)

i;k

= 0 otherwise. Then [10, Proposition 12]

states that all B

(t)

i;k

are NA. Furthermore, Q

(t)

i

is a

non-decreasing function of all B

(t

0

)

i;k

for all k and all

t

0

� t, since adding a request to Q

i

can only increase

the queue length in the future. In this situation, [10,

Proposition 8 (2.)] implies that Q

(t)

1

; : : : ;Q

(t)

D

are NA.

Now we can use Cherno�'s method to derive the

tail bound. Consider Markov's inequality

P

h

Q

(t)

> W

i

= P

h

e

�Q

(t)

> e

�W

i

< e

��W

Ee
�Q

(t)

:

Using the negative association

Ee
�Q

(t)

= Ee
�

P

i

Q

(t)

i

�

Y

i

Ee
�Q

(t)

i

=

�

Ee
�Q

(t)

1

�

D

:

Since Ee
�Q

(t)

1

= G(e

�

) < 2 (proof of Lemma 2.1) the

tail bound follows. The bound on the expected value

follows directly from Lemma 2.1 and the linearity of

the expected value.

We are now ready to prove Theorem 2.1, the main

result of this section.

Proof. Write-to-disks is called at least once during

the t-th invocation of write. Lemma 2.2, with W=D =

q = (ln(2)+ �)=�, gives the probability that the body of

the while-loop is entered

p = P

h

Q

(t)

> W

i

� e

�(�W=D�ln(2))D

= e

��D

:

Even in the worst case afterW +D iterations all queues

must be empty. Thus, the expected number of calls to

write-to-disks is

En
(t)

� 1 + p � (W +D) = 1 +O

�

D

�

�

e

��D

which is bounded by 1+e

�
(D)

.

4

For every two disjoint subsets of fQ

(t)

1

; : : : ;Q

(t)

D

g, A and B,

and all functions f : R

jAj

! R and g : R

jBj

! R which are both

nondecreasing or both nonincreasing,

E[f(A)g(B)] � E[f(A)]E[g(B)]:

3 Random Duplicate Allocation

In this section, we investigate reading a batch of

N logical blocks from D disks. There are copies

of block i on disks u

i

and v

i

. The batch is de-

scribed by the undirected allocation multigraph G

a

=

(f1::Dg; (fu

1

; v

1

g; : : : ; fu

N

; v

N

g)) |there can be mul-

tiple edges between two nodes. As in Section 2, logical

blocks are mapped to the disks with a hash function

assumed to be random. The logical block starting at

external memory address kB is mapped to the disks

h(2k) and h(2k+1) using the hash function h.

5

There-

fore, G

a

is a random multigraph with D nodes and N

edges chosen independently and uniformly at random.

A schedule for the batch is a directed version G

s

of G

a

. (The directed edge (u

i

; v

i

) means that block

i is read from disk u

i

.) The load L

u

(G

s

) of a node

u is the outdegree of u in the schedule G

s

. (We

omit \(G

s

)" when it is clear from the context which

schedule is meant.) The maximum load L

max

(G

s

) :=

max(L

1

(G

s

); : : : ; L

D

(G

s

)) gives the number of read

steps needed to execute the schedule. Finally, L

�

max

is

the load of an optimal schedule. This is a schedule G

s

for G

a

with minimal L

max

(G

s

).

The main result of this section is the following

theorem, which is proven in Section 3.2.

Theorem 3.1. Consider a batch of N randomly and

duplicately allocated blocks to be read from D disks.

Then, abbreviating b = dN=De,

P [L

�

max

> b+ 1] = O(1=D)

b+1

:

Note that Lemma 3.1 below also provides more accurate

bounds for small D and N that can be evaluated

numerically.

A di�culty in establishing Theorem 3.1 is that opti-

mal schedules are hard to analyze directly using proba-

bilistic arguments because their structure is determined

by a complicated scheduling algorithm. Therefore, we

�rst derive a characterization of optimal schedules in

terms of the allocation graph G

a

which is simply a ran-

dom graph. Since this result is of some independent in-

terest and of completely combinatorial nature, we have

separated it out into Section 3.1.

In Section 3.3, we explain how an optimal schedule

can be found in polynomial time using a small number of

maximum 
ow computations. Section 4 will then show

why optimal schedules can be found even faster than the

worst case bounds for maximum 
ow algorithms might

suggest.

5

We can additionally make sure that the two copies are

always mapped to di�erent disks. A re�ned analysis then yields

a probability bound O(1=D)

2b+1

in a strengthened version of

Theorem 3.1. For the sake of simplicity, we do not go into this.



3.1 Unavoidable Loads. Consider a subset � of

disks and de�ne the unavoidable load L

�

as the number

of blocks that have both copies allocated on a disk in �

(for a given batch of requests). The following Theorem

characterizes L

�

max

in terms of the unavoidable load.

Theorem 3.2. L

�

max

= max

;6=��f1::Dg

�

L

�

j�j

�

:

Proof. \�": For any �, a schedule fetches at least L

�

blocks from the disks in �. Hence, there must be at

least one disk u 2 � with load L

u

� dL

�

=j�je.

\�": It remains to show that there is always a

subset � with dL

�

= j�je � L

�

max

witnessing that L

�

max

cannot be improved. Consider an optimal schedule G

s

,

which has no directed paths of the form (v; : : : ; w) with

L

v

= L

�

max

and L

w

� L

�

max

� 2. Such a schedule always

exists, since in schedules with such paths, the number

of maximally loaded nodes can be decreased by moving

one unit of load from v to w by reversing the direction

of all edges on the path.

Choose a node v with load L

�

max

and let � denote

the set containing v and all nodes to which a directed

path from v exists. Using this construction, all edges

leaving a node in � also have their target in � so

that the unavoidable load L

�

is simply

P

u2�

L

u

. By

de�nition of G

s

and v, we get L

�

� 1+ j�j (L

�

max

� 1),

i.e., L

�

= j�j � 1= j�j+L

�

max

� 1. Taking the ceiling on

both sides yields

l

L

�

j�j

m

�

l

1

j�j

+ L

�

max

� 1

m

= L

�

max

as

desired.

An important consequence of Theorem 3.2 is that

perfect load balance (i.e. L

�

max

= N=D whp) is not

possible unless N = 
(D logD) since the allocation

graph G

a

contains isolated nodes.

3.2 Proof Outline of Theorem 3.1. It should �rst

be noted that, without loss of generality, we can assume

that N is a multiple of D, i.e., b = dN=De = N=D, since

it only makes the scheduling problem more di�cult if

we add D dN=De �N dummy blocks to the batch.

The starting point of the proof is the following

simple probabilistic upper bound on the maximum load

of optimal schedules.

Lemma 3.1. P [L

�

max

> b+ 1] �

D

X

d=1

�

D

d

�

P

d

where P

d

:= P [L

�

� d(b+ 1) + 1] for a subset � of size

d.

6
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Note that this bound already yields an e�cient way to esti-

mate P[L

�

max

> b+ 1] numerically since the cumulative distribu-

tion function of the binomial distribution can be e�ciently evalu-

ated by using a continued fraction development of the incomplete

Proof. By Theorem 3.2 and the principle

of inclusion-exclusion, P [L

�

max

> b+ 1] =

P [9� : L

�

> j�j(b+ 1)] �

P

D

d=1

�

D

d

�

P

d

since

�

D

d

�

is

the number of subsets of size d.

Lemma 3.1 is useful because L

�

only depends on

the allocation graph G

a

and is binomially B(bD; d

2

=D

2

)

distributed for j�j = d.

We use the following optimally accurate Cherno�

bound for the tail of the binomial distribution in order

to bound P

d

, the probability to overload a given set of

disks of size d.

Lemma 3.2. For any x > EL
�

,

P [L

�

� x] �

�

Np

2

x

�

x

�

1� p

2

1� x=N

�

N�x

:

Proof. The full paper gives a detailed proof which

basically consists in transforming [19, Lemma 2.2].

The technically most challenging part is to further

bound the resulting expressions to obtain easy to inter-

pret asymptotic estimates. We do this by splitting the

summation over d into three partial sums for d � D=8,

D=8 < d < Db=(b+1) and

P

d�Db=(b+1)

�

D

d

�

P

d

which is

simply zero.

Lemma 3.3.

X

d�D=8

�

D

d

�

P

d

= O(1=D)

b+1

Proof. In the full paper we prove that

�

D

d

�

P

d

�

�

d

D

�

db+1

e

d(b+1)+1

:

Viewing this bound as a function f(d) of d, it is easy

to check that f

00

(d) � 0 (di�erentiate, remove obviously

growing factors and di�erentiate again). Therefore, f

assumes its maximum over any positive interval at one

of the borders of that interval. We get

P

d�D=8

�

D

d

�

P

d

� f(1) +Dmax ff(2); f(�D)g =8.

f(1) = D

�b�1

e

b+2

= e(e=D)

b+1

= O(1=D)

b+1

Df(2)=8 = D(2=D)

2b+1

e

2b+3

=8 = O(1=D)

2b

Df(D=8)=8 = D(1=8)

Db=8+1

e

D(b+1)=8+1

=8

= O(D) e

D(b(1+ln(1=8))+1)=8

= e

�
(D)

:

All these values are in O(1=D)

b+1

.

Beta-function [26, Section 6.4]. Furthermore, most summands will

be very small so that is su�ces to use simple upper bounds on

�

D

d

�

P

d

for them. Overall, we view it as likely that P[L

�

max

> b+ 1]

can be well approximated in time O(D) yielding a more accurate

an faster bound than our simulation results from [17].
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Figure 1: Behavior of B

b

(p) for small b.

When j�j is at least a constant fraction ofD, P

d

actually

decreases exponentially with D.

Lemma 3.4.

X

D

8

<d<

Db

b+1

�

D

d

�

P

d

= O

�

p

D � 0:9

D

�

:

Proof. Remembering that p = d=D and N = bD we get

d(b+ 1) + 1 � d(b+ 1) = pD(b+ 1)

and using Lemma 3.2 we get

P

d

�

�

bDp

2

pD(b+1)

�

pD(b+1)

�

1�p

2

1�

pD(b+1)

bD

�

bD�pD(b+1)

=

�

�

bp

b+1

�

p(b+1)

�

1�p

2

1�p�p=b

�

b�p(b+1)

�

D

:

Note that D only appears as an exponent now.

�

D

d

�

=

�

D

pD

�

can be brought into a similar form. Using the

Stirling approximation (e.g. [34]) it can be seen that

�

D

pD

�

= O

�

q

D

pD(D�pD)

�

D

pD

�

pD

�

D

D�pD

�

D�pD

�

= O

�

q

1

Dpq

(p

�p

q

�q

)

D

�

= O

�

q

1

D

(p

�p

q

�q

)

D

�

for 1=8 < p < b=(b+ 1).

Since we are summing O(D) terms it remains to be

shown that

B

b

(p) :=

�

bp

b+1

�

p(b+1)

�

1�p

2

1�p�p=b

�

b�p(b+1)

p

p

q

q

� 0:9

for all 1=8 < p < b=(b + 1). For �xed b, this is

easy since B

b

(p) is a smooth function and because the

open right border of the interval is no problem since

lim

p!b=(b+1)

B

b

(p) = (b=(b+ 1))

2b

2

=(b+1)

< 0:9. Essen-

tially, for �xed b, the proof can be done \by inspec-

tion". Figure 1 shows the plots of the function B

b

(p)

for b 2 f1; 2; 3; 4g. One can make such an argument

more rigorous using interval arithmetic computations

(e.g. [14]).

For b � 5 we exploit that p

�p

q

�q

� 2 so that it also

su�ces to show that

f

p

(b) :=

�

pb

b+1

�

p(b+1)

�

1�p

2

1�p�p=b

�

b�p(b+1)

� 0:45 :

In Figure 1 it can be seen that this relation holds for

b = 5. In the full paper we show that for larger b the

maximum of f

p

(b) can only decrease. Here we only

outline the basic approach. For p � (b � 2)=b, f

p

(b)

can be shown to be non-increasing using calculus. For

p > (b � 2)=b, we make the substitution p :=

b��

b+1

and

then show that

g

�

(b) := f

p

(b)

�

p 

b� �

b+ 1

�

is non-increasing for its range of de�nition b � �. In

particular, for b � 5 and � � 5, g

�

(b) is de�ned and

non-increasing on the interval [b� 1; b]. We get

f

p

(b) = g

b�p(b+1)

(b)

� g

b�p(b+1)

(b� 1)

= f

(b�1)�(b�p(b+1))

(b�1)+1

(b� 1)

= f

p�(1�p)=b

(b� 1)

since p � (1 � p)=b � 1=2 for b � 5, � � 1, and

p > (b�2)=b � 3=5.

3.3 Finding Optimal Schedules. We can ef-

�ciently �nd an optimal schedule by transforming

the problem into a sequence of maximum 
ow com-

putations: Suppose we have a schedule G

s

=

(V;E) for a given batch G

a

, and we try to

�nd an improved schedule G

0

s

with L

max

(G

0

s

) =

L

0

< L

max

(G

s

). Then, consider the 
ow network

N = ((V [ fs; tg ; E

+

); c; s; t) where E

+

= E [

f(s; v) : L

v

(G

s

) > L

0

g [ f(u; t) : L

u

(G

s

) < L

0

g. Edges

(u; v) stemming from E have unit 
ow capacity

c(u; v) = 1; c(s; v) = L

v

(G

s

) � L

0

for (s; v) 2 E

+

;

c(u; t) = L

0

� L

u

(G

s

) for (u; t) 2 E

+

. s and t are

arti�cial source and sink nodes, respectively. The edges

leaving the source indicate how much load should 
ow

away from an overloaded node. Edges into the sink in-

dicate how much additional load can be accepted by

underloaded nodes.

If an integral maximum 
ow through N saturates

the edges leaving s, we can construct a new schedule



G

0

s

with L

max

(G

0

s

) = L

0

by 
ipping all edges in G

s

that

carry 
ow. Furthermore, if the edges leaving s are not

saturated, L

max

cannot be reduced to L

0

:

Lemma 3.5. If a maximum 
ow in N does not saturate

all edges leaving s, then L

�

max

> L

0

.

Proof. It su�ces to identify a subset � with unavoid-

able load L

�

> L

0

j�j. Consider a minimal s � t-

cut (S; T ). De�ne � := S � fsg. Since not all

edges leaving s are saturated, � is nonempty. Let

c

s

:=

P

(s;v)2E

0

c(s; v) denote the capacity of the edges

leaving s and let c

ST

:=

P

f(u;v):u2S;v2Tg

c(u; v) denote

the capacity of the cut. The unavoidable load of �

is L

�

= L

0

j�j + c

s

� c

ST

(by de�nition of the 
ow

network). By the max-
ow min-cut Theorem, c

ST

is

identical to the maximum 
ow. By construction we get

c

s

> c

ST

. Therefore, L

�

> L

0

j�j and by Theorem 3.2,

L

�

max

> L

0

.

An optimal schedule can now be found using binary

search in at most logN steps and much less if a good

heuristic initialization scheme is used [17]. Moreover,

Theorem 3.1 shows that the optimal solution is almost

always dN=De or dN=De + 1 so that we only need to

try these two values for L

0

most of the time.

4 Fast Scheduling

For very large D, the worst-case bounds for maximum


ow computations might become too expensive, since

eventually, the scheduling time exceeds the access time.

7

Therefore, we explain in Section 4.1, why slightly modi-

�ed maximum 
ow algorithms can actually �nd an opti-

mal schedule in time O(D logD) with high probability.

In Section 4.2 we outline how previous results can be

adapted to yield approximate schedules in linear time.

4.1 Fast Flows

Theorem 4.1. Given a batch of N = �(D) blocks.

8

Let b = dN=De and de�ne a constant 0 < � � 1=5. An

schedule with maximum load b+1 can then be found in

time O(D logD) with probability 1�O(1=D)

b+1��

.

The full paper develops a proof. Here we give a sum-

mary. First note, that maximum 
ow algorithms essen-

tially compute optimal schedules by removing all paths

from overloaded to underloaded nodes. Our approach

is to remove only paths with logarithmic length. We

show that this either yields a schedule with maximal

7

In our small prototype server with eight disks scheduling time

is still negligible however.

8

The assumption N = �(D) is for technical convenience only.

Note that it encompasses the most interesting case.

load at most b + 1 or implies the existence of a set of

disks � with rather high load. Although this load is

slightly smaller than the load predicted by Theorem 3.2

for the case that paths of arbitrary length have been

considered, we demonstrate how the probabilistic anal-

ysis from Section 3.2 can be generalized to show that a

set � with such a high load is improbable.

Finally, we explain why the required 
ow compu-

tations are easier if only paths of logarithmic lengths

are needed. In particular, it is almost trivial to see

why Dinic' algorithm can solve the problem in time

O

�

D log

2

D

�

and a revision of the analysis of pre
ow

push algorithms shows that those even work in time

O(D logD).

4.2 Linear Time Approximation. In their forth-

coming full paper on balanced allocation, Azar et al.

[4] give a construction that achieves maximum load 10

for N = D. This is mainly of theoretical interest but

they attribute a method that achieves maximum load 2

for N � 1:6D to Frieze. A similar result is described

in more detail by Czumaj and Stemann in the full pa-

per [8, Section 7] using a result by Pittel, Spencer, and

Wormald on \k-cores" [25]. For N � 1:67D it is un-

likely that there is any 3-core, i.e., a subset of nodes

of G

a

which induces a subgraph with minimum degree

3. Therefore, an algorithm which repeatedly removes

nodes v with minimal degree by committing all its inci-

dent requests to v will yield a schedule with maximum

load 2 whp.

This acutally yields a reasonable practical algo-

rithm. First note that it can be implemented in linear

time using a bucketed priority queue with one bucket for

each possible node degree. By splitting the input into

dN=1:67e subbatches one gets a schedule with maximum

load 2 dN=1:67e in linear time. A further improvement

is possible by using subbatches of size up to 2:57D. Us-

ing similar arguments as before it can be shown that

those can be scheduled with maximum load 3, yielding

a slightly better load balance. One should not apply

the algorithm to larger subbatches however since it then

deteriorates approaching a maximum load of 2N=D for

N � D logD.

5 Reducing Redundancy

We model this more general storage scheme already

outlined in the introduction in analogy to RDA: The

allocation of r + 1 sub-blocks of a logical block is

coded into a hyperedge e 2 E of a hypergraph H

a

=

(f1::Dg; E) connecting the r+1 nodes (disks), to which

sub-blocks have been allocated. Both e and E are

multisets. A schedule is a directed version of this

hypergraph H

s

, where each hyperedge points to the



disk which need not access the sub-block. RDA is the

special case where all hyperedges connect exactly two

nodes. Note that not all edges need to connect the

same number of nodes. On a general purpose server,

di�erent �les might use di�erent trade-o�s between

storage overhead and logical block size. A logical block

without redundancy can be modeled by an edge without

an outgoing connection.

The unavoidable load of a subset of disks � is

the di�erence between the number of times an ele-

ment of � appears in an edge and the number of

incident edges. Formally, L

�

:=

P

e2E

j� \ fegj �

jfe 2 E : � \ E 6= ;gj. With these de�nitions, Theo-

rem 3.2 can be adapted to hypergraphs and the proof

can be copied almost verbatim. Maximum 
ow algo-

rithms for ordinary graphs can be applied by coding

the hypergraph into a bipartite graph in the obvious

way. Lemma 3.5 is also easy to generalize.

The most di�cult part is again the probabilistic

analysis. We would like to generalize Theorem 3.1 for

arbitrary r. Indeed, we have no analysis yet which holds

for all values of r and N=D. Yet, in the full paper, we

outline an analysis which can be applied for any �xed r

(we do that for r � 10) and yield the desired bound for

su�ciently large N=D but still for all D. This already

su�ces to analyze a concrete application in a scalable

way, and to establish a general emulation result between

the multi-head model and independent disks.

6 Applications and Re�nements

Sections 2 and 3 treat queued writing and reading with

RDA as two independent techniques. We now combine

them into a general result on emulating multi-headed

disks in Section 6.1. Further re�nements that combine

advantages of randomization and striping are outlined

in Section 6.2. In Section 6.3 we give some examples

of how our results can be used to improve the known

bounds for external memory problems. Applications

for multimedia are singled out in Section 6.4, since

they served as a \breeding ground" for the algorithms

described here. In the full paper we explain how

the coding scheme can be further generalized to allow

reconstruction of a logical block from r out of w �

r subblocks using Maximum Distance Separable codes

[18, 12]. This allows more 
exible tradeo�s between low

redundancy and high fault tolerance.

6.1 EmulatingMulti-Headed Disks. We compare

the independent disk model and the concurrent access

multi-headed disk model under the simplifying assump-

tion that I/O steps are either read steps or write steps.

Definition 6.1. Let MHDM-I-O

D;B;M

(i; o) denote

the set of problems

9

solvable on a D-head disk with

block size B and internal memory of size M using

i parallel read steps and o parallel write steps. Let

IPDM-I-O

D;B;M

(i; o) denote the corresponding set of

problems solvable with D independent single headed

disks with expected complexity i and o assuming the

availability of a random

10

hash function.

Using queued writing (Theorem 2.1) and RDA (Theo-

rem 3.1), we can immediately conclude:

Corollary 6.1. For any 0 < � < 1 and b 2 N,

MHDM-I-O

bD;B;M

(i; o)

� IPDM-I-O

D;B;M+O(D=�+bD)

(i

0

; o

0

)

where i

0

= i � (b+1)+O(i=D) and o

0

= o � 2(b=(1� �) +

e

�
(D)

).

Aggarwal and Vitter's original multi-head model [1]

allows read and write operation to be mixed in one I/O

step. By bu�ering write operations, this more general

model could be emulated on the above MHDM-model

with an additional slowdown factor of at most two.

However, nobody prevents us from mixing reads and

writes in the emulation. The write queues can even

be used to saturate underloaded disks during reading.

We have only avoided considering mixed reading and

writing to keep the analysis simple.

The parity encoding from Section 5 can be used to

reduce the overhead for write operations from two to

1+ 1=r at the price of increasing the logical (emulated)

block size by a factor of r.

6.2 Re�nements. It may be argued that striping,

i.e., allocating logical block i to disk i mod D is more

e�cient than random placement for applications access-

ing only few, long data streams, since striping achieves

perfect load balance in this case. We can get the

best of both worlds by generalizing randomized striping

[5, 16, 30], where long sequences of blocks are striped

using a random disk for the �rst block.

We propose to allocate short strips of D consecutive

blocks in a round robin fashion. A hash function h is

only applied to the start of the strip: Block i is allocated

to disk (h(i div D) + i mod D) + 1. This placement

policy has the property that two arbitrary physical

blocks i

0

and j

0

are either placed on random independent

disks or on di�erent disks, and similar properties hold

for any subset of blocks. In the case of redundant

allocation, each copy is striped independently.

9

In a complexity theoretic sense.

10

Using the collision protocols from [20] the same asymptotic

bounds can be proven for O

�

(logD)

3

�

-universal classes of hash

functions at the cost of larger constant factors.



We have no formal proof yet but conjecture that

our analysis extends to this random striped placement.

Some applications are described below.

A more radical measure is to replace the hash

function by a directory that maps logical blocks to disks.

We can then dynamically remap blocks. In particular,

we can write exactly D blocks in a single parallel write

step by generating a random permutation of the disk

indices, and mapping the blocks to be written to these

disks. Note that, in practice, the additional hardware

cost for a directory is relatively small, because a block

on a disk is much more expensive than the directory

entry in RAM.

6.3 External Memory Algorithms. We �rst con-

sider the classical problem of sortingN keys, since many

problems can be solved externally using sorting as a

subroutine [32]. Perhaps the best algorithm for both a

single disk and a parallel multi-head disk is multi-way

merge sort. This algorithm can be implemented using

about 2

N

DB

log

M=B

N

M

I/Os [16]. Ingenious determin-

istic algorithms have been developed that adapt multi-

way merging to independent disks [22]. Since the known

deterministic algorithms increase the number of I/Os

by a considerable factor, Barve et al. [5] have developed

a more practical algorithm based on randomized strip-

ing, which also achieves O

�

N

DB

log

M=B

N

M

�

I/Os ifM =


(D logD). Our general emulation result does not have

this restriction and achieves 2(1+

1

r

+�)

N

DB

log


(M=B)

N

M

for � > 0. Further practical improvements are possible

using prefetching, randomized striping and mixing of

input and output steps.

Using randomized striping and the fact that queued

writing does not require redundant allocation, we can

even avoid redundant storage. We use distribution sort

[32, Section 2.1] and select O

�

M

B

�

partitioning elements

fs

0

, s

1

, : : : , s

k�1

, s

k

g based on a random sample. The

input sequence is read using striping and all elements

are classi�ed into k buckets such that bucket j contains

all elements x with s

j�1

� x < s

j

. The buckets are �les

organized by randomized striping without redundancy.

This can be done using

N

BD

read steps and

N

BD(1��)

write steps using queued writing for any constant � > 0.

Since the buckets are again striped, we can apply the

algorithm recursively to each bucket. Overall we get

2N

DB(1��)

log


(M=B)

N

M

I/Os plus a small overhead for

retrieving samples. The full paper gives more detail.

E�cient external memory algorithms for more com-

plicated problems than sorting, have so far mainly been

developed for the single disk case. However, many of

them are easily adapted to the multi-head model so that

our emulation result yields randomized algorithms for

parallel independent disks, which need a factor �(D)

fewer I/O steps than using one disk.

The batched geometric problems mentioned in [32]

(range queries, line segment intersection, 3D convex

hulls, triangulation of point sets, point location, etc.)

can even be handled without redundancy using random-

ized striping and queued writing. The same is true for

many data structure problems, e.g., bu�er trees [2].

Despite some overhead for redundancy, algorithms

based on reading from multiple sources can still be the

best choice. For example, although bu�er trees yield an

asymptotically optimal algorithm for priority queues,

specialized algorithms based on multi-way merging can

be so much faster [28] that a �fty percent overhead for

duplicate writing is not an issue.

Parallel algorithms are a productive source of exter-

nal memory algorithms. There are even formal frame-

works for this approach which emulate parallel algo-

rithms for the BSP model [29, 9] or PRAMs [11] using

a single disk. Using Corollary 6.1 this result extends to

parallel disks.

6.4 Interactive Multimedia. In video-on-demand

applications, almost all I/O steps concern reading.

Hence, the disadvantage of RDA of having to write two

copies of each block is of little signi�cance to these ap-

plications. In addition, if many users have to be serviced

simultaneously by a video-on-demand server, then disk

bandwidth, rather than disk storage space tends to be

the limiting resource. In that case, the duplicate storage

of RDA need not imply that more disks are required for

storage. Otherwise, the redundancy can be reduced as

shown in Section 5. Similar properties hold for interac-

tive graphics applications [21]. In these applications it

is very important to be able to handle arbitrary access

patterns while at the same time to realize small response

times. In this respect, RDA clearly outperforms striping

and also random allocation without redundancy.
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