
Parallel Shortest Path for Arbitrary Graphs

?

U. Meyer and P. Sanders

Max-Plan
k-Institut f�ur Informatik

Im Stadtwald, 66123 Saarbr�u
ken, Germany.

{umeyer,sanders}�mpi-sb.mpg.de.

http://www.mpi-sb.mpg.de/{~umeyer,~sanders}

Abstra
t. In spite of intensive resear
h, no work-eÆ
ient parallel algo-

rithm for the single sour
e shortest path problem is known whi
h works

in sublinear time for arbitrary dire
ted graphs with non-negative edge

weights. We present an algorithm that improves this situation for graphs

where the ratio d

=� between the maximum weight of a shortest path

d

and a \safe step width" � is not too large. We show how su
h a step

width
an be found eÆ
iently and give several graph
lasses whi
h meet

the above
ondition, su
h that our parallel shortest path algorithm runs

in sublinear time and uses linear work. The new algorithm is even faster

than a previous one whi
h only works for random graphs with random

edge weights [10℄. On those graphs our new approa
h is faster by a fa
tor

of �(log n= log log n) and a
hieves an expe
ted time bound of O(log

2

n)

using linear work.

1 Introdu
tion

The single sour
e shortest path problem (SSSP) is a fundamental and well-studied

ombinatorial optimization problem with many pra
ti
al and theoreti
al appli-

ations [1℄. Let G = (V;E) be a dire
ted graph, jV j = n, jEj = m, let s be a

distinguished vertex of the graph, and
 be a fun
tion assigning a non-negative

real-valued weight to ea
h edge of G. The obje
tive of the SSSP is to
ompute,

for ea
h vertex v rea
hable from s, the weight of a minimum-weight (\shortest")

path from s to v, denoted by dist(v); the weight of a path is the sum of the

weights of its edges.

The theoreti
ally most eÆ
ient sequential algorithm on dire
ted graphs with

non-negative edge weights is Dijkstra's algorithm [5℄. Using Fibona

i heaps

its running time is given by O(n logn + m). Dijkstra's algorithm maintains a

partition of V into settled, queued and unrea
hed nodes and for ea
h node v

a tentative distan
e tent(v); tent(v) is always the weight of some path from s

to v and hen
e an upper bound on dist(v). For unrea
hed nodes, tent(v) =

1. Initially, s is queued, tent(s) = 0, and all other nodes are unrea
hed. In

ea
h iteration, the queued node v with smallest tentative distan
e is sele
ted

and de
lared settled and all edges (v; w) are relaxed, i.e., tent(w) is set to

?

Partially supported by the IST Programme of the EU under
ontra
t number IST-

1999-14186 (ALCOM-FT).

minftent(w); tent(v) +
(v; w)g. If w was unrea
hed, it is now queued. It is well

known that tent(v) = dist(v), when v is sele
ted from the queue.

The only known O(n logn +m) work parallel SSSP approa
h for arbitrary

dire
ted graphs based on Dijkstra's algorithm uses parallel relaxation of the

edges leaving a single node [7℄. It has running time O(n logn) on a PRAM

1

.

All existing algorithms with sublinear exe
ution time require
(n logn + m)

work (e.g., O(log

2

n) time and O(n

3

(log logn= logn)

1=3

) work [8℄). Some less

ineÆ
ient algorithms are known for planar digraphs [15℄ or graphs with separator

de
omposition [3℄.

Higher parallelism than in Dijkstra's approa
h
an be obtained by a version

of the Bellman-Ford algorithm [1℄ whi
h
onsiders all queued nodes with their

outgoing edges in parallel. However, it may remove nodes v from the queue for

whi
h dist(v) < tent(v) and hen
e may have to reinsert those nodes until they

are �nally settled. Reinsertions lead to additional overhead sin
e their outgoing

nodes may have to be rerelaxed.

The present paper is based on the�-stepping algorithmof [10℄ whi
h is a gen-

eralization of Dijkstra and Bellman-Ford: Tentative distan
es are kept in an array

B of bu
kets su
h that B[i℄ stores the unordered set fv 2 V : v is queued and

tent(v) 2 [i�; (i + 1)�)g. In ea
h phase, the algorithm removes all nodes from

the �rst nonempty bu
ket and relaxes all light edges (
(e) � �) of these nodes.

This may
ause reinsertions into the
urrent bu
ket. For the remaining heavy

edges, it is suÆ
ient to relax them on
e and for all when a bu
ket �nally re-

mains empty (see Figure 1). The parameter � should be small enough to keep

the number of reinsertions small yet large enough to exhibit a useful amount of

parallelism.

1.1 Overview and Summary of New Results

The simple parallelization of the �-stepping in [10℄ relies on the parti
ular prop-

erties of random graphs with random edge weights thus severely limiting its

usage. In Se
tion 2, we introdu
e a parallel �-stepping algorithm whi
h works

for arbitrary graphs in time O(

d

�

l

�

logn) and work O(m + n

�+

) whp

2

. The

parameters whi
h depend on the graph
lass and the step width are explained in

Se
tion 1.2. A further a

eleration is a
hieved in Se
tion 3 by a
tively introdu
ing

short
ut edges into the graph thereby redu
ing the number of times ea
h bu
ket

is emptied to at most two, i.e., the fastest eÆ
ient parallel exe
ution time is now

O((l

�

+ d

=�) logn) while performing O(m+n

0

�+

) work whp. In Se
tion 4 it is

explained how a good value for the step width � (whi
h limits n

0

�+

to O(m))

an be determined eÆ
iently and in parallel. Many of the PRAM results
an

be adapted to distributed memory ma
hines using te
hniques des
ribed in Se
-

tion 5. Finally, in Se
tion 6 we summarize the results and apply them on di�erent

1

We use the arbitrary CRCW PRAM model (
on
urrent read
on
urrent write par-

allel random a

ess ma
hine) [9℄ whi
h spe
i�es that an adversary
an
hoose whi
h

a

ess out of a set of
on
i
ting write a

esses is su

essful.

2

A result holds with high probability (whp) in the sense that the respe
tive bound is

met with probability at least 1� n

��

for any
onstant � > 0.

for ea
h v 2 V do tent(v) := 1

relax(s, 0); (* Sour
e node at distan
e 0 *)

while :isEmpty(B) do (* Some queued nodes left *)

i := minfj > i : B[j℄ 6= ;g (* Smallest nonempty bu
ket *)

R := ; (* No nodes deleted for bu
ket B[i℄ yet *)

while B[i℄ 6= ; do (* New phase *)

Req := �ndRequests(B[i℄, light) (* This may reinsert nodes *)

R := R [B[i℄; B[i℄ := ; (* Remember deleted nodes *)

relaxRequests(Req)

Req := �ndRequests(R, heavy) (* This may reinsert nodes *)

relaxRequests(Req)

Fun
tion �ndRequests(V

0

, kind : flight;heavyg) : set of Request

return f(w; tent(v) +
(v;w)) : v 2 V

0

^ (v;w) 2 E

kind

)g

Pro
edure relaxRequests(Req) for ea
h (w;x) 2 Req do relax(w, x)

Pro
edure relax(w, x) (* Shorter path to w? *)

if x < tent(w) then (* Yes: de
rease-key or insert *)

B[btent(w)=�
℄ := B[btent(w)=�
℄ n fwg (* Remove if present *)

B[bx =�
℄ := B[bx =�
℄ [fwg

tent(w) := x

Fig. 1. Sequential �-stepping.

graph
lasses. Although our new algorithm is more general than the spe
ialized

previous algorithm [10℄, it turns out to be a fa
tor of �(logn= log logn) faster

on random graphs. It has exe
ution time O(log

2

n) using linear work.

1.2 Notation and Basi
 Fa
ts

We have already used d

as an abbreviation for the maximumweight of a shortest

path, i.e., d

:= maxfdist(v) : dist(v) < 1g. Call an edge disjoint path with

weight at most � a �-path. Let C

�

denote the set of all node pairs hu; vi

onne
ted by some �-path (u; : : : ; v) and let n

�

:= jC

�

j. Similarly, de�ne C

�+

as the set of triples hu; v

0

; vi su
h that hu; v

0

i 2 C

�

and (v

0

; v) is a light edge and

let n

�+

:= jC

�+

j. Let n

0

�

(n

0

�+

) denote the number of simple �-paths (plus a

light edge). To simplify notation, we ex
lude very extreme graphs and assume

n = O(m), n

�

= O(n

�+

) and n

0

�

= O(n

0

�+

). The maximum �-distan
e l

�

is

de�ned to just ex
eed the number of edges needed to
onne
t any pair hu; vi 2 C

�

by a path of minimum weight, i.e.,

l

�

= 1 + max

hu;vi2C

�

minfjAj : A = (u; : : : ; v) is a minimum-weight �-pathg :

Similarly, let l

0

�

denote the number of edges in the longest simple �-path.

The graph theoreti
 results from [10℄ are relatively easy to generalize to see

that the number of phases performed by �-stepping is bounded by O(

d

�

l

�

) and

that the number of reinsertions (rerelaxations) is at most n

�

(n

�+

). For details

refer to the full paper [11℄ whi
h is available ele
troni
ally.

2 Parallelization

In this se
tion we develop a �rst parallelization of �-stepping whi
h works for

arbitrary graphs and prove the following bound:

Theorem 1. The single sour
e shortest path problem for dire
ted graphs with

n nodes, m edges, maximum path weight d

, maximum �-distan
e l

�

and n

�+

de�ned as in Se
tion 1.2
an be solved on a CRCW PRAM in time O(

d

�

l

�

logn)

and work O(m + n

�+

) whp.

Initialization, loop
ontrol, deleting nodes and generating a set `Req' of node-

distan
e pairs to be relaxed (we
all these requests) are easy to do in parallel if the

nodes are randomly assigned to PUs and if a global array stores the assignment.

The most diÆ
ult part is to s
hedule PUs for a
tually performing the re-

quests: several relaxations
an o

ur for one node in a phase, and the number

of su
h
on
i
ting relaxations
an vary arbitrarily and in an unpredi
table way.

On CRCW-PRAMs, we
an do the PU s
heduling eÆ
iently by grouping the

requests a

ording to the addressed nodes using the following lemma:

Lemma 1. Semi-sorting k re
ords with integer keys, i.e., permuting them into

an array of size k su
h that all re
ords with equal key form a
onse
utive blo
k,

an be performed in time O(k=p+ logn) using p PUs of a CRCW-PRAM whp.

Proof. First �nd a perfe
t hash fun
tion h : V ! 1::
k for an appropriate

onstant
. Using the algorithm of Bast and Hagerup [2℄ this
an be done in

time O(k=p+ logn) (and even faster) whp. Subsequently, we apply a fast, work

eÆ
ient sorting algorithm for small integer keys su
h as the one by Rajasekaran

and Reif [13℄ to sort by the hash values.

On
e the set of requests `Req' is grouped by re
eiving nodes w, we
an

use pre�x sums to s
hedule bp jReq(w)j= jReqj
 PUs for blo
ks of size at least

jReqj=p, and to assign smaller groups with a total of up to jReqj=p requests to

individual PUs. The PUs
on
erned with a group
olle
tively �nd a request with

minimumdistan
e in time O(jReqj =p+logp) and then relax it in
onstant time.

Summing the work and time for all l

�

d

=� phases yields the desired bound.

3 Finding Short
uts

In the analysis of the number of phases for our algorithms we bounded the

maximum number of iterations, l

�

, that are required until the
urrent bu
ket

under
onsideration remains �nally empty. It was already noti
ed in [6℄ that only

one iteration per bu
ket is needed if the bu
ket width is smaller than any edge

weight. No reinsertions o

ur in that
ase but in the presen
e of very small edge

weights, the number of bu
kets, d

=�, might be
ome very large due to the small

�. However, l

�

an be redu
ed to 2 by expli
itly introdu
ing a short
ut edge

(u; v) for ea
h node pair
onne
ted by a �-path.

What interests us here is how to �nd these edges in parallel and how the

sear
h itself
an be performed in a load balan
ed way. Although, we do not

know a general algorithm doing that using O(m + n

�+

) work, we
an solve the

problem if the number of simple �-paths is not too large. More pre
isely, the

remainder of this se
tion is devoted to establishing the following Theorem:

Theorem 2. There is an algorithm whi
h inserts an edge (u; v) with weight

(u; v) = dist(u; v) for ea
h shortest path (u; : : : ; v) with dist(u; v) � � us-

ing O(l

0

�

logn) time and O(m + n

0

�+

) work on a CRCW PRAM whp. (Where

dist(u; v) denotes the weight of a shortest path from u to v.)

Applying the results from Se
tion 2 we get:

Corollary 1. The single sour
e shortest path problem for dire
ted graphs with n

nodes, m edges, maximum path weight d

and n

0

�+

, l

0

�

as de�ned in Se
tion 1.2

an be solved on a CRCW PRAM in time O((l

0

�

+

d

�

) logn) and work O(m +

n

0

�+

) whp.

Figure 2 outlines a routine whi
h �nds short
uts by applying a variant of the

Bellman-Ford algorithm to all nodes in parallel. It solves an all-to-all shortest

path problem
onstrained to �-paths. The shortest
onne
tions found so far

are kept in a hash table of size O(n

0

�+

) (we
an use dynami
 hashing if we do

not know a good bound for n

0

�+

). This table plays a role analogous to that of

tent(�) in the main routine of �-stepping. The set Q stores a
tive
onne
tions,

i.e., triples (u; v; y) where y is the weight of a shortest known path from u to v

and where paths (u; : : : ; v; w) have not yet been
onsidered as possible shortest

onne
tions from u to w with weight y +
(v; w). In iteration i of the main

loop, the shortest
onne
tions using i edges are
omputed and are then used

to update `found'. Applying similar te
hniques as before, this routine
an be

implemented to run in O(l

0

�

logn) parallel time using O(m + n

0

�+

) work: We

need l

0

�

iterations ea
h of whi
h takes time O(logn) and work O(jQ

0

j) whp. The

overall work bound holds sin
e for ea
h simple �-path (u; : : : ; v), hu; vi
an be

a member of Q only on
e. Hen
e,

P

i

jQj � n+ n

0

�

and

P

i

jQ

0

j � n+ n

0

�+

.

Fun
tion �ndShort
uts(�) : set of weighted edge

found : HashArray[V � V ℄ (* return 1 for unde�ned entries *)

Q := f(u;u;0) : u 2 V g (* (start;destination;weight) *)

Q

0

: MultiSet

while Q 6= ; do

Q

0

:= ;

for ea
h (u; v; x) 2 Q dopar

for ea
h light edge (v;w) 2 E dopar

Q

0

:= Q

0

[f(u; w;x+
(v;w))g

semi-sort Q

0

by
ommon start and destination node

Q := f(u; v; x) : x = minfy : (u; v; y) 2 Q

0

gg

Q := f(u; v; x) 2 Q : x � � ^ x < found[(u; v)℄g

for ea
h (u; v; x) 2 Q dopar found[(u; v)℄ := x

return f(u; v; x) : found[(u; v)℄ <1g

Fig. 2. CRCW-PRAM routine for �nding short
ut edges

4 Determining �

In the
ase of arbitrary edge weights it is ne
essary to �nd a step width � whi
h

is large enough to allow for suÆ
ient parallelism and small enough to keep the

algorithm work-eÆ
ient. Although we expe
t that appli
ation spe
i�
 heuristi
s

an often give us a good guess for � relatively easily, for a theoreti
ally satisfying

result we would like to be able to �nd a good � systemati
ally.

We now explain how this
an be done if the adja
en
y lists have been

prepro
essed to be partially sorted : Let �

0

:= min

e2E

(e) and assume

3

that

�

0

> 0. The adja
en
y lists are organized into blo
ks of edges with weight

2

j

�

0

�
(e) < 2

j+1

�

0

for some integer j. Blo
ks with smaller edges pre
ede

blo
ks with larger edges.

4

Theorem 3. Let n

0

�

, n

0

�+

and l

0

�

be de�ned as in Se
tion 1.2 and
onsider

an input with partially sorted adja
en
y lists. For any
onstant �, there is an

algorithm whi
h identi�es a step width �, su
h that n

0

�+

� �m and n

0

2�+

> �m,

and whi
h
an be implemented to run in O((l

0

�

+log

�

�

0

) logn) time using O(m)

work whp.

The basi
 idea is to reuse the pro
edure �ndShort
uts(�) of Figure 2 but

to divide the
omputation into rounds. In round i, 0 � i � log

max

e2E

(e)

�

0

), we

set �

ur

= 2

i

�

0

and �nd all
onne
tions (u; v; x) with �

ur

� x < 2�

ur

. In

order to remain work eÆ
ient, a number of additional measures are ne
essary

however. We now outline the
hanges
ompared to the routine `�ndShort
uts'

from Figure 2. Most importantly, we have a bu
keted todo-list T . T [i℄ stores

entries (u; v; x; b) where (u; v; x) stands for a
onne
tion from u to v with weight

x, and b points to the �rst blo
k in the adja
en
y list of v whi
h may
ontain

edges (v; w) with 2

i

�

0

� x+
(v; w) < 2�2

i

�

0

. (Note that the number of bu
kets

may be arbitrarily large. In this
ase, we store the bu
kets in a dynami
 hash

table and only initialize those bu
kets whi
h a
tually store elements.)

At the beginning of round i, for ea
h entry (u; v; x; b) of T [i℄, the adja
en
y

list of v is s
anned beginning at blo
k b until a blo
k is en
ountered whi
h

annot produ
e any
andidate
onne
tions for bu
ket i. A new entry of the todo

list is produ
ed for the �rst bu
ket k > i for whi
h it
an produ
e
andidate

onne
tions. The
andidate
onne
tions found are used to initialize Q

0

.

Both this initialization step and the iteration on Q
an produ
e
andidate

onne
tions whose weights rea
h into bu
ket i+1. After removing dupli
ates and

longer
onne
tions than found before, we therefore split the remaining
andidates

into the new
ontent of Q and a set Q

next

storing
onne
tions with weight in

bu
ket i + 1.

At the end of round i, when Q �nally remains empty, we
reate new entries

in the todo-lists for all
onne
tions newly en
ountered in round i. In order to do

that, we keep tra
k of all new entries into `found' using two sets S and S

next

for

onne
tions with weights in bu
ket i and i+ 1, respe
tively. Q

next

and S

next

are

used to initialize Q and S in the next round respe
tively.

3

This assumption
an be removed.

4

This prepro
essing is trivially parallelizable on a node-by-node basis, we get a good

parallel prepro
essing algorithm for the
ase p = O(n=d) if d is the maximum out-

degree of a node.

The total number of
onne
tion-edge pairs
onsidered is monitored so that the

whole pro
edure
an be stopped as soon as it is noti
ed that this �gure ex
eeds

�m. At this time, the entries of `found'
onstitute at least all simple (�

ur

=2)-

paths. Thus, taking � := �

ur

=2 as the �nal step width, it is guaranteed that

the number of reinsertions and rerelaxations in a subsequent appli
ation of the

�-stepping will be bounded by O(m). On the other hand, n

0

2�+

> �m.

Using an analogous analysis as for the fun
tion `�ndShort
uts' it turns out

that the sear
h for �
an be implemented to run in O((l

0

�

+ log

�

�

0

) logn) time

using O(m) work where l

0

�

denotes the number of edges in the longest simple

�-path.

5 Adaptation to Distributed Memory Ma
hines

In this se
tion we
onsider the following distributed memory model: There are

p pro
essing units (PUs) numbered 0 through p � 1 whi
h are
onne
ted by

a
ommuni
ation network. Let T

routing

(k) denote the time required to route

k
onstant size messages per PU to random destinations. Let T

oll

(k) bound

the time to perform a (possibly segmented) redu
tion or broad
ast involving a

message of length k and assume that T

oll

(x)+T

oll

(y) � T

oll

(1)+T

oll

(x+y),

i.e.,
on
entrating message length does not de
rease exe
ution time. Note, that

on powerful inter
onne
tion networks likemultiported hyper
ubes we
an a
hieve

a time O(log p+ k) whp for T

routing

(k) and T

oll

(k).

So far it is unknown how to eÆ
iently implement the linear work semi-sorting

pro
edure for load-balan
ing on distributed memory

5

. However, if short
uts are

present we now explain how this problem
an be
ir
umvented. We also assume

that the nodes
an be randomly assigned to PUs using a
onstant time hash

fun
tion

6

ind(�) and that we know indegree(v) when looking at an edge (u; v).

Theorem 4. Given a dire
ted graph G with n nodes, m edges, maximum path

weight d

and n

�+

, l

�

as de�ned in Se
tion 1.2. Under the assumptions given

above, the single sour
e shortest path problem
an be solved in time

O

�

m+ T

routing

(m) + T

oll

(m) +

d

�

(T

oll

(1) + T

routing

(1))

�

on a distributed memory ma
hine with p PUs for m =

m+n

�+

p

and any given

sour
e node s whp.

We �rst simplify the sear
h algorithm to exploit the fa
t that in the presen
e

of short
uts,
lassifying edges as light or heavy is no longer important for the

5

The prepro
essing
an be done (somewhat ineÆ
iently) by implementing semi-

sorting using ordinary sorting or using a slower yet work eÆ
ient algorithm re-

quiring O(T

routing

(n

�

)) time for any positive
onstant �. Both alternatives yield a

work-eÆ
ient algorithm for powerful inter
onne
tion networks if the prepro
essing

overhead
an be amortized over suÆ
iently many sour
e nodes.

6

This is a
ommon assumption, e.g., in eÆ
ient PRAM simulation algorithms.

shortest path sear
h itself. By expli
itly treating intra-bu
ket edges (sour
e and

target reside in the same bu
ket) �rst, ea
h edge is relaxed at most on
e: After

bu
kets 0 through i� 1 have been emptied, a single relaxation pass through the

edges rea
hing from B[i℄ into B[i℄ suÆ
es to settle all nodes now in B[i℄. After

that, B[i℄
an be emptied by relaxing all edges rea
hing out of B[i℄ on
e.

The two most diÆ
ult parts are (1) generating the set of requests, i.e. iden-

tifying the set of edges that are to be relaxed and (2) assigning the requests

to their nodes and s
heduling the PUs for performing the relaxations. We start

with (1):

In a distributed memory setting we
annot dynami
ally s
hedule outgoing

edges between the PUs in the same way as we did for PRAMs. S
anning ad-

ja
en
y lists to generate requests is therefore load balan
ed using a stati
 as-

signment of edges to PUs: An adja
en
y list of size outdegree(v) is
olle
tively

handled by an out-group of PUs. Out-groups are sele
ted as follows: W.l.o.g.,

assume that p is a power of two minus one and the PUs are logi
ally arranged as

a
omplete binary tree. If outdegree(v) > p then all PUs parti
ipate in v's out-

group. Otherwise, a subtree rooted at a random PU is
hosen whi
h is just large

enough to a

ommodate one edge per PU, i.e., it
ontains 2

dlog(outdegree(v)+1)e

�1

nodes. Requests for a bu
ket
an now be generated by �rst sending the tentative

distan
e of the nodes in B[i℄ to the roots of out-groups responsible for them.

(We will later see where this information
omes from.) Then, the PUs pass all

the node-distan
e pairs they have re
eived down the tree in a pipelined fashion

and do the same for the distan
es of the nodes re
eived from above.

Now
onsider a �xed leaf PU j for a �xed iteration of the algorithm. (Sin
e

interior tree-nodes pass all their work downwards, interior PUs have no more

work to do than a leaf node.) LetX

i

:= 1 if PU j is part of the out-group of a node

i expanded in this iteration and X

i

= 0 otherwise. We have P [X

i

= 1℄ = 2

�h(i)

if the root of the out-group of node i is h(i) levels away from the root of the

PU-tree. The total number of nodes PU j has to work on is Y :=

P

k

i=1

X

i

if k

is the number of nodes expanded in the
urrent iteration and E[Y ℄ =

P

i

2

�h(i)

.

By de�nition of the size of subtrees, we get E[Y ℄ = O(K=p) if K is the total

number of edges leaving nodes expanded in this iteration. Using a Cherno�

bound with nonuniform probabilities [12, Theorem 4.1℄, it is now easy to see

that Y = O(K=p+log n) whp. Sin
e the
ommuni
ation pattern is just a slightly

generalized form of a broad
ast, distributing the tentative distan
es
an be done

in time O(T

oll

(K=p + logn)) whp. Summing over all iterations we get time

O(T

oll

(m=p + logn) + T

oll

(1)d

=�). Generating the a
tual request values is

then possible using lo
al
omputations only.

Now we ta
kle problem (2): how to assign the requests to nodes and s
hedule

PUs for performing the relaxations. The idea for arbitrary graphs is to postpone

the relaxation of an edge until the latest possible moment { just before the

bu
ket of the target node is emptied. Sin
e edges are relaxed only on
e (re
all

that we assume the presen
e of short-
uts), it pays to allo
ate an in-group of

size 2

dlog(indegree(v)+1)e

� 1 for node v analogously to the way out-groups are

allo
ated. Ea
h PU maintains an additional bu
ket stru
ture B

q

for the nodes

for whi
h it is part of the in-group. Requests are routed to a preassigned position

in the in-group, but this information is only used to pla
e the node into B

q

.

So, after iteration i � 1 is
omputed, the
ontent of B[i℄ is not yet known.

Rather, we �rst have to �nd B[i℄ =

S

B

q

[i℄. This
an be done lo
ally for ea
h

in-group using a pipelined tree operation whi
h is the
onverse of the operation

used for broad
asting in the out-groups. (Ea
h PU maintains a hash table of

nodes already passed up the tree.) Then, the result is broad
ast to all PUs

in the in-groups so that from now on, redundant entries of nodes in bu
kets

beyond B[i℄
an be deleted. Also, edges whi
h have not re
eived a request yet are

marked as super
uous. Requests ending up there in later iterations will simply

be dis
arded. Finally, the a
tual global minima are
omputed using another

pipelined redu
tion operation. Now, the heads of the in-groups are ready to

send the tentative distan
es of nodes in B[i℄ to the heads of the out-groups. The

analysis of these tree-operations is analogous the analysis for the out-groups.

6 Con
lusion

The parameters governing the performan
e of�-stepping are the maximumpath

weight d

and the largest step width � whi
h ensures that there is only a linear

number of �-
onne
tions (plus a light edge), n

�

(n

�+

). If we want to introdu
e

short
uts eÆ
iently, the
hoi
e of � must also bound the number of simple �-

paths (plus a light edge), n

0

�

(n

0

�+

). For parallelization, the
orresponding l

0

�

has some in
uen
e too: On a CRCW PRAM our new algorithm with short
ut

insertion needs O((l

0

�

+

d

�

) logn) time and O(m + n

0

�+

) work whp.

We now instantiate the result for some input graph
lasses. As a role model

we look at general graphs with maximumin-degree and out-degree d and random

edge weights, uniformly distributed

7

in the interval [0; 1℄. For � = �(1=d) we

have l

0

�

= O(logn= log logn) whp and E[n

�+

℄ � E[jP

2�

j℄ = O(n) [10℄. Thus, we

get expe
ted parallel time O((dd

+ logn) logn) and linear work. For example,

for r-dimensional meshes with random edge weights we have d

= O(n

1=r

) and

hen
e exe
ution time O(n

1=r

logn) using linear work for any
onstant r.

For random graphs from G(n; d=n), i.e., with edge probability d=n and ran-

dom edge weights the maximumpath weight is d

= O(logn=d) whp [10℄. Thus,

with our new approa
h we get an O(log

2

n) parallel time linear expe
ted work

PRAM algorithm. This is a fa
tor �(logn= log logn) better than the best pre-

viously known work eÆ
ient algorithm from our earlier paper [10℄.

Another example are random geometri
 graphs G

n

(r) where n nodes are

randomly pla
ed in a unit square and ea
h edge weight equals the Eu
lidean

distan
es between the two involved nodes. An edge (u; v) is in
luded if the Eu-

lidean distan
e between u and v does not ex
eed the parameter r 2 [0; 1℄.

Random geometri
 graphs have been intensively studied sin
e they are
onsid-

ered to be a relevant abstra
tion for many real world situations [14, 4℄. Taking

r = �(

p

log(n)=n) results in a
onne
ted graph with m = �(n logn) edges and

7

The results
arry over to some other random distributions, too.

d

= O(1) whp. For � = r the graph already
omprises all relevant �-short
uts

su
h that we do not have to expli
itly insert them. Consequently our PRAM al-

gorithm runs in O((1=r) logn) parallel time and performs O(n +m) work whp.

A
knowledgements

We would like to thank in parti
ular Hannah Bast, Kurt Mehlhorn and Volker

Priebe for many fruitful dis
ussions and suggestions. Hannah Bast also pointed

out the elegant solution of using a perfe
t hash fun
tion for semi-sorting re-

quests.

Referen
es

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
ows :

theory, algorithms and appli
ations. Prenti
e Hall, Englewood Cli�s, NJ, 1993.

2. H. Bast and T. Hagerup. Fast and reliable parallel hashing. In 3rd Symposium on

Parallel Algorithms and Ar
hite
tures, pages 50{61, 1991.

3. Edith Cohen. EÆ
ient parallel shortest-paths in digraphs with a separator de
om-

position. Journal of Algorithms, 21(2):331{357, September 1996.

4. J. Diaz, J. Petit, and M. Serna. Random geometri
 problems on [0; 1℄

2

. In RAN-

DOM: International Workshop on Randomization and Approximation Te
hniques

in Computer S
ien
e, volume 1518, pages 294{306. Springer, 1998.

5. E.W. Dijkstra. A note on two problems in
onnexion with graphs. Num. Math.,

1:269{271, 1959.

6. E. A. Dini
. E
onomi
al algorithms for �nding shortest paths in a network. In

Transportation Modeling Systems, pages 36{44, 1978.

7. J. R. Dris
oll, H. N. Gabow, R. Shrairman, and R. E. Tarjan. Relaxed heaps: An

alternative to �bona

i heaps with appli
ations to parallel
omputation. Commu-

ni
ations of the ACM, 31, 1988.

8. Y. Han, V. Pan, and J. Reif. EÆ
ient parallel algorithms for
omputing all pair

shortest paths in dire
ted graphs. In Pro
eedings of the 4th Annual Symposium on

Parallel Algorithms and Ar
hite
tures, pages 353{362, San Diego, CA, USA, June

1992. ACM Press.

9. Joseph J�aj�a. An Introdu
tion to Parallel Algorithms. Addison-Wesley, Reading,

1992.

10. U. Meyer and P. Sanders. �-stepping: A parallel shortest path algorithm. In 6th

European Symposium on Algorithms (ESA), number 1461 in LNCS, pages 393{404.

Springer, 1998.

11. U. Meyer and P. Sanders. �-stepping: A parallelizable shortest path algorithm.

http://www.mpi-sb.mpg.de/~sanders/papers/long-delta.ps.gz, 1999.

12. J. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.

13. S. Rajasekaran and J. H. Reif. Optimal and sublogarithmi
 time randomized

parallel sorting algorithms. SIAM Journal on Computing, 18(3):594{607, 1989.

14. R. Sedgewi
k and J. S. Vitter. Shortest paths in eu
lidean graphs. Algorithmi
a,

1:31{48, 1986.

15. Jesper Larsson Tr�a� and Christos D. Zaroliagis. A simple parallel algorithm for

the single-sour
e shortest path problem on planar digraphs. In Parallel algorithms

for irregularly stru
tured problems : Intern. workshop (IRREGULAR-3), volume

LNCS 1117, pages 183{194S., Berlin, 1996. Springer.

