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Abstra
t. In spite of intensive resear
h, no work-eÆ
ient parallel algo-

rithm for the single sour
e shortest path problem is known whi
h works

in sublinear time for arbitrary dire
ted graphs with non-negative edge

weights. We present an algorithm that improves this situation for graphs

where the ratio d




=� between the maximum weight of a shortest path

d




and a \safe step width" � is not too large. We show how su
h a step

width 
an be found eÆ
iently and give several graph 
lasses whi
h meet

the above 
ondition, su
h that our parallel shortest path algorithm runs

in sublinear time and uses linear work. The new algorithm is even faster

than a previous one whi
h only works for random graphs with random

edge weights [10℄. On those graphs our new approa
h is faster by a fa
tor

of �(log n= log log n) and a
hieves an expe
ted time bound of O(log

2

n)

using linear work.

1 Introdu
tion

The single sour
e shortest path problem (SSSP) is a fundamental and well-studied


ombinatorial optimization problem with many pra
ti
al and theoreti
al appli-


ations [1℄. Let G = (V;E) be a dire
ted graph, jV j = n, jEj = m, let s be a

distinguished vertex of the graph, and 
 be a fun
tion assigning a non-negative

real-valued weight to ea
h edge of G. The obje
tive of the SSSP is to 
ompute,

for ea
h vertex v rea
hable from s, the weight of a minimum-weight (\shortest")

path from s to v, denoted by dist(v); the weight of a path is the sum of the

weights of its edges.

The theoreti
ally most eÆ
ient sequential algorithm on dire
ted graphs with

non-negative edge weights is Dijkstra's algorithm [5℄. Using Fibona

i heaps

its running time is given by O(n logn + m). Dijkstra's algorithm maintains a

partition of V into settled, queued and unrea
hed nodes and for ea
h node v

a tentative distan
e tent(v); tent(v) is always the weight of some path from s

to v and hen
e an upper bound on dist(v). For unrea
hed nodes, tent(v) =

1. Initially, s is queued, tent(s) = 0, and all other nodes are unrea
hed. In

ea
h iteration, the queued node v with smallest tentative distan
e is sele
ted

and de
lared settled and all edges (v; w) are relaxed, i.e., tent(w) is set to

?
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minftent(w); tent(v) + 
(v; w)g. If w was unrea
hed, it is now queued. It is well

known that tent(v) = dist(v), when v is sele
ted from the queue.

The only known O(n logn +m) work parallel SSSP approa
h for arbitrary

dire
ted graphs based on Dijkstra's algorithm uses parallel relaxation of the

edges leaving a single node [7℄. It has running time O(n logn) on a PRAM

1

.

All existing algorithms with sublinear exe
ution time require 
(n logn + m)

work (e.g., O(log

2

n) time and O(n

3

(log logn= logn)

1=3

) work [8℄). Some less

ineÆ
ient algorithms are known for planar digraphs [15℄ or graphs with separator

de
omposition [3℄.

Higher parallelism than in Dijkstra's approa
h 
an be obtained by a version

of the Bellman-Ford algorithm [1℄ whi
h 
onsiders all queued nodes with their

outgoing edges in parallel. However, it may remove nodes v from the queue for

whi
h dist(v) < tent(v) and hen
e may have to reinsert those nodes until they

are �nally settled. Reinsertions lead to additional overhead sin
e their outgoing

nodes may have to be rerelaxed.

The present paper is based on the�-stepping algorithmof [10℄ whi
h is a gen-

eralization of Dijkstra and Bellman-Ford: Tentative distan
es are kept in an array

B of bu
kets su
h that B[i℄ stores the unordered set fv 2 V : v is queued and

tent(v) 2 [i�; (i + 1)�)g. In ea
h phase, the algorithm removes all nodes from

the �rst nonempty bu
ket and relaxes all light edges (
(e) � �) of these nodes.

This may 
ause reinsertions into the 
urrent bu
ket. For the remaining heavy

edges, it is suÆ
ient to relax them on
e and for all when a bu
ket �nally re-

mains empty (see Figure 1). The parameter � should be small enough to keep

the number of reinsertions small yet large enough to exhibit a useful amount of

parallelism.

1.1 Overview and Summary of New Results

The simple parallelization of the �-stepping in [10℄ relies on the parti
ular prop-

erties of random graphs with random edge weights thus severely limiting its

usage. In Se
tion 2, we introdu
e a parallel �-stepping algorithm whi
h works

for arbitrary graphs in time O(

d




�

l

�

logn) and work O(m + n

�+

) whp

2

. The

parameters whi
h depend on the graph 
lass and the step width are explained in

Se
tion 1.2. A further a

eleration is a
hieved in Se
tion 3 by a
tively introdu
ing

short
ut edges into the graph thereby redu
ing the number of times ea
h bu
ket

is emptied to at most two, i.e., the fastest eÆ
ient parallel exe
ution time is now

O((l

�

+ d




=�) logn) while performing O(m+n

0

�+

) work whp. In Se
tion 4 it is

explained how a good value for the step width � (whi
h limits n

0

�+

to O(m))


an be determined eÆ
iently and in parallel. Many of the PRAM results 
an

be adapted to distributed memory ma
hines using te
hniques des
ribed in Se
-

tion 5. Finally, in Se
tion 6 we summarize the results and apply them on di�erent

1

We use the arbitrary CRCW PRAM model (
on
urrent read 
on
urrent write par-

allel random a

ess ma
hine) [9℄ whi
h spe
i�es that an adversary 
an 
hoose whi
h

a

ess out of a set of 
on
i
ting write a

esses is su

essful.

2

A result holds with high probability (whp) in the sense that the respe
tive bound is

met with probability at least 1� n

��

for any 
onstant � > 0.



for ea
h v 2 V do tent(v) := 1

relax(s, 0); (* Sour
e node at distan
e 0 *)

while :isEmpty(B) do (* Some queued nodes left *)

i := minfj > i : B[j℄ 6= ;g (* Smallest nonempty bu
ket *)

R := ; (* No nodes deleted for bu
ket B[i℄ yet *)

while B[i℄ 6= ; do (* New phase *)

Req := �ndRequests(B[i℄, light) (* This may reinsert nodes *)

R := R [ B[i℄; B[i℄ := ; (* Remember deleted nodes *)

relaxRequests(Req)

Req := �ndRequests(R, heavy) (* This may reinsert nodes *)

relaxRequests(Req)

Fun
tion �ndRequests(V

0

, kind : flight;heavyg) : set of Request

return f(w; tent(v) + 
(v;w)) : v 2 V

0

^ (v;w) 2 E

kind

)g

Pro
edure relaxRequests(Req) for ea
h (w;x) 2 Req do relax(w, x)

Pro
edure relax(w, x) (* Shorter path to w? *)

if x < tent(w) then (* Yes: de
rease-key or insert *)

B[btent(w)=�
℄ := B[btent(w)=�
℄ n fwg (* Remove if present *)

B[bx =�
℄ := B[bx =�
℄ [fwg

tent(w) := x

Fig. 1. Sequential �-stepping.

graph 
lasses. Although our new algorithm is more general than the spe
ialized

previous algorithm [10℄, it turns out to be a fa
tor of �(logn= log logn) faster

on random graphs. It has exe
ution time O(log

2

n) using linear work.

1.2 Notation and Basi
 Fa
ts

We have already used d




as an abbreviation for the maximumweight of a shortest

path, i.e., d




:= maxfdist(v) : dist(v) < 1g. Call an edge disjoint path with

weight at most � a �-path. Let C

�

denote the set of all node pairs hu; vi


onne
ted by some �-path (u; : : : ; v) and let n

�

:= jC

�

j. Similarly, de�ne C

�+

as the set of triples hu; v

0

; vi su
h that hu; v

0

i 2 C

�

and (v

0

; v) is a light edge and

let n

�+

:= jC

�+

j. Let n

0

�

(n

0

�+

) denote the number of simple �-paths (plus a

light edge). To simplify notation, we ex
lude very extreme graphs and assume

n = O(m), n

�

= O(n

�+

) and n

0

�

= O(n

0

�+

). The maximum �-distan
e l

�

is

de�ned to just ex
eed the number of edges needed to 
onne
t any pair hu; vi 2 C

�

by a path of minimum weight, i.e.,

l

�

= 1 + max

hu;vi2C

�

minfjAj : A = (u; : : : ; v) is a minimum-weight �-pathg :

Similarly, let l

0

�

denote the number of edges in the longest simple �-path.

The graph theoreti
 results from [10℄ are relatively easy to generalize to see

that the number of phases performed by �-stepping is bounded by O(

d




�

l

�

) and

that the number of reinsertions (rerelaxations) is at most n

�

(n

�+

). For details

refer to the full paper [11℄ whi
h is available ele
troni
ally.

2 Parallelization

In this se
tion we develop a �rst parallelization of �-stepping whi
h works for

arbitrary graphs and prove the following bound:



Theorem 1. The single sour
e shortest path problem for dire
ted graphs with

n nodes, m edges, maximum path weight d




, maximum �-distan
e l

�

and n

�+

de�ned as in Se
tion 1.2 
an be solved on a CRCW PRAM in time O(

d




�

l

�

logn)

and work O(m + n

�+

) whp.

Initialization, loop 
ontrol, deleting nodes and generating a set `Req' of node-

distan
e pairs to be relaxed (we 
all these requests) are easy to do in parallel if the

nodes are randomly assigned to PUs and if a global array stores the assignment.

The most diÆ
ult part is to s
hedule PUs for a
tually performing the re-

quests: several relaxations 
an o

ur for one node in a phase, and the number

of su
h 
on
i
ting relaxations 
an vary arbitrarily and in an unpredi
table way.

On CRCW-PRAMs, we 
an do the PU s
heduling eÆ
iently by grouping the

requests a

ording to the addressed nodes using the following lemma:

Lemma 1. Semi-sorting k re
ords with integer keys, i.e., permuting them into

an array of size k su
h that all re
ords with equal key form a 
onse
utive blo
k,


an be performed in time O(k=p+ logn) using p PUs of a CRCW-PRAM whp.

Proof. First �nd a perfe
t hash fun
tion h : V ! 1::
k for an appropriate


onstant 
. Using the algorithm of Bast and Hagerup [2℄ this 
an be done in

time O(k=p+ logn) (and even faster) whp. Subsequently, we apply a fast, work

eÆ
ient sorting algorithm for small integer keys su
h as the one by Rajasekaran

and Reif [13℄ to sort by the hash values.

On
e the set of requests `Req' is grouped by re
eiving nodes w, we 
an

use pre�x sums to s
hedule bp jReq(w)j= jReqj
 PUs for blo
ks of size at least

jReqj=p, and to assign smaller groups with a total of up to jReqj=p requests to

individual PUs. The PUs 
on
erned with a group 
olle
tively �nd a request with

minimumdistan
e in time O(jReqj =p+logp) and then relax it in 
onstant time.

Summing the work and time for all l

�

d




=� phases yields the desired bound.

3 Finding Short
uts

In the analysis of the number of phases for our algorithms we bounded the

maximum number of iterations, l

�

, that are required until the 
urrent bu
ket

under 
onsideration remains �nally empty. It was already noti
ed in [6℄ that only

one iteration per bu
ket is needed if the bu
ket width is smaller than any edge

weight. No reinsertions o

ur in that 
ase but in the presen
e of very small edge

weights, the number of bu
kets, d




=�, might be
ome very large due to the small

�. However, l

�


an be redu
ed to 2 by expli
itly introdu
ing a short
ut edge

(u; v) for ea
h node pair 
onne
ted by a �-path.

What interests us here is how to �nd these edges in parallel and how the

sear
h itself 
an be performed in a load balan
ed way. Although, we do not

know a general algorithm doing that using O(m + n

�+

) work, we 
an solve the

problem if the number of simple �-paths is not too large. More pre
isely, the

remainder of this se
tion is devoted to establishing the following Theorem:



Theorem 2. There is an algorithm whi
h inserts an edge (u; v) with weight


(u; v) = dist(u; v) for ea
h shortest path (u; : : : ; v) with dist(u; v) � � us-

ing O(l

0

�

logn) time and O(m + n

0

�+

) work on a CRCW PRAM whp. (Where

dist(u; v) denotes the weight of a shortest path from u to v.)

Applying the results from Se
tion 2 we get:

Corollary 1. The single sour
e shortest path problem for dire
ted graphs with n

nodes, m edges, maximum path weight d




and n

0

�+

, l

0

�

as de�ned in Se
tion 1.2


an be solved on a CRCW PRAM in time O((l

0

�

+

d




�

) logn) and work O(m +

n

0

�+

) whp.

Figure 2 outlines a routine whi
h �nds short
uts by applying a variant of the

Bellman-Ford algorithm to all nodes in parallel. It solves an all-to-all shortest

path problem 
onstrained to �-paths. The shortest 
onne
tions found so far

are kept in a hash table of size O(n

0

�+

) (we 
an use dynami
 hashing if we do

not know a good bound for n

0

�+

). This table plays a role analogous to that of

tent(�) in the main routine of �-stepping. The set Q stores a
tive 
onne
tions,

i.e., triples (u; v; y) where y is the weight of a shortest known path from u to v

and where paths (u; : : : ; v; w) have not yet been 
onsidered as possible shortest


onne
tions from u to w with weight y + 
(v; w). In iteration i of the main

loop, the shortest 
onne
tions using i edges are 
omputed and are then used

to update `found'. Applying similar te
hniques as before, this routine 
an be

implemented to run in O(l

0

�

logn) parallel time using O(m + n

0

�+

) work: We

need l

0

�

iterations ea
h of whi
h takes time O(logn) and work O(jQ

0

j) whp. The

overall work bound holds sin
e for ea
h simple �-path (u; : : : ; v), hu; vi 
an be

a member of Q only on
e. Hen
e,

P

i

jQj � n+ n

0

�

and

P

i

jQ

0

j � n+ n

0

�+

.

Fun
tion �ndShort
uts(�) : set of weighted edge

found : HashArray[V � V ℄ (* return 1 for unde�ned entries *)

Q := f(u;u;0) : u 2 V g (* (start;destination;weight) *)

Q

0

: MultiSet

while Q 6= ; do

Q

0

:= ;

for ea
h (u; v; x) 2 Q dopar

for ea
h light edge (v;w) 2 E dopar

Q

0

:= Q

0

[ f(u; w;x+ 
(v;w))g

semi-sort Q

0

by 
ommon start and destination node

Q := f(u; v; x) : x = minfy : (u; v; y) 2 Q

0

gg

Q := f(u; v; x) 2 Q : x � � ^ x < found[(u; v)℄g

for ea
h (u; v; x) 2 Q dopar found[(u; v)℄ := x

return f(u; v; x) : found[(u; v)℄ <1g

Fig. 2. CRCW-PRAM routine for �nding short
ut edges

4 Determining �

In the 
ase of arbitrary edge weights it is ne
essary to �nd a step width � whi
h

is large enough to allow for suÆ
ient parallelism and small enough to keep the



algorithm work-eÆ
ient. Although we expe
t that appli
ation spe
i�
 heuristi
s


an often give us a good guess for � relatively easily, for a theoreti
ally satisfying

result we would like to be able to �nd a good � systemati
ally.

We now explain how this 
an be done if the adja
en
y lists have been

prepro
essed to be partially sorted : Let �

0

:= min

e2E


(e) and assume

3

that

�

0

> 0. The adja
en
y lists are organized into blo
ks of edges with weight

2

j

�

0

� 
(e) < 2

j+1

�

0

for some integer j. Blo
ks with smaller edges pre
ede

blo
ks with larger edges.

4

Theorem 3. Let n

0

�

, n

0

�+

and l

0

�

be de�ned as in Se
tion 1.2 and 
onsider

an input with partially sorted adja
en
y lists. For any 
onstant �, there is an

algorithm whi
h identi�es a step width �, su
h that n

0

�+

� �m and n

0

2�+

> �m,

and whi
h 
an be implemented to run in O((l

0

�

+log

�

�

0

) logn) time using O(m)

work whp.

The basi
 idea is to reuse the pro
edure �ndShort
uts(�) of Figure 2 but

to divide the 
omputation into rounds. In round i, 0 � i � log

max

e2E


(e)

�

0

), we

set �


ur

= 2

i

�

0

and �nd all 
onne
tions (u; v; x) with �


ur

� x < 2�


ur

. In

order to remain work eÆ
ient, a number of additional measures are ne
essary

however. We now outline the 
hanges 
ompared to the routine `�ndShort
uts'

from Figure 2. Most importantly, we have a bu
keted todo-list T . T [i℄ stores

entries (u; v; x; b) where (u; v; x) stands for a 
onne
tion from u to v with weight

x, and b points to the �rst blo
k in the adja
en
y list of v whi
h may 
ontain

edges (v; w) with 2

i

�

0

� x+
(v; w) < 2�2

i

�

0

. (Note that the number of bu
kets

may be arbitrarily large. In this 
ase, we store the bu
kets in a dynami
 hash

table and only initialize those bu
kets whi
h a
tually store elements.)

At the beginning of round i, for ea
h entry (u; v; x; b) of T [i℄, the adja
en
y

list of v is s
anned beginning at blo
k b until a blo
k is en
ountered whi
h


annot produ
e any 
andidate 
onne
tions for bu
ket i. A new entry of the todo

list is produ
ed for the �rst bu
ket k > i for whi
h it 
an produ
e 
andidate


onne
tions. The 
andidate 
onne
tions found are used to initialize Q

0

.

Both this initialization step and the iteration on Q 
an produ
e 
andidate


onne
tions whose weights rea
h into bu
ket i+1. After removing dupli
ates and

longer 
onne
tions than found before, we therefore split the remaining 
andidates

into the new 
ontent of Q and a set Q

next

storing 
onne
tions with weight in

bu
ket i + 1.

At the end of round i, when Q �nally remains empty, we 
reate new entries

in the todo-lists for all 
onne
tions newly en
ountered in round i. In order to do

that, we keep tra
k of all new entries into `found' using two sets S and S

next

for


onne
tions with weights in bu
ket i and i+ 1, respe
tively. Q

next

and S

next

are

used to initialize Q and S in the next round respe
tively.

3

This assumption 
an be removed.

4

This prepro
essing is trivially parallelizable on a node-by-node basis, we get a good

parallel prepro
essing algorithm for the 
ase p = O(n=d) if d is the maximum out-

degree of a node.



The total number of 
onne
tion-edge pairs 
onsidered is monitored so that the

whole pro
edure 
an be stopped as soon as it is noti
ed that this �gure ex
eeds

�m. At this time, the entries of `found' 
onstitute at least all simple (�


ur

=2)-

paths. Thus, taking � := �


ur

=2 as the �nal step width, it is guaranteed that

the number of reinsertions and rerelaxations in a subsequent appli
ation of the

�-stepping will be bounded by O(m). On the other hand, n

0

2�+

> �m.

Using an analogous analysis as for the fun
tion `�ndShort
uts' it turns out

that the sear
h for � 
an be implemented to run in O((l

0

�

+ log

�

�

0

) logn) time

using O(m) work where l

0

�

denotes the number of edges in the longest simple

�-path.

5 Adaptation to Distributed Memory Ma
hines

In this se
tion we 
onsider the following distributed memory model: There are

p pro
essing units (PUs) numbered 0 through p � 1 whi
h are 
onne
ted by

a 
ommuni
ation network. Let T

routing

(k) denote the time required to route

k 
onstant size messages per PU to random destinations. Let T


oll

(k) bound

the time to perform a (possibly segmented) redu
tion or broad
ast involving a

message of length k and assume that T


oll

(x)+T


oll

(y) � T


oll

(1)+T


oll

(x+y),

i.e., 
on
entrating message length does not de
rease exe
ution time. Note, that

on powerful inter
onne
tion networks likemultiported hyper
ubes we 
an a
hieve

a time O(log p+ k) whp for T

routing

(k) and T


oll

(k).

So far it is unknown how to eÆ
iently implement the linear work semi-sorting

pro
edure for load-balan
ing on distributed memory

5

. However, if short
uts are

present we now explain how this problem 
an be 
ir
umvented. We also assume

that the nodes 
an be randomly assigned to PUs using a 
onstant time hash

fun
tion

6

ind(�) and that we know indegree(v) when looking at an edge (u; v).

Theorem 4. Given a dire
ted graph G with n nodes, m edges, maximum path

weight d




and n

�+

, l

�

as de�ned in Se
tion 1.2. Under the assumptions given

above, the single sour
e shortest path problem 
an be solved in time

O

�

m+ T

routing

(m) + T


oll

(m) +

d




�

(T


oll

(1) + T

routing

(1))

�

on a distributed memory ma
hine with p PUs for m =

m+n

�+

p

and any given

sour
e node s whp.

We �rst simplify the sear
h algorithm to exploit the fa
t that in the presen
e

of short
uts, 
lassifying edges as light or heavy is no longer important for the

5

The prepro
essing 
an be done (somewhat ineÆ
iently) by implementing semi-

sorting using ordinary sorting or using a slower yet work eÆ
ient algorithm re-

quiring O(T

routing

(n

�

)) time for any positive 
onstant �. Both alternatives yield a

work-eÆ
ient algorithm for powerful inter
onne
tion networks if the prepro
essing

overhead 
an be amortized over suÆ
iently many sour
e nodes.

6

This is a 
ommon assumption, e.g., in eÆ
ient PRAM simulation algorithms.



shortest path sear
h itself. By expli
itly treating intra-bu
ket edges (sour
e and

target reside in the same bu
ket) �rst, ea
h edge is relaxed at most on
e: After

bu
kets 0 through i� 1 have been emptied, a single relaxation pass through the

edges rea
hing from B[i℄ into B[i℄ suÆ
es to settle all nodes now in B[i℄. After

that, B[i℄ 
an be emptied by relaxing all edges rea
hing out of B[i℄ on
e.

The two most diÆ
ult parts are (1) generating the set of requests, i.e. iden-

tifying the set of edges that are to be relaxed and (2) assigning the requests

to their nodes and s
heduling the PUs for performing the relaxations. We start

with (1):

In a distributed memory setting we 
annot dynami
ally s
hedule outgoing

edges between the PUs in the same way as we did for PRAMs. S
anning ad-

ja
en
y lists to generate requests is therefore load balan
ed using a stati
 as-

signment of edges to PUs: An adja
en
y list of size outdegree(v) is 
olle
tively

handled by an out-group of PUs. Out-groups are sele
ted as follows: W.l.o.g.,

assume that p is a power of two minus one and the PUs are logi
ally arranged as

a 
omplete binary tree. If outdegree(v) > p then all PUs parti
ipate in v's out-

group. Otherwise, a subtree rooted at a random PU is 
hosen whi
h is just large

enough to a

ommodate one edge per PU, i.e., it 
ontains 2

dlog(outdegree(v)+1)e

�1

nodes. Requests for a bu
ket 
an now be generated by �rst sending the tentative

distan
e of the nodes in B[i℄ to the roots of out-groups responsible for them.

(We will later see where this information 
omes from.) Then, the PUs pass all

the node-distan
e pairs they have re
eived down the tree in a pipelined fashion

and do the same for the distan
es of the nodes re
eived from above.

Now 
onsider a �xed leaf PU j for a �xed iteration of the algorithm. (Sin
e

interior tree-nodes pass all their work downwards, interior PUs have no more

work to do than a leaf node.) LetX

i

:= 1 if PU j is part of the out-group of a node

i expanded in this iteration and X

i

= 0 otherwise. We have P [X

i

= 1℄ = 2

�h(i)

if the root of the out-group of node i is h(i) levels away from the root of the

PU-tree. The total number of nodes PU j has to work on is Y :=

P

k

i=1

X

i

if k

is the number of nodes expanded in the 
urrent iteration and E[Y ℄ =

P

i

2

�h(i)

.

By de�nition of the size of subtrees, we get E[Y ℄ = O(K=p) if K is the total

number of edges leaving nodes expanded in this iteration. Using a Cherno�

bound with nonuniform probabilities [12, Theorem 4.1℄, it is now easy to see

that Y = O(K=p+log n) whp. Sin
e the 
ommuni
ation pattern is just a slightly

generalized form of a broad
ast, distributing the tentative distan
es 
an be done

in time O(T


oll

(K=p + logn)) whp. Summing over all iterations we get time

O(T


oll

(m=p + logn) + T


oll

(1)d




=�). Generating the a
tual request values is

then possible using lo
al 
omputations only.

Now we ta
kle problem (2): how to assign the requests to nodes and s
hedule

PUs for performing the relaxations. The idea for arbitrary graphs is to postpone

the relaxation of an edge until the latest possible moment { just before the

bu
ket of the target node is emptied. Sin
e edges are relaxed only on
e (re
all

that we assume the presen
e of short-
uts), it pays to allo
ate an in-group of

size 2

dlog(indegree(v)+1)e

� 1 for node v analogously to the way out-groups are

allo
ated. Ea
h PU maintains an additional bu
ket stru
ture B

q

for the nodes



for whi
h it is part of the in-group. Requests are routed to a preassigned position

in the in-group, but this information is only used to pla
e the node into B

q

.

So, after iteration i � 1 is 
omputed, the 
ontent of B[i℄ is not yet known.

Rather, we �rst have to �nd B[i℄ =

S

B

q

[i℄. This 
an be done lo
ally for ea
h

in-group using a pipelined tree operation whi
h is the 
onverse of the operation

used for broad
asting in the out-groups. (Ea
h PU maintains a hash table of

nodes already passed up the tree.) Then, the result is broad
ast to all PUs

in the in-groups so that from now on, redundant entries of nodes in bu
kets

beyond B[i℄ 
an be deleted. Also, edges whi
h have not re
eived a request yet are

marked as super
uous. Requests ending up there in later iterations will simply

be dis
arded. Finally, the a
tual global minima are 
omputed using another

pipelined redu
tion operation. Now, the heads of the in-groups are ready to

send the tentative distan
es of nodes in B[i℄ to the heads of the out-groups. The

analysis of these tree-operations is analogous the analysis for the out-groups.

6 Con
lusion

The parameters governing the performan
e of�-stepping are the maximumpath

weight d




and the largest step width � whi
h ensures that there is only a linear

number of �-
onne
tions (plus a light edge), n

�

(n

�+

). If we want to introdu
e

short
uts eÆ
iently, the 
hoi
e of � must also bound the number of simple �-

paths (plus a light edge), n

0

�

(n

0

�+

). For parallelization, the 
orresponding l

0

�

has some in
uen
e too: On a CRCW PRAM our new algorithm with short
ut

insertion needs O((l

0

�

+

d




�

) logn) time and O(m + n

0

�+

) work whp.

We now instantiate the result for some input graph 
lasses. As a role model

we look at general graphs with maximumin-degree and out-degree d and random

edge weights, uniformly distributed

7

in the interval [0; 1℄. For � = �(1=d) we

have l

0

�

= O(logn= log logn) whp and E[n

�+

℄ � E[jP

2�

j℄ = O(n) [10℄. Thus, we

get expe
ted parallel time O((dd




+ logn) logn) and linear work. For example,

for r-dimensional meshes with random edge weights we have d




= O(n

1=r

) and

hen
e exe
ution time O(n

1=r

logn) using linear work for any 
onstant r.

For random graphs from G(n; d=n), i.e., with edge probability d=n and ran-

dom edge weights the maximumpath weight is d




= O(logn=d) whp [10℄. Thus,

with our new approa
h we get an O(log

2

n) parallel time linear expe
ted work

PRAM algorithm. This is a fa
tor �(logn= log logn) better than the best pre-

viously known work eÆ
ient algorithm from our earlier paper [10℄.

Another example are random geometri
 graphs G

n

(r) where n nodes are

randomly pla
ed in a unit square and ea
h edge weight equals the Eu
lidean

distan
es between the two involved nodes. An edge (u; v) is in
luded if the Eu-


lidean distan
e between u and v does not ex
eed the parameter r 2 [0; 1℄.

Random geometri
 graphs have been intensively studied sin
e they are 
onsid-

ered to be a relevant abstra
tion for many real world situations [14, 4℄. Taking

r = �(

p

log(n)=n) results in a 
onne
ted graph with m = �(n logn) edges and

7

The results 
arry over to some other random distributions, too.



d




= O(1) whp. For � = r the graph already 
omprises all relevant �-short
uts

su
h that we do not have to expli
itly insert them. Consequently our PRAM al-

gorithm runs in O((1=r) logn) parallel time and performs O(n +m) work whp.
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