
Fast Priority Queues for Cached Memory

Peter Sanders

Max-Planck-Institut for Computer Science,

The cache hierarchy prevalent in todays high performance processors has to be taken into account

in order to design algorithms that perform well in practice. This paper advocates the adaption

of external memory algorithms to this purpose. This idea and the practical issues involved are

exempli�ed by engineering a fast priority queue suited to external memory and cached memory

that is based on k-way merging. It improves previous external memory algorithms by constant

factors crucial for transferring it to cached memory. Running in the cache hierarchy of a worksta-

tion the algorithm is at least two times faster than an optimized implementation of binary heaps

and 4-ary heaps for large inputs.

Categories and Subject Descriptors: C.1.1 [Computer Systems Organization]: Single Data

Stream Architectures; C.4 [Computer Systems Organization]: Performance of Systems; E.1

[Data]: Data Structures; E.2 [Data]: Data Storage Representations; E.5 [Data]: Files; F.2.2

[Theory]: Nonnumerical Algorithms and Problems; F.1.2 [Theory]: Modes of Computation

General Terms: Data structure, Cache, Implementation

Additional Key Words and Phrases: Priority queue, External memory, Secondary storage, Cache

e�ciency, Multi way merging, Heap

1. INTRODUCTION

The mainstream model of computation used by algorithm designers in the last

half century [Neumann 1945] assumes a sequential processor with unit memory

access cost. However, the mainstream computers sitting on our desktops have

increasingly deviated from this model in the last decade [Hennessy and Patterson

1996; Intel Corporation 1997; Keller 1996; MIPS Technologies, Inc. 1998; Sun

Microsystems 1997]. In particular, we usually distinguish at least four levels of

memory hierarchy: A �le of multiported registers, can be accessed in parallel in

every clock-cycle. The �rst-level cache can still be accessed every one or two clock-

cycles but it has only few parallel ports and only achieves the high throughput by

Address: Stuhlsatzenhausweg 85, 66123 Saarbr�ucken, Germany. E-mail: sanders@mpi-sb.mpg.de

WWW: http://www.mpi-sb.mpg.de/~sanders

Partially supported by the IST Programme of the EU under contract number IST-1999-14186

(ALCOM-FT).

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for pro�t or direct commercial

advantage and that copies show this notice on the �rst page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must

be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, to redistribute to lists, or to use any component of this work in other works, requires prior

speci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACM

Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � P. Sanders

pipelining. Therefore, the instruction level parallelism of super-scalar processors

works best if most instructions use registers only. Currently, most �rst-level caches

are quite small (8{64KB) in order to be able to keep them on chip and close to

the execution unit. The second-level cache is considerably larger but also has an

order of magnitude higher latency. If it is o�-chip, its size is mainly constrained

by the high cost of fast static RAM. The main memory is build of high density,

low cost dynamic RAM. Including all overheads for cache miss, memory latency,

and translation from logical over virtual to physical memory addresses, a main

memory access can be two orders of magnitude slower than a �rst level cache hit.

Most machines have separate caches for data and code so that we can disregard

instruction reads as long as the inner loops of programs remain reasonably short.

Although the technological details are likely to change in the future, physical

principles imply that fast memories must be small and are likely to be more ex-

pensive than slower memories so that we will have to live with memory hierarchies

when talking about sequential algorithms for large inputs.

The general approach of this paper is to model one cache level and the main

memory by the single disk single processor variant of the external memory model

[Vitter and Shriver 1994]. This model assumes an internal memory of size M that

can access the external memory by transferring blocks of size B. The word pairs

\cache line" and \memory block", \cache" and \internal memory", \main memory"

and \external memory", and \I/O" and \cache fault" are used as synonyms if

the context does not indicate otherwise. The only formal limitation compared to

external memory is that caches have a �xed replacement strategy. For the kind of

algorithms considered here, this mainly has the e�ect of reducing the usable cache

size by a factor B

1=a

where B is the memory block size and a is the associativity

of the cache [Sanders 1999].

1

Henceforth, the term cached memory is used in order to make clear that we have

a di�erent model.

Despite the far-reaching analogy between external memory and cached memory,

a number of additional di�erences should be noted: Since the speed gap between

caches and main memory is usually smaller than the gap between main memory and

disks, care must be taken to also analyze the work performed internally. The ratio

between main memory size and �rst level cache size can be much larger than that

between disk space and internal memory. Therefore, we should prefer algorithms

that use the cache as economically as possible. Finally, the remaining levels of the

memory hierarchy are discussed informally in order to keep the analysis focussed

on the most important aspects.

Section 2 presents the basic algorithm for the sequence heaps data structure for

priority queues

2

. The algorithm is then analyzed in Section 3 using the external

memory model. For some m in �(M), k in �(M=B), any constant
 > 0, and

R = dlog

k

I

m

e � O(M=B) it can perform I insertions and up to I deleteMins

using I(2R=B +O(1=k+ (log k)=m)) I/Os and I(log I + logR+ logm+O(1)) key

1

In an a-way set associative cache every memory block is mapped to a �xed cache set and every

cache set can hold at most a blocks.

2

A priority queue is a data structure for representing a totally ordered set that supports insertion

of elements and deletion of the minimal element.

Fast Priority Queues for Cached Memory � 3

comparisons. Similar bounds hold for cached memory with a-way associative caches

if k is reduced by O(B

1=a

) [Sanders 1999]. Section 4 considers re�nements that take

the other levels of the memory hierarchy into account, ensure almost optimal mem-

ory e�ciency and where the amortized work performed for an operation depends

only on the current queue size rather than the total number of operations. Sec-

tion 5 discusses an implementation of the algorithm on several architectures and

compares the results to other priority queue data structures previously found to

be e�cient in practice, namely binary heaps and 4-ary heaps. An appendix gives

further details on the implementation. Its goal is to make the results easier to

reproduce in other contexts and to argue that all considered codes are comparably

e�ciently implemented.

Related Work

External memory algorithms are a well established branch of algorithmics (e.g.

[Vitter 1998; Vengro� 1995]). The external memory heaps of Teuhola and Wegner

[Wegner and Teuhola 1989] and the �shspear data structure [Fischer and Paterson

1994] need a factor �(B) fewer I/Os than traditional priority queues such as binary

heaps. Bu�er search trees [Arge 1995] were the �rst external memory priority

queues to reduce the number of I/Os by another factor of �(log

M

B

) thus meeting

the lower bound of O((I=B) log

M=B

I=M) I/Os for I operations (amortized). But

using a full-
edged search tree for implementing priority queues may be considered

wasteful. The heap-like data structures by Brodal and Katajainen, Crauser et. al.

and Fadel et. al. [Brodal and Katajainen 1998; Brengel et al. 1999; Fadel et al. 1997]

are more directly geared to priority queues and achieve the same asymptotic bounds,

one even per operation and not in an amortized sense [Brodal and Katajainen 1998].

A sequence heap is very similar. In particular, it can be considered a simpli�cation

and reengineering of the \improved array-heap" [Brengel et al. 1999]. However,

sequence heaps are more I/O-e�cient by a factor of about three (or more) than

[Arge 1995; Brodal and Katajainen 1998; Brengel et al. 1999; Fadel et al. 1997] and

need about a factor of two less memory than [Arge 1995; Brengel et al. 1999; Fadel

et al. 1997].

2. THE ALGORITHM

Merging k sorted sequences into one sorted sequence (k-way merging) is an I/O

e�cient subroutine used for sorting|both for external [Knuth 1973] and cached

memory [LaMarca and Ladner 1997]. The basic idea of sequence heaps is to adapt

k-way merging to the related but more dynamical problem of priority queues.

Let us start with the simple case, that at most km insertions take place where

m is the size of a bu�er that �ts into fast memory. Then the data structure could

consist of k sorted sequences of length up to m. We can use k-way merging for

deleting a batch of the m smallest elements from k sorted sequences. The next m

deletions can then be served from a bu�er in constant time.

A separate binary heap with capacity m allows an arbitrary mix of insertions

and deletions by holding the recently inserted elements. Deletions have to check

whether the smallest element has to come from this insertion bu�er. When this

bu�er is full, it is sorted, and the resulting sequence becomes one of the sequences

for the k-way merge.

4 � P. Sanders

m

m m

2T 3T

...1 2 k ...1 2 k ...1 2 k

k-merge k-merge k-merge

R-merge

insert heap

mk

buffer 3

group

m’

group
buffer 1

m

1T

m

group
buffer 2

deletion buffer

mk
2

Fig. 1. Overview of the data structure for sequence heaps for R = 3 merge groups.

Up to this point, sequence heaps and several earlier data structures [Brodal and

Katajainen 1998; Brengel et al. 1999; Fadel et al. 1997] are almost identical. Most

di�erences are related to the question how to handle more than km elements. We

cannot increase m beyond M , since the insertion heap would not �t into fast mem-

ory. We cannot arbitrarily increase k, since eventually k-way merging would start

to incur cache faults. Sequence heaps make room by merging all the k sequences

producing a larger sequence of size up to km [Brodal and Katajainen 1998; Brengel

et al. 1999].

Now the question arises how to handle the larger sequences. Sequence heaps

adopt the approach used for improved array-heaps [Brengel et al. 1999] to employ

R merge groups G

1

; : : : ; G

R

where G

i

holds up to k sequences of size up to mk

i�1

.

When group G

i

over
ows, all its sequences are merged, and the resulting sequence

is put into group G

i+1

.

Each group is equipped with a group bu�er of size m to allow batched deletion

from the sequences. The smallest elements of these bu�ers are deleted in batches

of size m

0

� m. They are stored in the deletion bu�er. Fig. 1 summarizes the data

structure. We now have enough information to understand how deletion works:

DeleteMin:. The smallest elements of the deletion bu�er and insertion bu�er are

compared, and the smaller one is deleted and returned. If this empties the deletion

bu�er, it is re�lled from the group bu�ers using an R-way merge. Before the re�ll,

group bu�ers with less than m

0

elements are re�lled from the sequences in their

group (if the group is nonempty).

DeleteMin works correctly provided the data structure ful�lls the heap property,

Fast Priority Queues for Cached Memory � 5

i.e., elements in the group bu�ers are not smaller than elements in the deletion

bu�er, and in turn, elements in a sorted sequence are not smaller than the elements

in the respective group bu�er. Maintaining this invariant is the main di�culty for

implementing insertion.

Insert:. New elements are inserted into the insert heap. When its size reaches

m, its elements are sorted (e.g. using merge sort or heap sort). The result is then

merged with the concatenation of the deletion bu�er and the group bu�er 1. The

smallest resulting elements replace the deletion bu�er and group bu�er 1. The

remaining elements form a new sequence of length at most m. The new sequence

is �nally inserted into a free slot of group G

1

. If there is no free slot initially, G

1

is emptied by merging all its sequences into a single sequence of size at most km,

which is then put into G

2

. The same strategy is used recursively to free higher level

groups when necessary. When group G

R

over
ows, R is incremented and a new

group is created. When a sequence is moved from one group to the other, the heap

property may be violated. Therefore, when G

1

through G

i

have been emptied, the

group bu�ers 1 through i+ 1 are merged, and put into G

1

.

The latter measure is one of the few di�erences to the improved array heap

[Brengel et al. 1999] where the invariant is maintained by merging the new sequence

and the group bu�er, which almost doubles the total number of I/Os.

For cached memory, where the speed of internal computation matters, it is also

crucial how to implement the operation of k-way merging. The \loser tree" variant

of the selection tree data structure described by Knuth [Knuth 1973, Section 5.4.1]

is particularly well suited: When there are k

0

nonempty sequences, it consists of a

binary tree with k

0

leaves. Leaf i stores a pointer to the current element of sequence

i. The current keys of each sequence perform a tournament. The winner is passed

up the tree, and the key of the loser and the index of its leaf are stored in the

inner node. The overall winner is stored in an additional node above the root.

Using this data structure, the smallest element can be identi�ed and replaced by

the next element in its sequence using dlog ke comparisons. This is less than the

heap of size k assumed in [Brengel et al. 1999; Fadel et al. 1997] would require. The

address calculations and memory references are similar to those needed for binary

heaps with the noteworthy di�erence that the memory locations accessed in the

loser tree are predictable, which is not the case when deleting from a binary heap.

The instruction scheduler of the compiler can place these accesses well before the

data is needed thus avoiding pipeline stalls, in particular if combined with loop

unrolling.

3. ANALYSIS

The analysis �rst quanti�es the number of I/Os in terms of B, the parameters k,

m, and m

0

, and an arbitrary sequence of insert and deleteMin operations with

I insertions and up to I deleteMins. The analysis continues with the number

of key comparisons as a measure of internal work and then discusses how k, m,

and m

0

should be chosen for external memory and cached memory respectively.

Adaptations for memory e�ciency and many accesses to relatively small queues

are postponed to Section 4.

6 � P. Sanders

We need the following observation on the minimum intervals between tree emp-

tying operations in several places:

Lemma 1. Group G

i

can over
ow at most every m(k

i

� 1) insertions.

Proof: The only complication is the slot in group G

1

used for invalid group bu�ers.

Nevertheless, when groups G

1

through G

i

contain k sequences each, this can only

happen if

R

X

j=1

m(k � 1)k

j�1

= m(k

i

� 1)

insertions have taken place.

In particular, since there is room for m insertions in the insertion bu�er, there is

a very simple upper bound for the number of groups needed:

Corollary 1. R =

�

log

k

I

m

�

groups su�ce.

The analysis counts the number of I/Os based on the assumption that the follow-

ing information is kept in internal memory: The insert heap; the deletion bu�er; a

merge bu�er of size m; group bu�ers 1 and R; the loser tree data for groups G

R

and G

R�1

(assuming that k(B + 2) units of memory su�ce to store the blocks of

the k sequences that are currently accessed and the loser tree information itself);

a corresponding amount of space for one more loser tree shared by the remaining

R� 2 groups and data for merging the R group bu�ers.

3

Theorem 1. If R = dlog

k

(I=m)e, 4m+m

0

+(3k+R)(B+2) < M , and k(B+2) �

m�m

0

then

I

�

2R

B

+O

�

1

k

+

log k

m

��

I/Os su�ce to perform any sequence of I inserts and up to I deleteMins on a

sequence heap.

Proof: Let us �rst consider the I/Os performed for an element moving on the

following canonical data path: It is �rst inserted into the insert bu�er and then

written to a sequence in group G

1

in a batched manner, i.e, 1=B I/Os are charged

to the insertion of this element. Then it is involved in emptying groups until it

arrives in group G

R

. For each emptying operation, the element is involved into

one batched read and one batched write, i.e., it is charged with 2(R � 1)=B I/Os

for tree emptying operations. Eventually, the element is read into group bu�er R

yielding a charge of 1=B I/Os for. All in all, we get a charge of 2R=B I/Os for each

insertion.

What remains to be shown is that the remaining I/Os only contribute lower

order terms or replace I/Os done on the canonical path. When an element travels

through group G

R�1

then 2=B I/Os must be charged for writing it to group bu�er

R�1 and later reading it when re�lling the deletion bu�er. However, the 2=B I/Os

3

If we accept O(1=B) more I/Os per operation it would su�ce to swap between the insertion

bu�er plus a constant number of bu�er blocks and one loser tree with k sequence bu�ers in

internal memory.

Fast Priority Queues for Cached Memory � 7

saved because the element is not moved to group G

R

can pay for this charge. When

an element travels through group bu�er i � R � 2, the additional c � 2=B I/Os

saved compared to the canonical path can also pay for the cost of swapping loser

tree data for group G

i

. The latter costs 2k(B + 2)=B I/Os, which can be divided

among at least m�m

0

� k(B + 2) elements removed in one batch.

When group bu�er i � 2 becomes invalid so that it must be merged with other

group bu�ers and put back into group G

1

, this causes a direct cost of O(m=B)

I/Os, and a cost of O(im=B) I/Os must be charged because these elements are

thrown back O(i) steps on their path to the deletion bu�er. Although an element

may move through all the R groups we do not need to charge O(Rm=B) I/Os for

small i, since this only means that the shortcut originally taken by this element

compared to the canonical path is missed. The remaining overhead can be charged

to the m(k � 1)k

j�2

insertions that have �lled group G

i�1

. Summing over all

groups, each insertions gets an additional charge of

R

X

i=2

O(im=B)=(m(k � 1)k

j�2

) = O(1=k) :

Similarly, invalidations of group bu�er 1 give a charge of O(1=k) per insertion.

Inserting a new sequence into the loser tree takes data structure takes O(log k)

I/Os. When done for tree 1, this can be amortized over m insertions. For tree

i > 1 it can be amortized over m(k

i�1

� 1) elements by Lemma 1. For an element

moving on the canonical path, we get an overall charge of

O

�

log k

m

�

+

R

X

i=2

log k

m(k

i�1

� 1)

= O

�

log k

m

�

per insertion. Overall we get a charge of 2R=B+O(1=k+log(k)=m). per insertion.

An estimate the number of key comparisons performed comes next. This is a good

measure for the internal work, since in e�cient implementations of priority queues

for the comparison model, this number is close to the number of unpredictable

branch instructions (whereas loop control branches are usually well predictable by

the hardware or the compiler), and the number of key comparisons is also pro-

portional to the number of memory accesses. These two types of operations often

have the largest impact on the execution time, since they are the most severe limit

to instruction parallelism in a super-scalar processor. In order to avoid notational

overhead by rounding, assume that k andm are powers of two and that I is divisible

by mk

R�1

. A more general bound would only be larger by a small additive term.

Theorem 2. With the assumptions from Theorem 1 at most I(log I + dlogRe+

logm + 4 + m

0

=m + O((log k)=k)) key comparisons are needed. For average case

inputs \logm" can be replaced by O(1).

Proof: Insertion into the insertion bu�er takes logm comparisons at worst and

O(1) comparisons on the average. Every deleteMin operation requires a compari-

son of the minimum of the insertion bu�er and the deletion bu�er. The remaining

comparisons are charged to insertions in an analogous way to the proof of Theo-

rem 1. Sorting an m element insertion bu�er (e.g. using merge sort) takes m logm

8 � P. Sanders

comparisons, and merging the result with the deletion bu�er and group bu�er 1

takes 2m+m

0

comparisons. Inserting the sequence into a loser tree takes O(log k)

comparisons. Emptying groups takes (R � 1) log k +O(R=k) comparisons per ele-

ment. Elements removed from the insertion bu�er take up to 2 logm comparisons.

But those need not be counted, since no further comparisons are needed for them.

Similarly, re�lls of group bu�ers other than R have already been accounted for

by the conservative estimate on group emptying cost. Group G

R

only has degree

I=(mk

R�1

) so dlog I � (R � 1) log k � logme comparisons per element su�ce. Us-

ing similar arguments as in the proof of Theorem 1 it can be shown that inserting

sequences into the loser trees leads to a charge of O((log k)=m) comparisons per in-

sertion, and invalidating group bu�ers costs O((log k)=k) comparisons per insertion.

Summing all the charges made yields the bound to be proven.

For external memory one would choosem = �(M) and k = �(M=B). For cached

memory with an a-way associative cache, k should be a factor �(B

1=a

=�) smaller

in order to limit the number of cache faults to (1 + �) times the number of I/Os

performed by the external memory algorithm [Sanders 1999]. This requirement

together with the small size of many �rst level caches and TLBs

4

explains why we

may have to live with a quite small k. This observation is the main reason not to

pursue the simple variant of the array heap described in [Brengel et al. 1999] that

needs only a single merge group for all sequences. This merge group would have to

be about a factor R larger however.

4. REFINEMENTS

Memory Management:. A sequence heap can be implemented in a memory e�-

cient way by representing sequences in the groups as singly linked lists of memory

pages. Whenever a page runs empty, it is pushed on a stack of free pages. When a

new page needs to be allocated, it is popped from the stack. If necessary, the stack

can be maintained externally except for a single bu�er block. Using pages of size p,

the external sequences of a sequence heap with R groups and N elements occupy at

most N+kpR memory cells. Together with the measures described below for keep-

ing the number of groups small, this becomes N + kp log

k

(N=m). A page size of m

is particularly easy to implement, since this is also the size of the group bu�ers and

the insertion bu�er. As long as N = !(km) this already guarantees asymptotically

optimal memory e�ciency, i.e., a memory requirement of N(1 + o(1)).

Many Operations on Small Queues:. Let N

i

denote the queue size before the i-th

operation is executed. In other algorithms [Brodal and Katajainen 1998; Brengel

et al. 1999; Fadel et al. 1997] the number of I/Os is bounded byO(

P

i�I

log

k

N

i

=m).

For some classes of inputs,

P

i�I

log

k

N

i

=m can be considerably less than I log

k

I=m.

However, for most applications that require large queues at all, the di�erence should

not be large enough to warrant signi�cant constant factor overheads or algorithmic

complications. Therefore this paper gave a detailed analysis of the basic algorithm

�rst and outlines an adaptation yielding the re�ned asymptotic bound here: Similar

to [Brengel et al. 1999], when a new sequence is to be inserted into group G

i

and

4

T ranslation Look-aside Bu�ers store the physical position of the most recently used virtual

memory pages.

Fast Priority Queues for Cached Memory � 9

there is no free slot, �rst look for two sequences in G

i

whose sizes sum to less than

mk

i�1

elements. If found, these sequences are merged, yielding a free slot. The

merging cost can be charged to the deleteMins that caused the sequences to get so

small. Now G

i

is only emptied when it contains at least mk

i

=2 elements, and the

I/Os involved can be charged to elements that have been inserted when G

i

had at

least size mk

i�1

=4. Similarly, a shrinking queue can be \tidied up": When there

are R groups and the total size of the queue falls below mk

R�1

=4, empty group G

R

and insert the resulting sequence into group G

R�1

(if there is no free slot in group

G

R�1

merge any two of its sequences �rst).

Registers and Instruction Cache:. In all realistic cases we have R � 4 groups.

Therefore, instruction cache and register �le are likely to be large enough to e�-

ciently support a fast R-way merge routine for re�lling the deletion bu�er, which

keeps the current keys of each stream in registers. Refer to Appendix A.4 for more

details.

Second Level Cache:. So far, the analysis assumes only a single cache level. Still,

if we assume this level to be the �rst level cache, the second level cache may have

some in
uence. First, note that the group bu�ers and the loser trees with k sequence

bu�er blocks each are likely to �t in second level cache. The second level cache may

also be large enough to accommodate all of group G

1

reducing the costs for 2=B

I/Os per insert. We get a more interesting use for the second level cache if we

assume its bandwidth to be su�ciently high to be no bottleneck and then look

at inputs where deletions from the insertion bu�er are rare (e.g. sorting). Then

we can choose m = O(M

2

) if M

2

is the size of the second level cache. Insertions

have high locality if the logm cache lines currently accessed by them �t into �rst

level cache. Furthermore, no operations on deletion bu�ers and group bu�ers use

random access.

High Bandwidth Disks:. If the sequence heap data structure is viewed as a clas-

sical external memory algorithm we would simply use the main memory size for

M . In this case large binary heaps would be used as insertion bu�ers. But the

measurements in Section 5 indicate that large binary heaps might be too slow to

match the bandwidth of fast parallel disk subsystems. In this case, it is better to

modify a sequence heap optimized for cache and main memory by using specialized

external memory implementations for the larger groups. This may involve bu�ering

of disk blocks, explicit asynchronous I/O calls and perhaps prefetching code and

randomization for supporting parallel disks [Barve et al. 1997]. Also, the number

of I/Os may be reduced by using a larger k inside these external groups. If this

degrades the performance of the loser tree data structure too much, we can insert

another heap level, i.e., split the high degree group into several low degree groups

connected together over su�ciently large level-2 group bu�ers and another merge

data structure.

Deletions. of non-minimal elements with known key value can be performed by

maintaining a separate sequence heap of deleted elements. When on a deleteMin,

the smallest element of the main queue and the delete-queue coincide, both are

discarded. Hereby, insertions and deleteMins cost only one comparison more than

before, if we charge a delete for the costs of one insertion and two deleteMins (note

10 � P. Sanders

that the latter are much cheaper than an insertion). Memory overhead can be kept

in bounds by completely sorting both queues whenever the size of the queue of

deleted elements exceeds some fraction of the size of the main queue. During this

sorting operation, deleted keys are discarded. The resulting sorted sequence can be

put into group G

R

. All other sequences and the deletion heap are empty then.

5. IMPLEMENTATION AND EXPERIMENTS

Sequence heaps were implemented as a portable C++ template class for arbitrary

key-value-pairs. Currently, sequences are implemented as a single array. The inter-

nal performance mainly depends on an e�cient implementation of the k-way merge

using loser trees, special routines for 2-way, 3-way, and 4-way merge, and binary

heaps for the insertion bu�er. The most important optimizations turned out to

be (roughly in this order): Making live for the compiler easy; use of sentinels, i.e.,

dummy elements at the ends of sequences and heaps, which save special case tests;

loop unrolling. The appendix discusses these issues in detail.

5.1 Choosing Competitors

When an author of a new code wants to demonstrate its usefulness experimentally,

great care must be taken to choose a competing code that uses one of the best known

algorithms and is at least equally well tuned. Implicit binary heaps and aligned

4-ary heaps were chosen. In a recent study [LaMarca and Ladner 1996], these two

array based algorithms outperform the pointer based data structures splay tree

and skew heap by more than a factor of two. The situation is complicated by fact

that the above pointer based algorithms performed best in an older study [Jones

1986]. All four algorithms execute a similar number of instructions but pointer

based algorithms need up to three times more memory references. Possibly, the

growing gap between memory speed and processor speed has tipped the balance in

favor of array based algorithms.

Not least because the same code is needed for the insertion bu�er, binary heaps

were coded perhaps even more carefully than the remaining components|binary

heaps are the only part of the code for which care was taken that the assembler code

contains no unnecessary memory accesses, redundant computations, and a reason-

able instruction schedule. The code also uses the bottom up heuristic [Wegener

1993] for deleteMin: Elements are �rst lifted up on a min-path from the root to a

leaf, the leftmost element is then put into the freed leaf and is �nally bubbled up.

Note that binary heaps with this heuristic perform only logN +O(1) comparisons

for an insertions plus a deleteMin on the average. This is close to the lower bound.

So in
at memory it should be hard to �nd a comparison based algorithm that

performs signi�cantly better for average case inputs. For small queues the imple-

mentation of binary heaps is about a factor two faster than a more straightforward

non-recursive adaptation of the textbook formulation used by Cormen, et al. [Cor-

men et al. 1990]. Appendix A.1 discusses the implementation of binary heaps in

detail.

Aligned 4-ary heaps have been developed at the end using the same basic ap-

proach as for binary heaps, in particular, the bottom up heuristic is also used. The

main di�erence is that the data gets aligned to cache lines and that more complex

index computations are needed. Appendix A.2 gives more details.

Fast Priority Queues for Cached Memory � 11

All source codes are available electronically under http://www.mpi-sb.mpg.de/

~sanders/programs/.

5.2 Basic Experiments

Although the programs were developed and tuned on SPARC processors, sequence

heaps show similar behavior on all recent architectures that were available for mea-

surements. The same code was run on a SPARC, MIPS, Alpha, and Intel processor.

It even turned out that a single parameter setting, m

0

= 32, m = 256, and k = 128

works well for all these machines.

5

Figures 2, 3, 4, and 5 respectively show the

results. All measurements use random 32 bit integer keys and 32 bit values. For

a maximal heap size of N , the operation sequence (insert deleteMin insert)

N

(deleteMin insert deleteMin)

N

is executed. To normalize the amortized exe-

cution time per insert-deleteMin-pair, T=(6N), it is divided by logN . Since all

algorithms have an \
at memory" execution time of c logN+O(1) for some constant

c, we would expect that the curves have a hyperbolic form and converge to a con-

stant for large N . The values shown are averages over at least 10 repetitions.

6

The

programs where run on an unloaded machine. Timing uses the operating system

function for returning the CPU time consumed by the user process. To make sure

that everything is in internal memory and warmup the caches, one initial execution

was performed without timing it.

5

By tuning k and m, performance improvements around 10 % are possible, e.g., for the Ultra and

the PentiumII, k = 64 is better.

6

More for small inputs to avoid problems due to limited clock resolution.

0

20

40

60

80

100

120

140

160

256 1024 4096 16384 65536 218 220 222 223

(T
(d

el
et

eM
in

)
+

 T
(in

se
rt

))
/lo

g
N

 [
ns

]

N

bottom up binary heap
bottom up aligned 4-ary heap

sequence heap

Fig. 2. Performance on a Sun Ultra-10 desktop workstation with 300 MHz Ultra-SparcIIi proces-

sor (1st-level cache: M = 16KByte, B = 16Byte; 2nd-level cache: M = 512KByte, B = 32Byte)

using Sun Workshop C++ 4.2 with options -fast -O4.

12 � P. Sanders

0

50

100

150

200

1024 4096 16384 65536 218 220 222 223

(T
(d

el
et

eM
in

)
+

 T
(in

se
rt

))
/lo

g
N

 [
ns

]

N

bottom up binary heap
bottom up aligned 4-ary heap

sequence heap

Fig. 3. Performance on a 180 MHz MIPS R10000 processor. Compiler: CC -r10000 -n32 -mips4

-O3.

0

20

40

60

80

100

120

140

256 1024 4096 16384 65536 218 220 222 223

(T
(d

el
et

eM
in

)
+

 T
(in

se
rt

))
/lo

g
N

 [
ns

]

N

bottom up binary heap
bottom up aligned 4-ary heap

sequence heap

Fig. 4. Performance on a 533 MHz DEC-Alpha-21164 processor. Compiler: g++ -O6.

Fast Priority Queues for Cached Memory � 13

0

50

100

150

200

1024 4096 16384 65536 218 220 222 223

(T
(d

el
et

eM
in

)
+

 T
(in

se
rt

))
/lo

g
N

 [
ns

]

N

bottom up binary heap
bottom up aligned 4-ary heap

sequence heap

Fig. 5. Performance on a 300 MHz Intel Pentium II processor. Compiler: g++ -O6.

Sequence heaps show the behavior one would expect for
at memory|cache

faults are so rare that they do not in
uence the execution time very much. In

Section 5.4, we will see that the decrease in the \time per comparison" is not quite

so strong for other inputs.

On all machines, binary heaps are equally fast or slightly faster than sequence

heaps for small inputs. While the heap still �ts into second level cache, the perfor-

mance remains rather stable. For even larger queues, the performance degenerates.

This is easy to explain. Whenever the queue size doubles, there is another layer

of the heap that does not �t into cache, contributing a constant number of cache

faults per deleteMin. For N = 2

23

, sequence heaps are between 2.1 and 3.8 times

faster than binary heaps.

This di�erence is large enough to be of considerable practical interest. Further-

more, the careful implementation of the algorithms makes it unlikely that such a

performance di�erence can be reversed by tuning or use of a di�erent compiler.

7

Furthermore, the satisfactory performance of binary heaps on small inputs shows

that for large inputs, most of the time is spent on memory access overhead and

coding details have little in
uence on this.

5.3 4-ary Heaps

The measurements in �gures 2 through 5 largely agree with the most important

observation of LaMarca and Ladner [LaMarca and Ladner 1996]: Since the number

of cache faults is about halved compared to binary heaps, 4-ary heaps have a more

7

For example, in older studies, heaps and loser trees may have looked bad compared to pointer

based data structures if the compiler generates integer division operations for halving an index or

integer multiplications for array indexing.

14 � P. Sanders

robust behavior for large queues. Still, sequence heaps are another factor between

2:5 and 2:9 faster for very large heaps, since they reduce the number of cache

faults even more. However, the relative performance of binary heaps and 4-ary

heaps seems to be a more complicated issue than in [LaMarca and Ladner 1996].

Although this is not the main concern of this paper a possible explanation should

be o�ered:

Although the bottom up heuristic improves both binary heaps and 4-ary heaps,

binary heaps pro�t much more. Now, binary heaps need less instead of more

comparisons than 4-ary heaps. Concerning other instruction counts, 4-ary heaps

only save on memory write instructions while they need more complicated index

computations.

Apparently, on the Alpha, which has the highest clock speed of the machines

considered, the saved write instructions shorten the critical path while the index

computations can be done in parallel to slow memory accesses.

On the other machines, the balance turns into the other direction. In particular,

the Intel architecture lacks the necessary number of registers so that the compiler

has to generate a large number of additional memory accesses (spill code). Even

for very large queues, this handicap is never made up for.

The most confusing e�ect is the jump in the execution time of 4-ary heaps on

the SPARC for N > 2

20

. Nothing like this is observed on the other machines, and

this e�ect is hard to explain by cache e�ects alone, since the input size is already

well beyond the size of the second level cache but still below the main memory size.

Possibly, there is a problem with virtual address translation, which also haunted

the binary heaps in an earlier version.

5.4 Long Operation Sequences

Our worst case analysis predicts a certain performance degradation if the number

of insertions I is much larger than the size of the heap N . However, in Fig. 6 it

can be seen that the contrary can be true for random independent keys.

For a family of instances with I = 33N where the heap grows and shrinks very

slowly, sequence heaps are about two times faster than for I = N . The reason

is that new elements tend to be smaller than most old elements (the smallest of

the old elements have long been removed before). Therefore, many elements never

make it into group G

1

let alone the groups for larger sequences. Since most work is

performed while emptying groups, this work is saved. A similar locality e�ect has

been observed and analyzed for the �shspear data structure [Fischer and Paterson

1994]. Binary heaps or 4-ary heaps do not have this property. (They even seem

to get slightly slower.) For s = 0 this locality e�ect cannot work. So that these

instances should come close to the worst case. To make clear that sequence heaps

are nevertheless still much better than binary or 4-ary heaps, Figure 6 additionally

contains their timing for s = 0.

Another way to generate inputs without locality e�ects is to usemonotone inputs,

i.e., keys that are larger than all keys of previously deleted elements. This can be

achieved by adding a random o�set to the most recently deleted element. This

model has also been tried for reasons of comparability with earlier studies [Jones

1986; LaMarca and Ladner 1996]. The results are not shown here however, since

they are so similar to the case s = 0 shown above.

Fast Priority Queues for Cached Memory � 15

32

64

128

256 1024 4096 16384 65536 218 220 222 223

(T
(d

el
et

eM
in

)
+

 T
(in

se
rt

))
/lo

g
N

 [
ns

]

N

s=0, binary heap
s=0, 4-ary heap

s=0
s=1
s=4

s=16

Fig. 6. Performance of sequence heaps using the same setup as in Fig. 2 but using di�erent

operation sequences: (insert (deleteMin insert)

s

)

N

(deleteMin (insert deleteMin)

s

)

N

for s 2

f0; 1; 4; 16g. For s = 0 we essentially get heap-sort with some overhead for maintaining useless

group and deletion bu�ers. In Fig. 2, s = 1 is used. For s = 0 the timings for binary heaps and

4-ary heaps are also shown.

6. DISCUSSION

Sequence heaps may currently be the fastest available data structure for large com-

parison based priority queues both in cached and external memory. This is par-

ticularly true, if the queue elements are small and if we do not need deletion of

arbitrary elements or decreasing keys. Our implementation approach, in particular

k-way merging with loser trees can also be useful to speed up sorting algorithms in

cached memory.

In the other cases, sequence heaps still look promising but we need experiments

encompassing a wider range of algorithms and usage patterns to decide which al-

gorithm is best. For example, for monotonic queues with integer keys, radix heaps

look promising. Either in a simpli�ed, average case e�cient form known as calendar

queues [Brown 1988] or by adapting external memory radix heaps [Brengel et al.

1999] to cached memory in order to reduce cache faults.

It has been outlined how the algorithm can be adapted to multiple levels of

memory and parallel disks. On a shared memory multiprocessor, it should also be

possible to achieve some moderate speedup by parallelization (e.g. one processor

for the insertion and deletion bu�er and one for each group when re�lling group

bu�ers; all processors collectively work on emptying groups).

ACKNOWLEDGMENTS

I would like to thank Gerth Brodal, Andreas Crauser, Jyrki Katajainen, and Ul-

rich Meyer for valuable suggestions. Ulrich R�ude from the University of Augsburg

provided access to an Alpha processor.

16 � P. Sanders

APPENDIX

A. IMPLEMENTATION DETAILS

The experiments in Section 5 evaluate the di�erent algorithms based on speedup

margins between two and four. Although this is a quite useful for practical applica-

tions, such a margin is only of scienti�c interest if it is reproducible and understand-

able. It should be possible to understand how this margin can be achieved, and

it must be possible to write similar codes even in other programming languages

and using di�erent machines and compilers. A doubtful researcher must have a

chance to point her �nger at some piece of code or of the experimental procedure

and demonstrate that this particular detail causes the speedup margin thereby fal-

sifying di�erent claims made in the original publication. Therefore, the source code

used for the experiments in this paper is made publicly available for academic use

8

.

In addition, the following sections explain implementation details of the inner loops

governing performance in the implemented codes. Perhaps they even succeed to

demonstrate that all codes are hardly improvable on current technology. Although

such high level of sophistication is no end in itself in an experimental study, it is nev-

ertheless crucial for the validity of the experiments. Comparing several algorithms

with di�erent degree of optimization would certainly be questionable. But it is very

di�cult to argue that two codes are \equally suboptimal". One consequence of this

observation is that ill-documented codes written by inexperienced programmers are

of little experimental value if they do not show very clear margins. For example,

the optimizations for binary heaps described below yield speedups compared to

straight-forward implementations by more than a factor of two. If we would have

compared the slow implementation with a tuned implementation of another algo-

rithm, a speedup of two would have been meaningless with respect to the quality

of the algorithms.

A.1 Binary Heaps

The average case complexity of insertion is constant so that deletion dominates

the time required by binary heaps and by the insertion bu�er of sequence heaps.

Therefore only the implementation of deleteMin is considered here.

A.1.1 Textbook-Style Implementation. Before looking at the binary heap code

used in the experiments, consider an implementation, which might be expected from

a student looking at a textbook. The following code is a nonrecursive adaptation

of the code proposed in the well known textbook of Cormen et al. [Cormen et al.

1990].

template <class Key, class Value>

inline void Heap2<Key, Value>::deleteMinBasic()

{ int i, l, r, smallest;

data[1] = data[size];

data[size].key = getSupremum(); /* infinity */

size--; i = 1;

8

http://www.mpi-sb.mpg.de/~sanders/programs/

Fast Priority Queues for Cached Memory � 17

for (;;) {

l = (i << 1); r = (i << 1) + 1;

if ((l <= size) && data[l].key < data[i].key) {

smallest = l;

} else {

smallest = i;

}

if ((r <= size) && data[r].key < data[smallest].key) {

smallest = r;

}

if (smallest == i) break;

Element temp = data[i];

data[i] = data[smallest];

data[smallest] = temp;

i = smallest;

}

}

For a queue of size N , the loop is traversed logN�O(1) times on the average. Each

iteration requires �ve conditional branches, two of which are key comparisons whose

outcome is di�cult to predict. Even at the highest level of compiler optimization,

the SUN compiler generated 17 memory accesses in the inner loop if key and data

�elds consist of one memory word each.

A.1.2 Optimized Implementation. The optimized code starts as follows:

template <class Key, class Value, int capacity>

inline void BinaryHeap<Key, Value, capacity>::

deleteMin()

{ int hole = 1, succ = 2, sz = size;

First note, that the member variable size is copied into a local variable. This is

done with every member variable that is used more than twice. Even using the

highest level of compiler optimization, both the GNU g++ and Sun's proprietary

compiler were not able to appropriately put member variables into registers. (This

measure alone reduces the number of memory references in the inner to 11.) After

initialization, the element at the root of the heap is moved to a leaf such that

the heap property is maintained. Note that there is only a single comparison

for breaking the loop, since there are always log sz iterations. In addition, this

comparison is easy to predict so that it does not stall the pipelines of modern

processors [Hennessy and Patterson 1996].

No loop unrolling is done, since saving loop control overhead is only a small

incentive on superscalar processors. Furthermore, there is no apparent opportunity

for better instruction scheduling here, since the memory locations involved are

highly data dependent.

while (succ < sz) {

Key key1 = data[succ].key;

Key key2 = data[succ + 1].key;

if (key1 > key2) { succ++;

18 � P. Sanders

data[hole].key = key2;

data[hole].value = data[succ].value;

} else {

data[hole].key = key1;

data[hole].value = data[succ].value;

}

hole = succ;

succ <<= 1;

}

Note that there is only a single additional conditional branch in the body of the loop.

In codes without the bottom up heuristic, there are at least two key comparisons

with associated branches. On the average, code without the bottom up heuristic

performs only a constant number less iterations.

In order to validate that good code can be generated for the binary heap algo-

rithm, the assembler code was checked until none of the inner loops of binary heaps

showed obvious shortcomings of the compiler (for the SUN and its native compiler).

Consider the following annotated version of the assembler output produced by the

compiler for the �rst inner loop of deleteMin:

.L900000807: // label starting inner loop

ld [%g2+%g3],%o5 // Key key1 = data[succ].key;

ld [%g2+%o2],%o4 // Key key2 = data[succ + 1].key;

cmp %o4,%o5 // key1 <= key2 ?

ble,a .L900000808 // yes? branch after next instr.

sll %o1,3,%o5 // compute address offset for data[hole].key

// then-part of inner loop

sll %o1,3,%g2 // compute address offset for data[hole].key

add %o0,1,%o1 // succ++;

st %o5,[%g2+%o2]// data[hole].key = key2;

sll %o1,3,%o5 // address offset for data[succ].value

ld [%o5+%o3],%o5 // register_o5 = data[succ].value;

sll %o1,1,%o0 // succ <<= 1;

st %o5,[%g2+%o3] // data[hole].value = register_o5;

ba .L77000423 // branch around else part after next instr.

cmp %o0,%g4 // succ < size? (delay slot)

.L900000808: // else part of inner loop

st %o4,[%o5+%o2] // data[hole].key = key1;

or %g0,%o0,%o1

ld [%g2+%o3],%g2 // register_g2 = data[succ].value;

sll %o0,1,%o0 // succ <<= 1;

st %g2,[%o5+%o3] // data[hole].value = register_g2

cmp %o0,%g4 // succ < size?

.L77000423: // end of if () {} else {}

bl .L900000807 // next iteration if succ < size

sll %o0,3,%g2 // compute address offset for data[succ].key

Fast Priority Queues for Cached Memory � 19

In particular, note that only �ve memory accesses are performed for each iteration

of this inner loop.

One possible optimization in the above loop concerns the index arithmetics. Us-

ing assembler or a somewhat awkward formulation in C, it would be possible to save

two of the three left-shift (sll) instructions executed per loop iteration. Currently,

these instructions are needed for converting an index into an address o�set

9

. How-

ever, most of the time these instructions are not on the critical path for instruction

scheduling, and on a superscalar machine, saving the shift instructions might not

a�ect execution time at all. In any case, compared to the cost of the unavoidable,

hard to predict branch their cost is negligible on most modern architectures.

What remains to be done is to overwrite the deleted element with the rightmost

element of the heap and to move this element up in the tree to restore the heap

property.

Key bubble = data[sz].key;

int pred = hole >> 1;

while (data[pred].key > bubble) {

data[hole] = data[pred];

hole = pred;

pred >>= 1;

}

// finally move data to hole

data[hole].key = bubble;

data[hole].value = data[sz].value;

Note that on the average, this loop only performs a constant number of iterations.

Also, it causes no cache faults, since all the required cache lines were already moved

into the cache when descending the tree.

At last, the now empty element at the right end of the tree is turned into a

sentinel element by setting its key to in�nity. Likewise, there is a sentinel element

to the left of the root of the heap with key minus in�nity. These measures make the

fast and simple formulation of the inner loops possible that do not need to test for

special cases at the border of the data structure. Compared to the formulation in

Cormen et al. sentinels save two (easy to predict) branches for each loop iteration.

data[size].key = getSupremum(); // mark as deleted

size = sz - 1;

}

A remark on the bottom up heuristic is in order. It is a bit slower than the

ordinary code in the worst case, and its advantage is not very large (less than 20%)

compared to a careful formulation of the ordinary algorithm that has only one hard

to predict branch in the inner loop: If the left and right successor are compared

�rst, the comparison with the sifted element can only yield a `smaller' once per

deleteMin. This means that the relative performance of binary heaps and sequence

heaps is not much a�ected by the presence or absence of the bottom up heuristic.

9

Is is assumed here that the size of a heap element is a power of two. In a production implemen-

tation, this should perhaps be made sure by padding each element to the next power of two.

20 � P. Sanders

A.2 Aligned 4-ary Heaps

Our implementation follows the description of LaMarca and Ladner [LaMarca and

Ladner 1996] as far as possible except that the bottom up heuristic is also used for

4-ary heaps. Here is the only loop traversed more than a constant number of times

for an operation on the average:

while (succ < sz) {

minKey = data[succ].key;

delta = 0;

otherKey = data[succ + 1].key;

if (otherKey < minKey) { minKey = otherKey; delta = 1; }

otherKey = data[succ + 2].key;

if (otherKey < minKey) { minKey = otherKey; delta = 2; }

otherKey = data[succ + 3].key;

if (otherKey < minKey) { minKey = otherKey; delta = 3; }

The array data is aligned in such a way that the above three memory accesses

concern a minimal number of cache lines.

succ += delta;

layerPos += delta;

// move min successor up

data[hole].key = minKey;

data[hole].value = data[succ].value;

// step to next layer

hole = succ;

succ = succ - layerPos + layerSize; // beginning of next layer

layerPos <<= 2;

succ += layerPos; // now correct value

layerSize <<= 2;

}

The loop is executed a factor of two less frequently but there are a factor of three

more hard to predict branches per loop iteration. In addtion, the index arithmetics

is more complicated.

10

A.3 Two-Way Merging

The function merge is needed when the insertion bu�er is emptied into group one

and for re�lling the deletion bu�er when R = 2. The function takes two sorted

input sequences that are terminated by a sentinel element with in�nite key. As in

the case of binary heaps, these sentinels save special case treatments in the inner

loop.

10

Those could be somewhat simpli�ed at the cost of leaving holes in the data structure. This

could cause additional cache faults however.

Fast Priority Queues for Cached Memory � 21

// merge sz element from the two sentinel terminated input

// sequences *f0 and *f1 to "to"

// advance *f0 and *f1 accordingly.

// require: at least sz nonsentinel elements available in f0, f1

// require: to

template <class Key, class Value>

void merge(KNElement<Key, Value> **f0,

KNElement<Key, Value> **f1,

KNElement<Key, Value> *to, int sz)

{

The parameters are double-indirect pointers, since they are also return values.

Inside the function, one level of indirection is removed by keeping the current po-

sitions in a register:

KNElement<Key, Value> *from0 = *f0;

KNElement<Key, Value> *from1 = *f1;

KNElement<Key, Value> *done = to + sz;

Key key0 = from0->key;

Key key1 = from1->key;

As before, many other values are kept in registers for optimization purposes. In

a specialized implementation for PC-processors some of these optimizations might

turn out contraproductive, since not enough registers are available.

The main loop is very simple. Only one hard to predict plus one easy to predict

branch per loop iteration is required.

while (to < done) {

if (key1 <= key0) {

to->key = key1;

to->value = from1->value;

from1++;

key1 = from1->key;

} else {

to->key = key0;

to->value = from0->value;

from0++;

key0 = from0->key;

}

to++;

}

Again, loop unrolling did not appear promising.

Finally, the positions of the source sequences are updated.

*f0 = from0;

*f1 = from1;

}

22 � P. Sanders

A.4 3-Way and 4-Way Merging

Since the number of merge groups R is typically bounded by four, it makes sense

to supply specialized routines that can be used for re�lling the deletion bu�er when

R = 3 and R = 4. The instruction caches of todays processors are large enough

to implicitly store the relative order of the heads of the sequences in the program

counter and to keep the keys of the elements in registers. Here is an example for

the case of 3-way merging.

template <class Key, class Value>

void merge3(KNElement<Key, Value> **f0,

KNElement<Key, Value> **f1,

KNElement<Key, Value> **f2,

KNElement<Key, Value> *to, int sz)

{

KNElement<Key, Value> *from0 = *f0;

KNElement<Key, Value> *from1 = *f1;

KNElement<Key, Value> *from2 = *f2;

KNElement<Key, Value> *done = to + sz;

To set up the merging process, the �rst keys of each sequence are copied into

registers and their relative order is found out.

Key key0 = from0->key;

Key key1 = from1->key;

Key key2 = from2->key;

if (key0 < key1) {

if (key1 < key2) { goto s012; }

else {

if (key2 < key0) { goto s201; }

else { goto s021; }

}

} else {

if (key1 < key2) {

if (key0 < key2) { goto s102; }

else { goto s120; }

} else { goto s210; }

}

For each of the six possible relative orders keya � keyb � keyc an analogous

piece of code must be provided. The most reasonable way to do that is a macro,

since an inline function would not have direct access to all required local variables.

The token pasting property of ANSI-C is useful here, since it makes it possible to

build variable names and goto-labels from macro parameters.

#define Merge3Case(a,b,c)\

s ## a ## b ## c :\

if (to == done) goto finish;\

to->key = key ## a;\

to->value = from ## a -> value;\

Fast Priority Queues for Cached Memory � 23

to++;\

from ## a ++;\

key ## a = from ## a -> key;\

if (key ## a < key ## b) goto s ## a ## b ## c;\

if (key ## a < key ## c) goto s ## b ## a ## c;\

goto s ## b ## c ## a;

// the order of the cases is chosen

// in such a way that four of the trailing gotos

// can be eliminated by the optimizer

Merge3Case(0, 1, 2);

Merge3Case(1, 2, 0);

Merge3Case(2, 0, 1);

Merge3Case(1, 0, 2);

Merge3Case(0, 2, 1);

Merge3Case(2, 1, 0);

finish:

*f0 = from0;

*f1 = from1;

*f2 = from2;

}

A.5 k-Way Merging with Loser Trees

Loser trees are implemented as a C++ class that stores the loser tree itself and

pointers to the sequences attached to its leaves.

// multi-merge for arbitrary K

template <class Key, class Value>

void KNLooserTree<Key, Value>::

multiMergeK(Element *to, int l)

{ Entry *currentPos;

Key currentKey;

int currentIndex; // leaf pointed to by current entry

int kReg = k;

Element *done = to + l;

The smallest element of all sequences is stored in the root of the tree. Therefore,

�nding the globally smallest element is easy:

int winnerIndex = entry[0].index;

Key winnerKey = entry[0].key;

Element *winnerPos;

Key sup = dummy.key; // supremum

while (to < done) {

winnerPos = current[winnerIndex];

// write result

to->key = winnerKey;

24 � P. Sanders

to->value = winnerPos->value;

// advance winner segment

winnerPos++;

current[winnerIndex] = winnerPos;

winnerKey = winnerPos->key;

// remove winner segment if empty now

if (winnerKey == sup) {

deallocateSegment(winnerIndex);

}

After the smallest element has been consumed, the invariant of the data structure

must be reestablished. This operation is the inner loop dominating the execution

time of sequence heaps, since it is needed whenever merge groups are emptied or

group bu�ers are re�lled.

// go up the entry-tree

for (int i = (winnerIndex + kReg) >> 1; i > 0; i >>= 1) {

currentPos = entry + i;

currentKey = currentPos->key;

if (currentKey < winnerKey) {

currentIndex = currentPos->index;

currentPos->key = winnerKey;

currentPos->index = winnerIndex;

winnerKey = currentKey;

winnerIndex = currentIndex;

}

}

If one inspects the assembler code for this inner loop and of the inner loop of delete-

min for bottom up binary heaps, it turns out that both contain about the same

number of instructions and both are executed about the same number of times on

the average. Loser trees have two advantage however. First, they do not need

more time even in the worst case (So for worst case inputs we might �nd an even

larger advantage for sequence heaps.) Second, the memory locations accessed are

completely de�ned by the index of the leaf under considerations. Therefore, loop

unrolling turned out to be pro�table here. (At least on the Ultra-Sparc processor).

to++;

}

entry[0].index = winnerIndex;

entry[0].key = winnerKey;

}

REFERENCES

Arge, L. 1995. The bu�er tree: A new technique for optimal I/O-algorithms. In 4th WADS ,

Number 955 in LNCS (1995), pp. 334{345. Springer.

Barve, R. D., Grove, E. F., and Vitter, J. S. 1997. Simple randomized mergesort on

parallel disks. Parallel Computing 23, 4, 601{631.

Fast Priority Queues for Cached Memory � 25

Brengel, K., Crauser, A., Meyer, U., and Ferragina, P. 1999. An experimental study

of prioritty queues in external memory. In 3rd International Workshop on Algorithmic

Engineering (WAE) (1999), pp. 345{359. full paper in ACM Journal of Experimental Al-

gorithmics.

Brodal, G. S. and Katajainen, J. 1998. Worst-case e�cient external-memory priority

queues. In 6th Scandinavian Workshop on Algorithm Theory, Number 1432 in LNCS

(1998), pp. 107{118. Springer Verlag, Berlin.

Brown, R. 1988. Calendar queues: A fast O(1) priority queue implementation for the

simulation event set problem. Communications of the ACM 31, 10, 1220{1227.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms.

McGraw-Hill.

Fadel, R., Jakobsen, K. V., Katajainen, J., and Teuhola, J. 1997. External heaps

combined with e�ective bu�ering. In 4th Australasian Theory Symposium, Volume 19-2 of

Australian Computer Science Communications (1997), pp. 72{78. Springer.

Fischer, M. J. and Paterson, M. S. 1994. Fishspear: A priority queue algorithm. Journal

of the ACM 41, 1, 3{30.

Hennessy, J. L. and Patterson, D. A. 1996. Computer Architecture a Quantitative Ap-

proach. Morgan Kaufmann.

Intel Corporation. 1997. Intel Archtecture Software Developer's Manual. Volume I: Basic

Architecture. P.O. Box 5937, Denver, CO, 80217-9808, http://www.intel.com: Intel Cor-

poration. Ordering Number 243190.

Jones, D. 1986. An empirical comparison of priority-queue and event set implementations.

Communications of the ACM 29, 4, 300{311.

Keller, J. 1996. The 21264: A superscalar alpha processor with out-of-order execution. In

Microprocessor Forum (October 1996).

Knuth, D. E. 1973. The Art of Computer Programming | Sorting and Searching, Vol-

ume 3. Addison Wesley.

LaMarca, A. and Ladner, R. E. 1996. The in
uence of caches on the performance of

heaps. ACM Journal of Experimental Algorithmics 1, 4.

LaMarca, A. and Ladner, R. E. 1997. The in
uence of caches on the performance of

sorting. In 8th Symposium on Discrete Algorithm (1997), pp. 370{379.

MIPS Technologies, Inc. 1998. R10000 Microprocessor User's Manual (2.0 ed.). MIPS Tech-

nologies, Inc. http://www.mips.com.

Neumann, J. v. 1945. First draft of a report on the EDVAC. Technical report, University

of Pennsylvania.

Sanders, P. 1999. Accessing multiple sequences through set associative caches. In ICALP ,

Number 1644 in LNCS (1999), pp. 655{664.

Sun Microsystems. 1997. UltraSPARC-IIi User's Manual. Sun Microsystems.

Vengroff, D. E. 1995. TPIE User Manual and Reference. Duke University. http://www.

cs.duke.edu/~dev/tpie_home_page.html.

Vitter, J. S. 1998. External memory algorithms. In 6th European Symposium on Algo-

rithms, Number 1461 in LNCS (1998), pp. 1{25. Springer.

Vitter, J. S. and Shriver, E. A. M. 1994. Algorithms for parallel memory I: Two level

memories. Algorithmica 12, 2{3, 110{147.

Wegener, I. 1993. BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT, beating, on

an average, QUICKSORT (if n is not very small). Theoretical Computer Science 118, 1

(Sept.), 81{98.

Wegner, L. M. and Teuhola, J. I. 1989. The external heapsort. IEEE Transactions on

Software Engineering 15, 7 (July), 9{925.

