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Abstract. Consider the classical online scheduling problem where jobs that arrive one by one are assigned to

identical parallel machines with the objective of minimizing the makespan. We generalize this problem by allowing

the current assignment to be changed whenever a new job arrives, subject to the constraint that the total size of

moved jobs is bounded by � times the size of the arriving job.

Our main result is a linear time ‘online approximation scheme’, that is, a family of online algorithms with compet-

itive ratio 1 + � and constant migration factor �(�), for any fixed � > 0. This result is of particular importance if

considered in the context of sensitivity analysis: While a newly arriving job may force a complete change of the

entire structure of an optimal schedule, only very limited ‘local’ changes suffice to preserve near-optimal solutions.

We believe that this concept will find wide application in its own right.

We also present simple deterministic online algorithms with migration factors � = 2 and � = 4=3, respectively.

Their competitive ratio 3=2 beats the lower bound on the performance of any online algorithm in the classical

setting without migration. We also present improved algorithms and similar results for closely related problems. In

particular, there is a short discussion of corresponding results for the objective to maximize the minimum load of a

machine. The latter problem has an application for configuring storage servers that was the original motivation for

this work.

1 Introduction

A classical scheduling problem. One of the most fundamental scheduling problems asks for an assignment

of jobs to m identical parallel machines so as to minimize the makespan. (The makespan is the completion

time of the last job that finishes in the schedule; it also equals the maximum machine load.) In the standard

classification scheme of Graham, Lawler, Lenstra, & Rinnooy Kan [GLLR79], this scheduling problem is

denoted by P j jC

max

and it is well known to be strongly NP-hard [GJ78].

The offline variant of this problem assumes that all jobs are known in advance whereas in the online

variant the jobs are incrementally revealed by an adversary and the online algorithm can only choose the

machine for the new job without being allowed to move other jobs. Note that dropping this radical constraint

on the online algorithm yields the offline situation.

A new online scheduling paradigm. We study a natural generalization of both offline and online problems.

Jobs arrive incrementally but, upon arrival of a new job j, we are allowed to migrate some previous jobs to

other machines. The total size of the migrated jobs however must be bounded by �p
j

where p
j

is the size of

the new job. For migration factor � = 0 we get the online setting and for � =1 we get the offline setting.

Approximation algorithms. For an offline optimization problem, an approximation algorithm efficiently (in

polynomial time) constructs schedules whose values are within a constant factor � � 1 of the optimum

solution value. The number � is called performance guarantee or performance ratio of the approximation

algorithm. A family of polynomial time approximation algorithms with performance guarantee 1 + � for all

fixed � > 0 is called a polynomial time approximation scheme (PTAS).

Competitive analysis. In a similar way, competitive analysis evaluates solutions computed in the online set-

ting. An online algorithm achieves competitive ratio � � 1 if it always maintains solutions whose objective

values are within a factor � of the offline optimum. Here, in contrast to offline approximation results, the

achievable values � are not determined by limited computing power but by the apparent lack of information



about parts of the input that will only be revealed in the future. As a consequence, for all interesting classical

online problems it is rather easy to come up with lower bounds that create a gap between the best possible

competitive ratio � and 1. In particular, it is usually impossible to construct a family of (1 + �)-competitive

online algorithms for such problems.

Known results and related work. For the online machine scheduling problem, Graham’s list scheduling

algorithm keeps the makespan within a facor 2 � 1=m of the offline optimum [Gra66]: Schedule a newly

arriving job on the least loaded machine. It can also easily be seen that this bound is tight.

For the offline setting, Graham showed three years later that sorting the jobs in order of non-increasing

sizes before feeding them to the list scheduling algorithm yields an approximation algorithm with per-

formance ratio 4=3 � 1=(3m) [Gra69]. Later, exploiting the relationship between the machine scheduling

problem under consideration and the binpacking problem, algorithms with improved approximation ratios

have been obtained in a series of works [CGJ78,Fri84,Lan81].

Finally, polynomial time approximation schemes for a constant number of machines and for an arbitrary

number of machines are given in [Gra69,Sah76] and by Hochbaum & Shmoys [HS87], respectively. The

latter PTAS partitions jobs into large and small jobs. The sizes of large jobs are rounded such that an optimum

schedule for the rounded jobs can be obtained via dynamic programming. The small jobs are then added

greedily using Graham’s list scheduling algorithm. This approach can be refined to an algorithm with linear

running time (see, e.g., [Hoc96]): replace the dynamic program with an integer linear program on a fixed

number of variables and constraints which can be solved in constant time [Len83].

In a series of papers, increasingly complicated online algorithms with better and better competitive

ratios beating the Graham bound 2 have been developed [BFKV95,KPT96,Alb99]. The best result known

to date is a 1:93-competitive algorithm due to Fleischer & Wahl [FW00]. The best lower bound 1:88 on

the competitive ratio of any deterministic online algorithm currently known is due to Rudin [Rud01]. For

randomized online algorithms there is a lower bound of e=(e � 1) � 1:58 [CvVW94,Sga97].

For more results on online algorithms and scheduling we refer to the recent survey articles by Al-

bers [Alb03] and Sgall [Sga98].

New contributions. In Section 3 we describe a simple online algorithm which achieves approximation ra-

tio 3=2 using a moderate migration factor � = 2. Notice that already this result beats the lower bound 1:88

(1:58) on the competitive ratio of any classical (randomized) online algorithm without migration. Using a

more sophisticated analysis, the migration factor can be decreased to 4=3 while maintaining competitive

ratio 3=2. On the other hand we show that our approach does not allow for migration factor 1 and competi-

tive ratio 3=2. Furthermore, an improved competitive ratio 4=3 can be achieved with migration factor 4. For

two machines, we can achieve competitive ratio 7=6 with a migration factor of one. This ratio is tight for

migration factor one.

In Section 5 we discuss an application of bounded migration to configuring storage servers. This was

the original motivation for our work. In this application, the objective is to maximize the minimum load.

It is well known [AE98] that any online deterministic algorithm for this machine covering problem has

competitive ratio at least m (the number of machines). There is also a lower bound of 
(

p

m) for any

randomized online algorithm. We develop a simple deterministic online strategy which is 2-competitive

already for migration factor � = 1.

The main result of this paper can be found in Section 4. We present a family of online algorithms

with competitive ratio 1 + � and constant migration factor �(�), for any fixed � > 0. On the negative

side, no constant migration factor suffices to maintain competitive ratio one, i.e., optimality. We provide

interpretations of these results in several different contexts:

Online algorithms. Online scheduling with bounded job migration is a relaxation of the classical online

paradigm. Obviously, there is a tradeoff between the desire for high quality solutions and the requirement
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to compute them online, that is, to deal with a lack of information. Our result can be interpreted in terms

of the corresponding tradeoff curve: Any desired quality can be guaranteed while relaxing the online

paradigm only moderately by allowing for a constant migration factor.

Sensitivity analysis. Given an optimum solution to an instance of an optimization problem and a slightly

modified instance, can the given solution be turned into an optimum solution for the modified instance

without changing the solution too much? This is the impelling question in sensitivity analysis. As indi-

cated above, for the scheduling problem under consideration one has to answer in the negative. Already

one additional job can change the entire structure of an optimum schedule. However, our result implies

that the answer is positive if we only require near-optimum solutions.

Approximation results. Our result yields a new PTAS for the scheduling problem under consideration. Due

to its online background, this PTAS constructs the solution incrementally. That is, it reads the input little

by little always maintaining a (1 + �)-approximate solution. Indeed, it follows from the analysis of the

algorithm that every update only takes constant time. In particular, the overall running time is linear and

thus matches the previously best known approximation result.

We believe that each of these interpretations constitutes an interesting motivation for results like the one

we present here in its own right and can therefore lead to interesting results for many other optimization

problems.

The underlying details of the presented online approximation scheme have the same roots as the original

PTAS by Hochbaum & Shmoys [HS87] and its refinements [Hoc96]. We distinguish between small and

large jobs; a job is called large if its size is of the same order of magnitude as the optimum makespan. Since

this optimum can change when a new job arrives, the classification of jobs must be updated dynamically. The

size of every large job is rounded such that the problem of computing an optimum schedule for the subset

of large jobs can be formulated as an integer linear program of constant size. A newly arriving job causes

a small change in the right hand side of this program. This enables us to use deep results from sensitivity

analysis of integer programs in order to prove that the schedule of large jobs needs to be changed only

slightly. For a detailed account of integer programming theory we refer to the books [Sch86,NW88].

Due to space limitations, many details have been moved to an appendix.

2 Preliminaries

Let the set of machines be denoted by M = f1; : : : ;mg. The set of jobs is f1; : : : ; ng where job j arrives

in round j. Let p
j

denote the positive processing time or the size of job j. For a subset of jobs N , the total

processing time of jobs in N is p(N) :=

P

j2N

p

j

; let p
max

(N) := max

j2N

p

j

. For a subset of jobs N ,

let opt(N) denote the optimal makespan. If the subset of jobs N and a newly arrived job j are clear from

the context, we sometimes also use the shorter notation opt := opt(N) and opt

0

:= opt(N [ fjg). It is

easy to observe that lb(N) := maxfp(N)=m; p

max

(N)g is a lower bound on opt(N) satisfying

lb(N) � opt(N) � 2lb(N) : (1)

The following well-known fact is used frequently in the subsequent sections.

Observation 1. For a set of jobs N , consider an arbitrary schedule with makespan �. Assigning a new job j

to the least loaded machine yields a schedule with makespan at most maxf�; opt(N [fjg)+(1�1=m)p

j

g.
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3 Strategies with Small Migration Factor

We consider the problem of scheduling jobs arriving one after another on m parallel machines so as to

minimize the makespan. We first show a very simple 3=2-competitive algorithm with migration factor 2.

The algorithm is as follows:

Procedure FILL 1 :

Upon arrival of a new job j, choose one of the following two options minimizing the resulting makespan.

Option 1: Assign job j to the least loaded machine.

Option 2: Let i be the machine minimizing the maximum job size. Repeatedly remove jobs from this

machine; stop before the total size of removed jobs exceeds 2p

j

. Assign job j to machine i. Assign the

removed jobs successively to the least loaded machine.

Theorem 1. Procedure FILL 1 is
�

3

2

�

1

2m

�

-competitive with migration factor 2.

Proof. From the description of FILL 1 , it is clear that the migration factor is at most 2. In order to prove

competitiveness, we consider an arbitrary
�

3

2

�

1

2m

�

-approximate schedule for a set of jobs N and show that

incorporating a new job j according to FILL 1 results in a new schedule which is still
�

3

2

�

1

2m

�

-approximate.

In the following, a job is called small if its processing time is at most opt0=2, otherwise it is called large. If

the new job j is small, then the first option yields makespan at most
�

3

2

�

1

2m

�

opt

0 by Observation 1. Thus,

we can assume from now on that j is large.

Since there can be at most m large jobs in N [ fjg, all jobs on the machine chosen in the second option

are small. Thus, after removing jobs from this machine as described above, the machine is either empty

or the total size of removed jobs exceeds the size of the large job j. In both cases, assigning job j to this

machine cannot increase its load above
�

3

2

�

1

2m

�

opt

0. Thus, using the same argument as above, assigning

the removed small jobs successively to the least loaded machine yields again a
�

3

2

�

1

2m

�

-approximate

schedule. ut

Next we show that the migration factor can be decreased to 4=3 without increasing the competitive ratio

above 3=2. This result is achieved by carefully modifying FILL 1 .

Procedure FILL 2 :

Upon arrival of j, choose the one of the following m + 1 options that minimizes the resulting makespan.

(Brake ties in favor of option 0.)

Option 0: Assign job j to the least loaded machine.

Option i [for i 2 f1; : : : ;mg]: Ignoring the largest job on machine i, consider the remaining jobs in order of

non-increasing size and repeatedly remove them from the machine; stop before the total size of removed

jobs exceeds 4

3

p

j

. Assign job j to machine i. Assign the removed jobs successively to the least loaded

machine.

The proof of the following result can be found in Appendix B.

Theorem 2. Procedure FILL 2 is 3=2-competitive with migration factor 4=3.

Robustness: All scheduling strategies for minimizing the makespan discussed in this paper are robust in

the following sense. The only invariant that we require in their analyses is that before the arrival of a new

job the current schedule is �-approximate. Job j can then be incorporated yielding again an �-approximate

schedule. In other words, we do not require that the current schedule is carefully constructed so far, to

maintain the competitiveness in the next round. Only for Procedure FILL 2 , the schedule should additionally

satisfy that, on any machine, the load excluding the largest job in it is at most the optimum makespan. We
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Fig. 1. A 3=2-approximate schedule (m = 37). If a new job of size 86.1 arrives, jobs of total size at least 96 have to be moved in

order to construct a schedule which is still 3=2-approximate.

further remark that this is not an unreasonable requirement as even the simple list scheduling algorithm

ensures this.

Theorems 1 and 2 raise the question which migration factor is really necessary to achieve competitive

ratio 3=2. We can prove that any robust strategy needs migration factor greater than 1 in order to maintain

competitive ratio 3=2.

Lemma 1. There exists a 3=2-approximate schedule such that, upon arrival of a particular job, migra-

tion factor 1:114 is needed to achieve 3=2-competitiveness. Moreover, migration factor 1 only allows for

competitive ratio 1:52 in this situation.

Proof. The situation is depicted in Figure 1. There are 37 machines. Machines 1 to 8 are identically packed.

Each of them has one job of size 84 and three jobs of size 4. Machines 9 to 12 are also identical. Each of

them has one job of size 68 and two jobs of size 16. Machine 13 contains four jobs of size 32. Machines 14

to 37 contain one job of size 96 each. The size of the newly arriving job is 86.1. The optimal makespan

is 100. To achieve a makespan of at most 150, it is necessary to migrate at least 3 jobs of size 32 from

machine 13 to other machines. Hence, the migration factor is at least 96=86:1 > 1:114. To show the lower

bound on the competitiveness (the second part of the lemma), we set the size of the newly arriving job to 88

instead of 86.1. It is straightforward to check that the final optimal makespan is 100 and the best possible

makespan achievable for any strategy with migration factor � � 1 is 152. ut

Remark: An additional feature of FILL 1 and FILL 2 is that they are local in the sense that they migrate jobs

only from the machine where the newly arrived job is assigned to. There is a class of optimal schedules for

which, upon arrival of a new job, it is not possible to achieve a better competitive ratio than 3=2 using only

local migration. This holds even if an arbitrary migration factor is allowed. The following optimal schedule

on m machines, upon the arrival of a new job, enforces a competitive ratio of at least 3=(2 + 2=m) for any

amount of migration. This bound converges to 3=2 for large m. The example looks as follows: Machines 1

and 2 each contain one job of size 1=2 and m=2 jobs of size 1=m. All other machines contain a single job of

size 1. The newly arriving job has size 1. The optimum makespan is 1 + 1=m and the makespan achievable

by any local strategy is 3=2 (by scheduling the new job on say machine 1 and migrating all small jobs to

other machines).

We conclude this section with two more results. An improved competitive ratio of 4=3 can be achieved

by a more sophisticated algorithm with migration factor 4. Details can be found in Appendix C.
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Fig. 2. An instance where all machine configurations have to change to maintain optimality.

Theorem 3. There exists a 4=3–competitive strategy with migration factor 4.

Even better results are possible for two machines. Appendix E gives a specialized algorithm with com-

petitive ratio 7=6 and migration factor of one. We also prove that this ratio is tight for any deterministic

strategy with migration factor one.

4 An Online Approximation Scheme with Constant Migration

The results presented in the last section raise the question how far the competitive ratio for online algorithms

with constant migration factor can be decreased. We first prove that optimality (i.e., competitive ratio 1)

cannot be achieved. However, for any fixed � > 0 we can get down to competitive ratio 1 + �.

Lemma 2. Any online algorithm computing optimal solutions needs migration factor � = 
(m).

Proof. Consider a scheduling instance with m machines and 2m � 2 jobs, two of size i=m for all

i = 1; : : : ;m� 1. Up to permutations of machines, any optimum schedule has the structure depicted in

the left part of Figure 2. The optimum makespan is (m � 1)=m. When a new job of size 1 arrives, the

optimum makespan increases to 1. Again, the structure of an optimum schedule for the enlarged instance is

unique; see the right hand side of Figure 2. A short computation shows that the minimum total size of jobs

that have to be migrated is bm2


=(4m) = 
(m). ut

In the following, � > 0 is a fixed constant. We assume without loss of generality that � � 1. The

following observation belongs by now to the folklore in the field of scheduling; see, e.g., [ABC+99].

Observation 2. Rounding up each job’s processing time to the nearest integer power of 1 + � increases

the makespan of an arbitrary schedule at most by a factor 1 + �. In particular, in specifying a (1 + O(�))-

competitive algorithm we can assume that all processing times are integer powers of 1 + �.

The current set of jobs is denoted by N . A job in N is called large if its processing time is at

least � lb(N); otherwise, it is called small. The subset of large and small jobs is denoted by N

L

and N

S

,

respectively. We partition N into classes N
i

, i 2 Z, with

N

i

:= fj 2 N j p

j

= (1 + �)

i

g :
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Let I := fi 2 Z j � lb(N) � (1 + �)

i

� p

max

(N)g such that N
L

=

S

i2I

N

i

. Thus, the number of different

job sizes for large jobs is bounded by jIj and therefore constant:

jIj � 1 + log

1+�

p

max

(N)

� lb(N)

� 1 + log

1+�

1

�

= O

�

log(1=�)

�

�

: (2)

Given an assigment of jobs N

L

to machines, we say that a particular machine obeys configuration

k : I ! N

0

if, for all i 2 I , exactly k(i) jobs from N

i

are assigned to this machine. The set of configu-

rations that can occur in any schedule for N
L

is

K := fk : I ! N

0

j k(i) � jN

i

j for all i 2 Ig :

Up to permutations of machines, an arbitrary schedule for N
L

can be described by specifying, for each

k 2 K , the number y
k

of machines that obey configuration k. Conversely, a vector y 2 N

0

K specifies a

feasible m-machine-schedule for N
L

if and only if

X

k2K

y

k

= m and (3)

X

k2K

k(i) y

k

= jN

i

j for all i 2 I . (4)

We denote the set of vectors y 2 N
0

K satisfying (3) and (4) by S. Thus, S represents the set of all schedules

(up to permutations of machines and up to permutations of equal size jobs) for N
L

. For a configuration

k 2 K let

load(k) :=

X

i2I

(1 + �)

i

k(i)

denote the load of a machine obeying configuration k. The makespan of a schedule y 2 S is equal

to maxfload(k) j y

k

> 0g. For � � 0, let

K(�) := fk 2 K j load(k) � �g :

The set of all schedules with makespan at most � is denoted by

S(�) := fy 2 S j y

k

= 0 if load(k) > �g :

In the following, we usually interpret a schedule y 2 S(�) as a vector in N
0

K(�) by ignoring all zero-entries

corresponding to configurations not contained in K(�).

The minimum makespan for N
L

can be obtained by determining the minimum value � with S(�) 6= ;.

Checking whether S(�) is empty and, otherwise, finding a schedule y 2 S(�) can be done by finding a

feasible solution to an integer linear program. We can write

S(�) = fy 2 N

0

K(�)

j A(�) y = bg ;

where A(�) is a matrix in N

0

(1+jIj)�jK(�)j and b is a vector in N

0

1+jIj. The first row of the linear sys-

tem A(�) y = b corresponds to constraint (3); the remaining jIj rows correspond to constraints (4).

Lemma 3. Let N be a set of jobs and let j be a new job of size p
j

� � lb(N). Any schedule for N
L

with

makespan � � (1 + �)opt(N) can be turned into a schedule for N
L

[ fjg by touching only a constant

number of machines such that the makespan of the resulting schedule is at most maxf�; opt(N

L

[ fjg)g.
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Proof. We distinguish two cases. If p
j

� 2�, then it is easy to observe that opt(N
L

[ fjg) = p

j

and an

optimal schedule for N
L

[ fjg can be obtained by assigning job j to an arbitrary machine and moving all

jobs that are currently on this machine to any other machine.

In the remainder of the proof we can assume that p
j

= (1+�)

i

0

< 2� and therefore opt(N
L

[fjg) � 2�.

Let y 2 S(�) denote the given schedule for N
L

. Then, y satisfies

A(�) y = b ; y 2 N

0

K(�)

: (5)

Let I 0 := I [ fi

0

g and let K 0 denote the set of configurations k : I

0

! N

0

that can occur in any schedule

for N
L

[ fjg. Then, K 0

(�), S0(�), A0

(�), and b

0 are defined analogously to K(�), S(�), A(�), and b,

respectively, with K replaced by K 0 and I replaced by I 0.

Let �0 := maxf�; opt(N

L

[ fjg)g � 2�. We are looking for a schedule y0 2 S

0

(�

0

), that is, y0 must

satisfy

A

0

(�

0

) y

0

= b

0

; y

0

2 N

0

K

0

(�

0

)

: (6)

Moreover, y0 should be ‘similar’ to y. In order to compare the two vectors, we first ‘lift’ y to a vector

in N
0

K

0

(�

0

) as follows. A configuration k 2 K(�) can be interpreted as an element of K 0

(�

0

) by defin-

ing k(i) := 0 for all i 2 I

0

n I . We then define

y

k

:= 0 for all k 2 K

0

(�

0

) nK(�) :

It follows from (5) that the extended vector y satisfies

A

0

(�

0

) y =

^

b ; y 2 N

0

K

0

(�

0

)

: (7)

The right hand side ^

b 2 N

0

1+jI

0

j is defined as follows: If I 0 = I , then ^

b = b; otherwise, I 0 = I [ fi

0

g and

we define the entry of vector ^b corresponding to i0 to be zero and all other entries as in vector b.

Thus, y and y

0 are solutions to essentially the same integer linear program ((7) and (6), respectively)

with slightly different right hand sides ^b and b0, respectively. More precisely, the right hand sides are equal

for all but one entry (the one corresponding to i

0) where they differ by 1. Using a sensitivity result from

integer linear programming (see, e.g., [Sch86, Corollary 17.2a]), there exists a solution y0 to (6) satisfying

ky � y

0

k

1

� 3

�

�

K

0

(�

0

)

�

�

� ; (8)

where � is an upper bound on the absolute value of any subdeterminant of the matrix A0

(�

0

). To complete

the proof, we have to show that the right hand side of (8) is constant. This follows if we can prove that the

dimension and all entries of the matrix A0

(�

0

) are constant.

The number of rows of A0

(�

0

) is at most 2+ jIj = O

�

log(1=�)=�

�

by (2). Next, we give an upper bound

on the number of columns jK 0

(�

0

)j, i.e., on the number of machine configurations with load at most �0.

Since each job has size at least

� lb(N)

(1)

�

�

2

opt(N) �

�

2(1 + �)

� �

�

4(1 + �)

�

0

;

there are at most 
 := b4(1 + �)=�
 jobs in any configuration k 2 K

0

(�

0

). In particular, k(i) � 
 for

all i 2 I

0. This yields

�

�

K

0

(�

0

)

�

�

� 


jI

0

j

� 


jIj+1

(2)
=

�

1

�

�

O

�

log(1=�)

�

�

:

Finally, all entries in the first row of A0

(�

0

) are 1 and the remaining entries are of the form k(i) � 
. This

concludes the proof. ut
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Theorem 4. Let N be a set of jobs and let j be a new job not contained in N . Any (1 + �)-approximate

schedule for N can be turned into a (1 + �)-approximate schedule for N [ fjg such that the total size of

jobs that have to be moved is bounded by a constant �(�) times p
j

.

Proof. We distinguish two cases. If the newly arrived job is small, i.e., p
j

< � lb(N), then j can simply be

assigned to the least loaded machine by Observation 1 and no job in N has to be moved.

It remains to consider the case p
j

� � lb(N). The given schedule for N induces a schedule for N
L

with

makespan � � (1+ �) opt(N) � (1+ �) opt(N [fjg). By Lemma 3, the latter schedule can be turned into

a schedule for N
L

[ fjg with makespan at most

maxf�; opt(N

L

[ fjg)g � (1 + �) opt(N [ fjg) ;

by touching only a constant number of machines. In the following, this subset of machines of constant size

is denoted by M 0. We construct a schedule for N [ fjg as follows:

i) Start with the schedule for N
L

[ fjg discussed above.

ii) The jobs in N
S

that were assigned, by the given schedule for N , to one of the machines in M nM

0 are

assigned to the same machine again.

iii) The remaining jobs in N
S

are assigned one after another to the least loaded machine.

The makespan of the partial schedule constructed in steps i) and ii) is bounded by the maximum of the

makespan of the given schedule for N and the makespan of the schedule for N
L

[ fjg. It is thus bounded

by (1 + �)opt(N [ fjg). Assigning small jobs greedily to the least loaded machine in step iii) therefore

results in a (1 + �)-approximate schedule for N [ fjg by Observation 1.

Finally, notice that, in the whole process, only jobs that have initially been scheduled on machines M 0

are moved. The total size of these jobs is at most

(1 + �)opt(N)jM

0

j

(1)

� 2(1 + �) lb(N)jM

0

j � 2(1 + �)

p

j

�

jM

0

j

and therefore bounded by a constant times p
j

. This concludes the proof. ut

Theorem 5. There exists a (1 + �)-competitive online algorithm with constant migration factor �(�) such

that the running time for scheduling a newly arrived job is constant.

In particular, it follows from the last property mentioned in the theorem that the algorithm has linear

running time.

Proof. The result on the competitive ratio follows from Theorem 4. It remains to show that upon arrival of

a new job j the schedule can be updated in constant time. We assume that for the current set of jobs N the

following information is given:

– The total size of jobs p(N), the maximum job size p
max

(N), and the lower bound lb(N).

– A schedule y 2 S

�

(1 + �)opt(N)

�

for the subset of large jobs N
L

.

– The small jobs N
S

are grouped into batches of size at most � lb(N). These batches are assigned to the

machines such that the resulting schedule for N is still (1 + �)-approximate. The number of batches on

each machine is constant.

– For each machine, its load rounded up to the next integer power of 1 + �.

We argue that this information can be updated in constant time for the new set of jobs N [fjg. It is certainly

easy to compute p(N [ fjg) := p(N) + p

j

, p
max

(N [ fjg) := maxfp

max

(N); p

j

g, and lb(N [ fjg) :=

maxfp(N [ fjg)=m; p

max

(N [ fjg)g.

9



If the new job j is small, we simply assign it to a machine whose approximate load is below average.

This can be achieved using a priority queue exploiting integer keys [vEB77]. To be more precise, we assign j

to an existing batch of small jobs on this machine. If none such batch exists or if all such batches are ‘full’,

we create a new batch for job j.

If the new job j is large, a schedule y

0

2 S

0

�

(1 + �)opt(N [ fjg)

�

for the jobs in N

L

[ fjg can be

obtained in constant time by completely enumerating all vectors y0 with constant distance ky � y

0

k

1

(see

proof of Lemma 3). The batches of small jobs on the machines in M 0 whose schedule has been changed are

successively reassigned to a machine whose approximate load is below average.

Notice that some classes of jobs in N

L

[ fjg that were previously large (i.e., of size at least � lb(N))

might have become small with respect to the new lower bound lb(N [ fjg). These job classes are deleted

from schedule y0 and each such job is considered to form a batch of its own on its current machine.

In order to ensure that the number of batches on each machine remains constant, we do the following.

Whenever the schedule on a machine is changed, we check all batches of small jobs on this machine and, if

possible, merge groups of ‘tiny’ batches to form a new small batch. Notice that this can be done in constant

time since only a constant number of machines is touched in every step.

Finally, whenever the schedule on a machine is changed, its actual load and its approximate load are

updated. ut

5 Discussions and Further Results

Although small changes of the input can radically change optimal solutions, this may not be necessary when

we just want to maintain approximate solutions. This obvious intuition is quite trivial, yet we are not aware

of previous theoretical studies of this kind of sensitivity analysis which we believe is a rewarding topic

in approximation algorithms far beyond scheduling. Even in basic scheduling problems, there are many

interesting open question. Below, we look at the objective to maximize the minimum machine load and an

application. In future work, we intend to look at departures of jobs also.

Maximizing the Minimum Machine Load

An alternative, yet less frequently used objective for machine scheduling is to maximize the minimum load.

However, we have a concrete application using this objective function that was the original motivation for

our interest in bounded migration: Storage area networks (SAN) usually connect many disks of different

capacity and grow over time. A convenient way to hide the complexity of a SAN is to treat it as a single

big, fault tolerant disk of huge capacity and throughput [BSS02,San04]. A simple scheme with many nice

properties implements this idea if we manage to partition the SAN into several sub-servers [San04] of about

equal size. Each sub-server stores the same amount of data. For example, if we have two sub-servers, each

of them stores all the data to achieve a fault tolerance comparable to mirroring in ordinary RAID level 0

arrays [PGK88]. More subservers allow for a more flexible tradeoff between fault tolerance, redundancy,

and access granularity. In any case, the capacity of the virtual disk is determined by the minimum capacity

of a sub-server. Moreover, it is not acceptable to completely reconfigure the system when a new disk is

added to the system or when a disk fails. Rather, the user expects a “proportionate response”, i.e., if she adds

a disk of x GByte she will not be astonished if the system moves data of this order of magnitude but she

would complain if much more is moved. Our theoretical investigation confirms that this ‘common sense’

expectation is indeed reasonable.

10



We concentrate on the case without job departures (disk failures). In Appendix D we show that the

following simple strategy, which is very similar to FILL 1 , is 2–competitive already for migration factor

� = 1.

Procedure FILL 5:

Upon arrival of a new job j, do the following. Repeatedly remove jobs from the least loaded machine i
min

;

stop before the total size of removed jobs exceeds p
j

. Assign job j to machine i
min

. Assign the removed

jobs successively to the least loaded machine.

Theorem 6. FILL 5 is 2–competitive with migration factor 1.

Acknowledgments. We would like to thank Gerhard Woeginger for interesting discussions and helpful com-

ments on the topic of this paper.
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A Additional Notation

For a schedule on the set of jobs N , let S(i) denote the set of jobs scheduled on machine i. For a subset of

machines Y �M , let S(Y ) :=

S

i2Y

S(i).

B 3=2–Competitive Strategy with Factor 4/3 Migration — Proof of Theorem 2

Proof. The migration factor is clear from the description of FILL 2 . To show the competitive ratio, we

consider any arbitrary schedule on the set of jobs N that is 3/2–approximate with the following additional

property. We also refer to this schedule as the input schedule. The total load in any machine excluding the

largest job in it, is at most opt. We show that incorporating the new job j results in a 3/2–approximate

schedule. The resulting schedule also satisfies the above property as shown by the following fact.

Fact 1. Consider any schedule on a set of jobs N such that the total load on any machine excluding the

largest job in it is at most opt. Incorporating the new job j using FILL 2 still preserves this property with

respect to the new optimum opt’.

Proof. Let M 0 be the subset of machines ‘touched’ by FILL 2 for scheduling job j. For any machine in M 0,

consider the ‘last’ job assigned to it during the execution of FILL 2 . If it is not j, then that job was assigned

to it as part of the re-distribution phase. Since re-distribution is always performed on the current least loaded

machine, the load in this machine excluding this last job is at most opt0. If the last job is j then, as option

0 is always preferred, the total load of this machine can only be smaller than the load in the least loaded

machine together with the load of job j. Hence in both cases, the fact is ensured. ut

We call a job small if its size is at most opt0=2 and call it medium if its size is between opt=2 and

(3=4)opt and call it large otherwise. If j is a small job, then option 0 already yields a schedule of makespan

at most (3/2)opt’ by Observation 1. Hence from now on, we only distinguish two cases; the job is either

medium or large.

The medium job case: opt

0

=2 < p

j

� (3=4)opt

0: Let

p

j

= opt

0

=2 + Æ where 0 < Æ � opt

0

=4 (9)

We will show that there is a good option k 2 [1;m℄ that yields a 3/2–approximate schedule after inserting

job j. The rest of the arguments are to first define this k and then to show that option k would suffice.

We use the notation S(i) to denote the set of jobs scheduled on machine i in the input schedule (ref.

Appendix A). With respect to the input schedule, partition the set of machines M as machines with small

jobs, denoted as M
s

and the rest of the machines as M
l

, where,

M

s

= fi j p

max

(S(i)) � opt

0

� Æg and M

l

= M �M

s

(10)

Observe that on any (3/2)–approximate schedule of jobs in N , a machine can only have at most one job

of size more than opt

0

� Æ. Otherwise the total load in that machine exceeds (3=2)opt0 as Æ � opt

0

=4. This

is obviously true even for any optimal schedule of jobs in N . Hence, we fix an optimal schedule of N in

such a way that, exactly the machines in M
l

have jobs with size more than opt

0

� Æ. That is, in the optimal

schedule as well as input schedule, on each machine in M
l

, exactly one job has size more than opt

0

�Æ. And

the rest of the machines, i.e, M
s

, do not contain any such job (on both schedules).

We now compare the input schedule with this optimal schedule. Except for the large jobs in M

l

, other

jobs might be scheduled differently in the optimal schedule when compared to the input schedule. The same

holds for the jobs in M
s

also. As shown in figure 3, we identify these differences as follows:
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Optimal Schedule of jobs in N Input Schedule of jobs in N

L

�

F

F

L

�

F

�

L

M

l

M

s

M

l

M

s

�

L F

Fig. 3. Figure showing the differences between the optimal schedule and the input schedule of jobs in N . Each machine in M
l

has

exactly one job of size greater than opt

0

� Æ. Moreover, in both schedules, such jobs are present only in �

F . Hence all jobs in F

have size at most Æ.

– Set L: Set of jobs scheduled on M
s

in both optimal and input schedule.

– Set �

F : Set of jobs scheduled on M
l

in both optimal and input schedule.

– Set F : Set of jobs scheduled on M
s

in input schedule but not in optimal schedule.

– Set �L: Set of jobs scheduled on M
l

in input schedule but not in optimal schedule.

It is easy to see that these subsets define a partition of jobs in both input schedule and optimal schedule.

As we discussed earlier, in both the schedules, each machine in M

l

contain one job of size greater than

opt

0

� Æ. Hence, such jobs are only present in the common subset �

F . This in particular means that the

remaining jobs that are scheduled in M
l

in the optimal schedule, i.e, F , is such that,

for every job b 2 F; p

b

� Æ (11)

Otherwise, the load in a machine in M
l

will exceed opt

0 in the optimal schedule, which is not possible.

Consider the jobs scheduled in M
s

in the input schedule,i.e, F [ L. Since the set L is scheduled on M
s

in

both optimal as well as input schedule, any arbitrary schedule of L onto M
s

ensures that the load of the least

loaded machine is at most opt. This in particular means that for the input schedule, there exists a machine in

M

s

such that, if the jobs belonging to F are removed from it, the total remaining load on it (i.e, p(S(k)�F ))

is at most opt. Let that machine be k. That is,

p(S(k)� F ) � opt (12)

For later purpose, we need to view the jobs in k in the input schedule (i.e, S(k)) as being partitioned into

two sub-sets, K
Æ

and K
r

. The subset K
Æ

contains all jobs in S(k) of size at most Æ. The set K
r

contain the

remaining jobs. That is,

K

Æ

= fAll jobs in machine k with size at most Æg; K

r

= S(k)�K

Æ

Since F is a subset of K
Æ

(by definition), (12) implies that

p(K

r

) � opt (13)

As promised earlier, we are now in a position to fix the ‘good’ option. In the following, we show that

“option k” yields a 3/2–approximate schedule. While performing option K , let the set of jobs that are

removed from machine k before assigning job j, be denoted by R. To show that this option is good, it

suffices to show that
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i) The resulting load on machine k after removing jobs in R from it and assigning job j there, is at most

(3=2)opt

0. That is, p((S(k) �R) [ fjg) � (3=2)opt

0.

ii) Each removed job has size at most opt0=2 (Redistributing them is fine by Observation 1).

It is easy to see that the second condition is met. Recall that the largest job from machine m is never

removed in option k. This job belongs to set K
r

(by definition). Since the total size of K
r

is at most opt, all

jobs in K

r

except (possibly) this largest job, have size at most opt0=2. Moreover, since all jobs in k

Æ

have

size at most opt0=4 as Æ � opt

0

=4, every removed job has size at most opt0=2.

It remains to show that condition i) also hold. First consider the simpler sub-case that, before assigning

job j, all jobs in machine k except the largest job (this job is never touched) were removed. Since the largest

job’s size cannot exceed opt

0

� Æ (by definition, as machine k belongs to M

s

. See def. (10)), the resultant

load is at most (3=2)opt0, as the size of job j is opt0=2 + Æ.

Hence from now on we assume that, there were unremoved jobs from machine k in addition to the largest

job. If such an unremoved job is from K

Æ

, then also condition i) holds. This is because of the following.

Since there is one job in K
Æ

that is unremoved, the total removed amount is at least (4=3)p
j

� Æ. Otherwise,

this job should have been removed with out exceeding the removal limit as this job has size at most Æ, by

definition of K
Æ

. Hence the load after assigning job j is no more than Original load� ((4=3)p

j

� Æ) + p

j

.

It is easy to verify that this is at most Original load (at most (3=2)opt) as p
j

= opt

0

=2+ Æ and Æ � opt

0

=4.

Now the only remaining case is that there are unremoved jobs, in addition to the largest job, and, all of

them are from K

r

. Observe that jobs from K

r

are considered first by the greedy removal, as all of them have

larger size than jobs in K
Æ

. This already implies that at least one job from K

r

was removed. This is because;

(a) the removal limit, i.e, (4=3)p
j

is at least opt0=2, and, (b) all jobs in K
r

, except the largest job, have size

at most opt0=2 (as p(K
r

) � opt). Thus, the total removed size is no less than p(K
Æ

) + Æ. The Æ is for the

removed job from K

r

. The original load is P (K

Æ

)+ p(K

r

). Hence the load after assigning job j in machine

k is at most

p(K

Æ

) + p(K

r

)� p(K

Æ

)� Æ + p

j

= p(K

r

) + opt

0

=2 � (3=2)opt

0 by (13):

The large job case: p

j

> (3=4)opt

0, let

p

j

= (3=4)opt

0

+ Æ where Æ � (1=4)opt

0 (14)

Since there can be at most m large jobs in N [fjg, there is a machine k in the input schedule, where, in fact

all jobs in it have size at most opt0=2. In the following, we show that “option k” yields a 3=2–approximate

schedule. First observe that all the removed jobs from machine k have size at most opt

0

=2. Hence re-

distributing them is fine by Observation 1. Recall that by the input requirement, in the input schedule, on

any machine, the load excluding the largest job in it is at most opt. Hence all jobs except the largest job (this

is untouched) will be removed by option k as the removal limit, i.e, (4=3)p
j

, is at least opt0. Hence after

removing the jobs greedily, only the largest job remains and, assigning job j there do not increase the load

above (3=2)opt

0.

ut

C A 4/3–Competitive Strategy with Factor 4 Migration – Proof of Theorem 3

Consider the following procedure FILL 3. In this section, we show that FILL 3 is 4/3–competitive with factor

4 migration. We use the notation S(:) as defined in Appendix A.

Procedure FILL 3:

Upon arrival of j, choose the one of the following m+ 1 options that minimizes the resulting makespan.
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Option 0: Assign job j to the least loaded machine.

Option i [for i 2 f1; : : : ;mg]: There are two main phases.

If 2p
j

� p(S(i)) and p
j

� p

max

(S(i)) then perform phase one, else directly proceed to phase two.

Phase one:

Let ` denote the largest job in machine i. Remove all jobs from machine i and schedule job j there.

Except job `, assign the removed jobs successively in the least loaded machine.

Phase two:

We assign the unassigned job ` in this phase. If phase one was skipped then ` is simply job j. After

phase one, let ~

S(x) denote the new set of jobs assigned to machine x. If phase one is skipped then
~

S(�) = S(�). To assign job `, we further consider m + 1 sub-options that looks as follows. Finally

choose the sub-option that yields the minimum final makespan.

Sub-option 0: Assign job ` to the least loaded machine.

Sub-option k [for k 2 f1; : : : ;mg]: The set of jobs in machine k is ~

S(k). Ignoring the largest job in

machine k, consider the remaining jobs in order of non-increasing size and repeatedly remove them;

stop before the total size of removed jobs exceeds 2p

j

. Assign job ` to machine k and assign the

removed jobs successively to the least loaded machine.

Lemma 4. FILL 3 is 4=3–competitive with factor 4 migration.

Proof. The proof of migration factor is clear from the description of FILL 3. In both phases of any option

i 2 [1;m℄, migration factor is 2. Hence together, the migration factor is 4. To show the competitive ratio, we

consider any arbitrary schedule on the set of jobs N that is 4/3–approximate. We also refer to this schedule

as the input schedule. We show that FILL 3 yields a 4/3–approximate schedule.

If job j is small, i.e, p
j

� opt

0

=3, option 0 yields a 4/3–approximate schedule by Observation 1.

Consider the remaining case p

j

> opt

0

=3. With respect to the input schedule, we partition the set of

machines M as M
L

and M

S

, where, M
L

refers to machines containing ‘large’ jobs and machines in M

S

contain only ‘small’ jobs. More precisely,

M

L

=

�

i j there exists a job b 2 S(i) with p

b

> (2=3)opt

0

	

and M

S

= M �M

L

In other words, M
L

is the set of all machines such that, in each such machine, there is at least one ‘large’

job of size greater than (3=2)opt

0. Clearly not all machines can have such large jobs as p
j

> opt

0

=3. Hence

M

S

6= ;.

Observation 3. If p
j

> opt

0

=3 then there exists a machine z 2 M

S

such that, there is at most one job in

it, i.e, in S(z), with size more than opt

0

=3.

Otherwise there is no optimal schedule on N [ fjg with makespan no more than opt

0, as each machine in

M

L

already contains at least one job with size greater than (2=3)opt

0.

Choose the z that conforms to Observation 3. In the following, we show that “option z” yields a 4/3–

approximate schedule. We show this by showing the following two conditions.

Condition 1: After phase one of option z, the resulting intermediate makespan is at most (4=3)opt0.

Condition 2: If condition 1 holds then after phase two of option z, the final makespan is at most

(4=3)opt

0.

Condition 1 is easily seen as follows. Recall that the largest job in machine z is denoted as ` (see

FILL 3 description). After removing all jobs from machine z and assigning job j there, the total load there is

at most p
j

� opt

0. By Observation 3, we know that, all jobs in machine z except possibly the largest job, i.e,

`, have size at most opt0=3. Hence by Observation 1, redistributing the removed jobs except ` still maintains

Condition 1.
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It remains to show condition 2 having shown condition 1. Recall that in the beginning of phase two, the

job to be scheduled is ` and the subset of jobs assigned to any machine x is ~

S(x). Also recall that if phase

one is skipped then ` = t and ~

S(�) = S(�). Since phase two of Option z is entered either

– By skipping phase one. Hence p

`

= p

j

< p(S(z))=2 � (2=3)opt

0 or

p

`

= p

j

< p

max

(S(z)) � (2=3)opt

0 (as z 2M

S

).

– Or after phase one. Hence p

`

= p

max

(S(z)) � (2=3)opt

0 (as z 2M

S

).

In either case, it implies that

p

`

� (2=3)opt

0 and p

`

� p

j

(15)

We complete the proof for condition 2 by splitting the analysis into two cases, namely, p
`

� opt

0

=3 and

opt

0

=3 < p

`

� (2=3)opt

0.

Consider the case p
`

� opt

0

=3. Since the intermediate schedule after Phase 1 is (4/3)–approximate, in

Phase two, the Sub-option 0 yields (4/3)–approximate schedule by Observation 1.

Consider the remaining case opt

0

=3 < p

`

� (2=3)opt

0. Recall that in the input schedule, no job in

machine z has size greater than (2=3)opt

0 as z 2 M

S

. Hence, during phase one (if at all it is performed)

of Option z, no job of size greater than (2=3)opt is ‘touched’; and hence their positions (machine where it

is assigned) are left unchanged. Hence if we re-look at the definition of M
S

and M

L

with respect to ~

S(�)

instead of S(�), the machines that fall into these subsets are exactly the same. It is straightforward to verify

that observation 3 still holds with respect to `;M

S

and ~

S(�). Let y be a machine satisfying this modified

observation and let the largest job in y be b. By Observation 3,

p

b

� (2=3)opt

0 and for all j 2 ~

S(y) n b; p

j

� opt

0

=3 (16)

The first inequality is simply because y belongs to M
S

. We show that Sub-option y maintains the invariant

after Phase two. Since the largest job, in machine y, i.e b, is never removed, all the removed jobs have size at

most opt0=3. Hence by Observation 1, the schedule after re-assigning the removed job is 4/3–approximate

if the schedule before that step is 4/3–approximate. Hence all that remains is to show that the schedule

obtained after removing jobs from machine y and assigning job ` there, the schedule is 4=3–approximate. If

all jobs are removed (except b), then clearly this is true as the final load is p
j

+ p

b

� (4=3)opt

0 by (15) and

(16). Now assume that there is at least one unremoved job other than b. Since such a job has size no more

than opt

0

=3 by (16), the total size of removed jobs is at least 2p
j

� opt

0

=3, where 2p

j

is the removal limit.

Hence the load after assigning job ` is at most Original load� (2p

j

� opt

0

=3) + p

`

which is no more than

the original load by (15) and the current case assumption. ut

D Maximizing the Minimum Load – Proof of Theorem 6

Proof. The migration factor is clear from the description of FILL 5. In the input schedule, consider the ma-

chine with the maximum load such that it contains more than one job. If there is no such machine (i.e, no

machine contain more than one job), then clearly FILL 5 schedule of N [ fjg is 1–approximate. Hence the

interesting case is that such a machine exists. We call machines with more than one job as multi-job machine.

We assume that the input schedule has the following property;

Maximum load of a multi-job machine � 2 � minimum load

We show later that the above property is preserved on the output schedule. If the above property is preserved,

then it is a 2–approximate schedule, as the optimal minimum load is at most the maximum load of a multi-

job machine. It remains to show that the above property holds for the output schedule. For the case p
j

�

17



p(S(i

min

)), it is straightforward to see that the above property holds. Now for the remaining case, i.e,

p

j

> p(S(i

min

)), all jobs from the least loaded machine will be removed first and then j will be assigned to

i

min

. Consider this intermediate schedule (before assigning the removed jobs). Clearly this schedule satisfies

the property. Observe that each of the removed job has size at most the current minimum load. Hence re-

assigning them still preserves the invariant as shown by the first case analysis. ut

E The Two Machine Case

In this section we show a tight competitive ratio for the two machine case. Consider the following procedure

FILL 4.

Procedure FILL 4:

Upon arrival of j, choose the option from the following options that minimizes the new makespan.

For each fixed machine i 2 f1; 2g, we define more options in the following way. LetL be the largest seven

jobs in machine i. Set L could possibly have less than seven jobs. Let the remaining jobs in machine i

be B. That is B = S(i) � L: Let L = fL

1

; : : : ; L

s

g be set of all possible subsets (including �) of L

such that for each L

k

2 L; p(L

k

) � p

j

: Each set L
k

2 L gives rise to a new

Option (i:k): Remove the set of jobs L
k

from machine i and assign them to the other machine. Consider

the jobs in B in non-increasing order order of size and repeatedly remove them; stop before the total

size of removed jobs exceeds p
j

� p(L

k

). Let B
k

denote these removed jobs. Assign job j to machine i

and assign the removed jobs successively to the least loaded machine.

Option 0: Assign job j to the least loaded machine.

Theorem 7. FILL 4 is 7=6–competitive with factor 1 migration.

Proof. The migration factor is clear from the FILL 4 description. To show the competitive ratio, we consider

any arbitrary schedule on the set of jobs N that is 7/6–approximate. We also refer to this schedule as the

input schedule. We show that FILL 4 yields a 7/6–approximate schedule. First we need the following two

observations.

In the input schedule, since the load in any machine i is at most (7=6)opt, and since the largest seven

jobs are not included in set B defined for machine i (see FILL 4), we have,

Observation 4. For any machine i, consider the set B as defined in FILL 4. Every job in this set has size at

most opt0=6.

If job j is ‘small’, i.e, p
j

� opt

0

=3, then Option 0 yields 7/6–competitive schedule by Observation 1.

It remains to handle the case p
j

> opt

0

=3.

Observation 5. From any machine, it is sufficient to migrate jobs of total size at most p
j

� opt

0

=6.

Proof. W.l.o.g let p(S(1)) � p(S(2)). Let p(S(2)) = opt

0

�p

j

=2+y: This implies that p(S(1)) � opt

0

�

p

j

=2 � y: Otherwise the average makespan exceeds opt

0. If y � p

j

=2 � opt

0

=6, then scheduling job j

in machine 1 without migration would suffice. For the remaining case where p

j

> opt

0

=3 and y <

p

j

=2 � opt

0

=6, it is sufficient to have a migration of total size either p
j

=2� y � opt

0

=6 from machine 1 to

2 or p
j

=2+ y� opt

0

=6 from machine 2 to 1. In both cases the migration amount is at most p
j

� opt

0

=6. ut

Though above observation is true, it is possible that every feasible set of jobs that needs to be migrated

have total size more than p

j

� opt

0

=6.

Fact 2. There is a subset of jobs of total size at most p
j

residing in a machine such that scheduling job j

here and migrating this subset to the other machine maintains the invariant.
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Fig. 4. Comparison of input schedule on N and optimal schedule on N [ fjg for two machines.

Though fact 2 alone is sufficient to devise a strategy that yields a 7=6–approximate schedule, it might

take exponential time in the worst case to identify these subsets that needs to be migrated. Using the above

two, we now show that our polynomial time strategy does the job.

Under the assumption that Fact 2 holds, the proof is completed as follows. W.l.o.g assume that, by fact

2, migrating a set of jobs from machine 1 to 2 and scheduling job j in machine 1 is enough. Let X denote

the set with the smallest total size that needs to be migrated from machine 1. Let the jobs in X that are

among the largest seven jobs in machine 1 be the set L
k

2 L. We show that “Option 1:k” maintains the

invariant. The total size of jobs removed from machine 1 by option 1:k initially, i.e, p(L
k

[ B

k

) is at least

p

j

� opt

0

=6 unless B
k

= B as size of any job in B is at most opt0=6 by Observation 4 (standard argument).

Since it is enough to migrate a total size of at most p
j

� opt

0

=6 by Observation 5 and since X is a feasible

set to be migrated with the minimum total size, in any case the total size of jobs removed initially is at least

p(X). Hence after assigning job j, the total load in machine 1 is at most (7=6)opt0. The re-assignment of

jobs (they belong to B
k

and hence have size at most opt0=6) is also fine by Observation 1.

ut

Proof. (Fact 2) We now show the existence of a set of jobs to be migrated such that, they all lie in one

machine before migration. Hence for the remainder of the proof, we do not bother about its total size, as

there is no need to migrate such a set with total size more than p
j

, since we only have two machines (simply

assign p
j

on the destination machine instead). Consider any fixed optimal schedule of N [ fjg. We capture

the difference between this optimal schedule and the input schedule on N by sets Æ
1

; Æ

2

;�

1

and �

2

. As

shown in figure 4 (the input schedule), the above four sets define a partition of N . The set Æ
1

is the set of all

jobs assigned to machine 1 on both schedule. Similarly, set �
2

is the set of all jobs assigned to machine 2

on both schedules. The remaining two sets capture the differences between these two schedules except for

job j, which is only present in the optimal schedule.

We only consider the interesting case that assigning j to any machine with out migration fails. For

convenience, from now on, for any set X , we denote its size also as X. For job j we denote its size as j. We

also normalize opt

0 to 1. Because of the optimal schedule, (figure 4) and the fact that assigning j without

migration fails, we have,

Æ

1

+ Æ

2

+ j � 1

�

1

+�

2

� 1

Æ

1

+�

1

+ j > 7=6

Æ

2

+�

2

+ j > 7=6
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It is straightforward to verify that these four inequalities yield, j > 2=3 and Æ

1

+ Æ

2

� 1=3 (Inequalities 1

and 3 imply �
1

> 1=6 + Æ

2

. Inequalities 2 and 4 imply Æ
2

+ j > 1=6 +�

1

). W.l.o.g let Æ
1

� 1=6. Hence

the migration strategy is; migrate �
2

to machine 1 and schedule j on machine 2. ut

Tight Lower Bound For Two Machines

Theorem 8. Let A be any deterministic algorithm which is 
–competitive on two machines with migration

factor at most one. Then 
 �

7

6(1+�)

for any sufficiently small positive � 2 R+ .

Proof. The adversary initially issues four jobs with the following size: 1=6 + �=2; 1=6 + �=2; 1=2 and 1=2.

It is easy to verify that the only 7/6–approximate way of scheduling them is to assign in each machine one

job of size 1=6 + �=2 and one job of size 1=2.

Assume otherwise. That is both machines contain one job of size 1=2 and one job of size 1=6 + �=2.

Now adversary issues a new job of size 2=3. The optimal makespan is 1 + �. But if the migration factor is

restricted to 1, then the best possible makespan by A is 7=6. Hence 
 = 7=(6(1 + �)). ut
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