Super Scalar Sample Sort

Peter Sanders! and Sebastian Winkel?

! Max Planck Institut fiir Informatik
Saarbriicken, Germany, sanders@mpi-sb.mpg.de
2 Chair for Prog. Lang. and Compiler Construction
Saarland University, Saarbriicken, Germany, sewi@cs.uni-sb.de

Abstract. Sample sort, a generalization of quicksort that partitions the
input into many pieces, is known as the best practical comparison based
sorting algorithm for distributed memory parallel computers. We show
that sample sort is also useful on a single processor. The main algorith-
mic insight is that element comparisons can be decoupled from expensive
conditional branching using predicated instructions. This transformation
facilitates optimizations like loop unrolling and software pipelining. The
final implementation, albeit cache efficient, is limited by a linear num-
ber of memory accesses rather than the O(nlogn) comparisons. On an
Itanium 2 machine, we obtain a speedup of up to 2 over std: :sort from
the GCC STL library, which is known as one of the fastest available
quicksort implementations.

1 Introduction

Counting comparisons is the most common way to compare the complexity of
comparison based sorting algorithms. Indeed, algorithms like quicksort with good
sampling strategies [9,14] or merge sort perform close to the lower bound of
logn! ~ nlogn comparisons® for sorting n elements and are among the best
algorithms in practice (e.g., [24,20,5]). At least for numerical keys it is a bit
astonishing that comparison operations alone should be good predictors for ex-
ecution time because comparing numbers is equivalent to subtraction — an
operation of negligible cost compared to memory accesses.

Indeed, at least when sorting large elements, it is well known that mem-
ory hierarchy effects dominate performance [18]. However, for comparison based
sorting of small elements on processors with high memory bandwidth and long
pipelines like the Intel Pentium 4, there are almost no visible memory hierar-
chy effects [5]. Does that mean that comparisons dominate the execution time
on these machines? Not quite because execution time divided by nlogn gives
about 8ns in these measurements. But in 8ns the processor can in principle exe-
cute around 72 subtractions (24 cycles x 3 instructions per cycle). To understand
what the other 71 slots for instruction execution are (not) doing, we apparently
need to have a closer look at processor architecture [8]:

% log stands for log, « in this paper.

Data dependencies appear when an operand of an instruction B depends on
the result of a previous instruction A. Such instructions have to be one or more
pipeline stages apart.

Conditional branches disrupt the instruction stream and impede the extrac-
tion of instruction-level parallelism. When a conditional branch enters the first
stage of the processor’s execution pipeline, its direction must be predicted since
the actual condition will not be known until the branch reaches one of the later
pipeline stages. If a branch turns out to be mispredicted, the pipeline must be
flushed as it has executed the wrong program path. The resulting penalty is
proportional to the pipeline depth. Six cycles are lost on the Itanium 2 and 20
on the Pentium 4 (even 31 on the later 90nm generation). This penalty could
be mitigated by speculative execution of both branches, but this causes addi-
tional costs and power consumption and quickly becomes hopeless when the next
branches come into the way.

Of course, the latter problem is relevant for sorting. To avoid mispredicted
branches, much ingenuity has been invested by hardware architects and compiler
writers to accurately predict the direction of branches. Unfortunately, all these
measures are futile for sorting. For fundamental information theoretic reasons,
the branches associated with element comparisons have a close to 50 % chance
of going either way if the total number of comparisons is close to nlogn.

So after discussing a lot of architectural features we are back on square one.
Counting comparisons makes sense because comparisons in all known comparison
based sorting algorithms are coupled to hard to predict branches. The main
motivation for this paper was the question whether this coupling can be avoided,
thus leading to more efficient comparison based sorting algorithms (and to a
reopened discussion what makes a good practical sorting algorithm).

Section 2 presents super scalar sample sort (sss-sort) — an algorithm where
comparisons are not coupled to branches. Sample sort [4] is a generalization of
quicksort. It uses a random sample to find k — 1 splitters that partition the input
into buckets of about equal size. Buckets are then sorted recursively. Using binary
search in the sorted array of splitters, each element is placed into the correct
bucket. Sss-sort implements sample sort differently in order to address several
aspects of modern architectures:

Conditional branches are avoided by placing the splitters into an implicit
search tree analogous to the tree structure used for binary heaps. Element place-
ment traverses this tree. It turns out that the only operation that depends on
the result of a comparison is an index increment. Such a conditional increment
can be compiled into a predicated instruction: an instruction that has a predi-
cate register as an additional input and is executed if and only if the boolean
value in this register is one. Their simplest form, conditional moves, are now
available on all modern architectures. If a branch is replaced by these condition-
ally executed instructions, it can no longer cause mispredictions that disrupt the

pipeline. Loop control overhead is largely eliminated by unrolling the innermost
loop of log k iterations completely?.

Data dependencies: Elements can traverse the search tree for placement into
buckets independently. By interleaving the corresponding instructions for several
elements, data dependencies cannot delay the computation. Using a two-pass
approach, sss-sort makes it easy for the compiler to implement this optimization
(almost) automatically using further loop unrolling or software pipelining. In
the first pass, only an “oracle” — the correct bucket number — is remembered
and the bucket sizes are counted. In the second pass, the oracles and the bucket
sizes are used to efficiently place the elements into preallocated subarrays. This
two-pass approach is well known from algorithms based on radix sort, but only
the introduction of oracles make it feasible for comparison based sorting. The
two-pass approach has the interesting side effect that the comparisons and the
most memory intensive components of the algorithm are cleanly separated and
we can easily find out what dominates execution time.

Memory Hierarchies: Sample sort is more cache efficient than quicksort be-
cause it moves the elements only log, n times rather than logn times. The pa-
rameter k depends on several properties of the machine.

The term “super scalar” in the algorithm name, as in [1], says that this algo-
rithm enables the use of instruction parallelism by getting rid of hard to predict
branches and data dependencies. Were it not for the alliteration, “instruction
parallel sample sort” might have been a better name since also superpipelined,
VLIW, and explicitly parallel instruction architectures can profit from sss-sort.

Section 3 gives results of an implementation of sss-sort on Intel Itanium 2
and Pentium 4 processors. The discussion in Section 4 summarizes the results
and outlines further refinements.

Related Work

So much work has been published on sorting and so much folklore knowledge is
important that it is difficult to give an accurate history of what is considered
the “best” practical sorting algorithm. But it is fair to say that refined versions
of Hoare’s quicksort [9,17] are still the best general purpose algorithms: Being
comparison based, quicksort makes little assumptions on the key type. Choosing
splitters based on random samples of size ©(y/n) [14] gives an algorithm using
only nlogn 4+ O(n) expected comparisons. A proper implementation takes only
O(log n) additional space, and a fallback to heapsort ensures worst case efficiency.
In a recent study [5], STL: :sort from the GCC STL library fares best among
all quicksort competitors. This routine stems from the HP/SGI STL library and
implements introsort, a quicksort variant described in [17]. Only for large n and
only on some architectures this implementation is outperformed by more cache
efficient algorithms. Since quicksort only scans an array from both ends, it has
perfect spatial locality even for the smallest of caches. Its only disadvantage is

4 Throughout this paper, we assume that k is a power of two.

Table 1. Different complexity measures for k-way distribution and k-way merging in
comparison based sorting algorithms. All these algorithms need nlog k element com-
parisons. Lower order terms are omitted. Branches: number of hard to predict branches;
data dep.: number of instructions that depend on another close-by instruction; I/Os:
number of cache faults assuming the I/O model with block size B; instructions: neces-
sary size of instruction cache.

mem. acc.|branches|data dep.| I/Os [registers|instructions

k-way distribution:

sss-sort nlogk o) O(n) |3.5n/B |3xunrolll O(logk)
quicksort logk lvls.| 2nlogk | nlogk |O(nlogk)|2% logk 4 o(1)
k-way merging:

memory [22,12] nlogk | nlogk |O(nlogk)| 2n/B 7 O(log k)
register [24, 20] 2n nlogk |O(nlogk)| 2n/B k O(k)

funnel "% *[5] |2nlog,, k| nlogk |O(nlogk)| 2n/B | 2k' +2 O(K")

that it reads and writes the entire input log {7 times before the subproblems fit
into a cache of size M.

Recent work on engineering sequential sorting algorithms has focused on
more cache efficient algorithms based on divide-and-conquer that split the prob-
lem into subproblems of size about n/k and hence only need to read and write
the input log;, 15 times. In the I/O model [2], with an omniscient cache of size M
and accesses (“I/Os”) of size B, we have k = O(M/B). In practical implementa-
tions, k has to be reduced by a factor {2 (Bl/ a) for a-way associative hardware
caches [15] (this restriction can in principle be circumvented [23]). On current
machines, the size of the Translation Lookaside Buffer (TLB) is the more strin-
gent restriction. This translation table keeps the physical address of the most
recently accessed pages of virtual memory. Access to other pages causes TLB
misses. TLBs are small (usually between 64 and 256) and for large n, TLB misses
can get much more expensive than cache misses.

k-way Merging is a simple deterministic approach to k-way divide-and-con-
quer sorting and is the most popular approach to cache efficient comparison
based sorting [18,13,22,24,20,5]. Using a tournament tree data structure [12],
the smallest remaining element from k sorted data streams can be selected using
log k comparisons. Keeping this tournament tree in registers reduces the number
of memory accesses by a factor log k at the cost of 2k registers and a cumbersome
case distinction in the inner loop [22,20,24]. Although register based multi-
way merging severely restricts the maximal k, this approach can be a good
compromise for many architectures [20, 24]. This is another indication that most
sorting algorithms are less restricted by the memory hierarchy than by data
dependencies and delays for branches. Register based k’-way mergers can be
arranged into a cache efficient k-way funnel merger by coupling log% levels
using buffer arrays [5]. By appropriately choosing the sizes of the buffer arrays,
this algorithm becomes cache-oblivious, i.e., it works without knowing the I/0-
model parameters M and B and is thus efficient on all levels of the memory
hierarchy [7].

Function sampleSort(e = (e1,...,en), k)

if n/k is “small” then return smallSort(e) // base case, e.g. quicksort
let (S1,...,Sak—1) denote a random sample of e

sort S // or at least locate the elements whose rank is a multiple of a
(50,581,582, .., 5k—1,5k):= (—00,5a,52a, .-, S(k—1)a,) // determine splitters

for i :=1 to n do
find j € {1,...,k} such that sj—1 < e; < sj
place e; in bucket b;
return concatenate(sampleSort(by), ..., sampleSort(by))

Fig. 1. Pseudocode for sample sort with k-way partitioning and oversampling factor a.

For integer keys, radix sort with log k bit digits starting with the most signif-
icant digit (MSD) can be very fast. This is probably folklore. We single out [1]
because it contains the first mention of TLB as an important factor in choosing
k and because it starts with the sentence “The compare and branch sequences
required in a traditional sort algorithm cannot efficiently exploit multiple execu-
tion units present in currently available RISC processors.” However, radix sort
in general and this implementation in particular depend heavily on the length
and distribution of input keys. In contrast, sss-sort does away with compare and
branch sequences without assumptions on the input keys. For a recent overview
of radix sort implementations refer to [19,11]. Sss-sort owes a lot to MSD radix
sort because it is also distribution based and since it adopts the two-pass ap-
proach of a counting phase followed by a distribution phase.

One goal of this paper is to give an example of how it can be algorithmically
interesting and relevant for performance to consider complexity measures beyond
the RAM model and memory hierarchies. Table 1 summarizes the complexity
of k-way distribution and k-way merging for five different algorithms and five
different complexity measures (six if we count comparisons). For the sake of this
comparison, log k recursion levels of quicksort are viewed as a means of k-way
distribution. We can see that sss-sort outperforms the other algorithms with
respect to the conditional branches and data dependencies. It also fares very
well regarding the other measures. The constant factor in the number of I/Os
might be improvable. Refer to Section 4 for a short discussion.

2 Super Scalar Sample Sort

Our starting point is ordinary sample sort. Fig. 1 gives high level pseudocode.
Small inputs are sorted using some other algorithm like quicksort. For larger
inputs, we first take a sample of s = ak randomly chosen elements. The over-
sampling factor a allows a flexible tradeoff between the overhead for handling
the sample and the accuracy of splitting. In the full paper we give a heuristic
derivation of a good oversampling factor. Our splitters are those elements whose
rank in the sample is a multiple of a. Now each input element is located in

the splitters and placed into the corresponding bucket. The buckets are sorted
recursively and their concatenation is the sorted output.

Sss-sort is an implementation strategy for the basic sample sort algorithm.
We describe one simple variant here and refer to Section 4 for a discussion of some
possible refinements. All sequences are represented as arrays. More precisely, we
need two arrays of size n. One for the original input and one for temporary
storage. The flow of data between these two arrays alternates in different levels
of recursion. If the number of recursion levels is odd, a final copy operation makes
sure that the output is in the same place as the input. Using an array of size n
to accommodate all buckets means that we need to know exactly how big each
bucket is. In radix sort implementations this is done by locating each element
twice. But this would be prohibitive in a comparison based algorithm. Therefore
we use an additional auxiliary array, o, of n oracles — o(i) stores the bucket
index for e;. A first pass computes the oracles and the bucket sizes. A second
pass reads the elements again and places element e; into bucket b,(;). This two
pass approach incurs costs in space and time. However these costs are rather
small since bytes suffice for the oracles and the additional memory accesses are
sequential and thus can almost completely be hidden via software or hardware
prefetching [8, 10]. In exchange we get simplified memory management, no need
to test for bucket overflows. Perhaps more importantly, decoupling the expensive
tasks of finding buckets and distributing elements to buckets facilitates software
pipelining [3] by the compiler and prevents cache interferences of the two parts.
This optimization is also known as loop distribution [16,6].

Theoretically the most expensive and algorithmically the most interesting
part is how to locate elements with respect to the splitters. Fig. 2 gives pseu-
docode and a picture for this part. Assume k is a power of two. The splitters are
placed into an array t such that they form a complete binary search tree with
root t; = s5/2. The left successor of ¢; is stored at t2; and the right successor is
stored at to;11. This is the arrangement well known from binary heaps but used
for representing a search tree here. To locate an element a;, it suffices to travel
down this tree, multiplying the index j by two in each level and adding one if the
element is larger than the current splitter. This increment is the only instruction
that depends on the outcome of the comparison. Some architectures like IA-64
have predicated arithmetic instructions that are only executed if the previously
computed condition code in the instruction’s predicate register is set. Others at
least have a conditional move so that we can compute j:= 2j and then, specu-
latively, j/:= j + 1. Then we conditionally move j’ to j. The difference between
such predicated instructions and ordinary branches is that they do not affect the
instruction flow and hence cannot suffer from branch mispredictions.

When the search has traveled down to the bottom of the tree, the index j lies
between k and 2k — 1 so that subtracting k — 1 yields the bucket index o(i). Note
that each iteration of the inner loop needs only four or five machine instructions
so that when unrolling it completely, even for logk = 8 we still have only a
small number of instructions. We also need only three registers for maintaining
the state of the search (a;, t;, and j). Since modern processors have many more

S

k/2
ti= <3k/2:5k/4753k/473k/8733k/8755k/8757k/87"~> // < >
for i :=1tondo //locate each element
j:=1 /J/current tree node := root S kia S3/a
repeat logk times // will be unrolled < > < >

Ji=2j+ (a; > t;) J/left or right? ’ S
ji=j—k+1 // bucket index
|bj]++ // count bucket size

VAR IACRTIACEAT
o(i):=j [/ remember oracle @@@@

Fig. 2. Finding buckets using implicit search trees. The picture is for £ = 8. We adopt
the C convention that “z > y” is one if > y holds, and zero else.

K18 ‘ ’ SSkIS‘ ’ SSk/S‘ ’ S?k/S‘

physical renaming registers ®, we can afford to run several iterations of the outer
loop in an interleaved fashion (via unrolling or software pipelining) in order to
overlap their execution.

With the oracles it is very easy to distribute the input elements in array
a to an output array a’ that stores all the buckets consecutively and without
any gaps. Assume that B[j] is initialized to Y._.|b;|. Then the distribution is
a one-liner:

i<j

for i :==1tondo ap,, . =a /] (%)

This is quite fast in practice because a and o are read linearly, which enables
prefetching. Writing to a’ happens only on & distinct positions so that caching
is effective if k is not too big and if all currently accessed pages fit into the TLB.
Data dependencies only show up for the accesses to B. But this array is very
small and hence fits in the first-level cache.

3 Experiments

We have implemented sss-sort on an Intel server running Red Hat Enterprise
Linux AS 2.1 with four 1.4 GHz Itanium 2 processors and 1 GByte of RAM.
We used Intel’s C++ compiler v8.0 (Build 20031017) [6]. We have chosen this
platform because the hardware and, more importantly, the compiler have good
support for the two main architectural features we exploit: predicated instruc-
tions and software pipelining. We would like to stress, however, that the simple
type of predicated instructions we need — the conditional moves — are supported
by all modern processor architectures like the Intel Pentium II/III/4, the AMD
Athlon and Opteron, Alpha, PowerPC and the IBM Power3/4/5 processors.
Hence, with an appropriate compiler or manual coding, our algorithm should

® For instance, the Pentium 4 has 126 physical registers. The eight architected registers
of TA-32 are internally mapped to these physical registers via renaming, allowing to
resolve all false dependencies which are due to the limited number of architected
registers [8]. In our case, this means that different iterations of the outer loop can
be mapped to different registers, allowing them to be executed in parallel.

7 T T T T T T
Total ——

FB+DIST+BA --X--
51 FB+DIST -- -~ 7]
FB &

time / n log n [ns]

1Ei_-‘-»'-féi-’-iﬁ;:ﬁf;_ﬁ?_?_jﬁf}’f-lé:‘" """ BB GG @l

0
4096 16384 65536 218 220 2%? 224

Fig. 3. Breakdown of the execution time of sss-sort (divided by nlogn) into phases.
“FB” denotes the finding of buckets for the elements, “DIST” the distribution of the
elements to the buckets, “BA” the base sorting routines. The remaining time is spent
in finding the splitters etc.

work well on most machines (like on the Pentium 4, as demonstrated at the end
of this section).

We have applied the restrict keyword from the ANSI/ISO C standard
C99 several times to communicate to the compiler that our different arrays are
not overlapped and not accessed through any other aliased pointer. This was
necessary to enable the compiler to software pipeline the two major critical
loops (“find the buckets” from Fig. 2, abbreviated “FB” in the following, and
“distribute to buckets” ((*) in Sec. 2), abbr. “DIST”).

Prefetch instructions and predication are utilized automatically by the com-
piler as intended in Section 2. The used compiler flags are “-03 -prof_use
-restrict”, where “~prof _use* indicates that we have performed profiling runs
(separately for each tested sorting algorithm). Profiling gives a 9% speedup for
sss-sort. Our implementation uses k = 256 to allow byte-size oracles. sss-sort
calls itself recursively to sort buckets of size larger than 1000 (cf. Fig. 1). Tt
uses quicksort between 100 and 1000, insertion sort between 5 and 100, and
customized straight-line code for n <'5.

Below we report on experiments for 32 bit random integers in the range
[0, 10%]. We have not varied the input distribution since sample sort using random
sampling is largely independent of the input distribution.® The figures have the
execution time divided by nlogn for the y axis, i.e., we give something like “time

5 Our current simple implementation would suffer in presence of many identical keys.
However, this could be fixed without much overhead: If s;—1 < s; = 8441 = -+ - = s,
j > t, change s; to s; — 1. Do not recurse on buckets b;y1,...,b; — they all contain
identical keys.

18 |- -

14 - -
‘0
S 12 + -
< Intel STL —+—
S 10 GCCSTL —-X- -
= Sss-sort - - - -
-~ 8 I -

X~

D T S St Ol
4><—xxxxx%xxxxx%$<
2 - -

0 | | | | | |
4096 16384 65536 218 220 2%? 224
n

Fig. 4. Execution time on the Itanium, divided by n log n, for the Intel implementation
of STL: :sort, the corresponding GCC implementation and for sss-sort. The measure-
ments were repeated sufficiently often to require at least 10 seconds for all algorithms.

per comparison”. For a ©(nlogn) algorithm one would expect a flat line in the
traditional RAM model of computation. Deviations from this expectations are
thus signals for architectural effects.

Fig. 3 provides a breakdown of the execution time of sss-sort into different
phases. It is remarkable that the central phases FB and DIST account only for
a minor proportion of the total execution time. The reason is that software
pipelining turns out to be highly effective here: It reduces the schedule lengths
of the loops FB and DIST from 60 and 6 to 11 and 3 cycles, respectively (this
can be seen from the assembly code on this statically scheduled architecture).
Furthermore, we have measured that for relatively small inputs (n < 2'%), it
takes on the average only 11.7 cycles to execute the 63 instructions in the loop
body of FB, and 4 cycles to execute the 14 instructions in that of DIST. This
yields dynamic IPC (instructions per clock) rates of 5.4 and 3.5, respectively;
the former is not far from the maximum of 6 on this architecture.

The IPC rate of FB decreases only slightly as n grows and is still high with
4.5 at n = 225, In contrast, the IPC rate of DIST begins to decrease when the
memory footprint of the algorithm (approx. 4n+4n+n=9n bytes) approaches the
L3 cache size of 4 MB (this can also be seen in Fig. 3, starting at n = 217). Then
the stores in DIST write through the caches to the main memory and experience
a significant latency, but on the Itanium 2, not more than 54 store requests
can be queued throughout the memory hierarchy to cover this latency [10, 21]:
Consequently, the stall times during the execution of DIST increase (also those
due to TLB misses). The IPC of its loop body drops to 0.8 at n = 225,

[

>=0

>=] —-X--
6 >=2 --K-- 7]
5 — -

time / n log n [ns]
D
{
1

n _x--3
3 X
Rom R R
2 1
X
/
1 J/ _
/
/
0 | g | Ly *‘,,x
4096 16384 65536 218 220 2%? 224
n

Fig. 5. The execution time spent in the different recursion levels of sss-sort. The total
execution time (> 0) shows small distortions compared to Fig. 3, due to the measure-
ment overhead.

However, Fig. 3 also shows — together with Fig. 5 — that at the same time
the first recursion level sets in and reduces the time needed for the base cases,
thus ameliorating this increase.

Fig. 4 compares the timing for our algorithm with two previous quicksort
implementations. The first one is std: : sort from the Dinkumware STL library
delivered with Intel’s C++ compiler v8.0. The second one is std: : sort from the
STL library included in GCC v3.3.2. The latter routine is much faster than the
Dinkumware implementation and fared extremely well in a recent comparison
of the best sorting algorithms [5]: There it remained unbeaten on the Pentium
4 and was outperformed on the Itanium 2 only by funnelsort for n > 224 (by a
factor of up to 1.18).

As Fig. 4 shows, our sss-sort beats its closest competitor, GCC STL, by at
least one third; the gain over GCC STL grows with n and reaches more than
100%. The flatness of the sss-sort curve in the figure (compared to GCC STL)
demonstrates the high cache efficiency of our algorithm.

We have repeated these experiments on a 2.66 GHz Pentium 4 (512 KB L2
cache) machine running NetBSD 1.6.2, using the same compiler in the TA-32 ver-
sion (Build 20031016). Since the latter does not perform software pipelining, we
have unrolled each of the loops FB and DIST twice to expose the available paral-
lelism. We have added the flag “-xN” to enable optimizations for the Pentium 4,
especially the conditional moves. These were applied in FB as intended, except
for four move instructions, which were still dependent on conditional branches.
These moves were turned into conditional moves manually in order to obtain a
branchless loop body.

10

14 T T T T T
] Intel STL —+—
GCC STL --%--
12 sss-sort --3K--- 7
_ 10| 4
1))
k=
c 8 - -
(@]
ke
S 6 i"%\x———x____ S K KX AKX
w 7 - T -
= N e R e
= L, i
2 - i
0 l l l l l
4096 16384 65536 218 220 222 2%

n

Fig. 6. The same comparison as in Figure 4 on a Pentium 4 processor.

The breakdown of the execution time, available in the full paper, shows that
FB and DIST are here more expensive than on the Itanium. One reason for this is
the lower parallelism of the Pentium 4 (the maximal sustainable IPC is about 2;
we measure 1.1-1.8 IPC for the loop body of FB). Nevertheless, sss-sort manages
to outperform GCC STL for most input sizes by 15-20% (Figure 6). The drop
at n = 2'7 could probably be alleviated by adjusting the splitter number k — 1
and the base sorting routines.

4 Discussion

Sss-sort is a comparison based sorting algorithm whose O(n logn) term contains
only very simple operations without unnecessary conditional branches or short
range data dependencies on the critical path. The result is that the cost for
this part on modern processors is dwarfed by “linear” terms. This observation
underlines that algorithm performance engineering should pay more attention
to technological properties of machines like parallelism, data dependencies, and
memory hierarchies. We have to take these aspects into account even if they show
up in lower order terms that contribute a logarithmic factor less instructions than
the “inner loop”.

Apart from these theoretical considerations, sss-sort is a candidate for being
the best comparison based sorting algorithm for large data sets. Having made
this claim, it is natural to discuss remaining weaknesses: So far we have found
only one architecture with a sufficiently sophisticated compiler to fully harvest
the potential advantages of sss-sort. Perhaps sss-sort can serve as a motivating
example for compiler writers to have a closer look at exploiting predication.

11

Another disadvantage compared to quicksort is that sss-sort is not inplace.
One could make it almost inplace however. This is most easy to explain for
the case that both input and output are a sequence of blocks, holding c¢ ele-
ments each for some appropriate parameter c¢. The required pointers cost space
O(n/c). Sampling takes sublinear space and time. Distribution needs at most 2k
additional blocks and can otherwise recycle freed blocks of the input sequence.
Although software pipelining may be more difficult for this distribution loop, the
block representation facilitates a single pass implementation without the time
and space overhead for oracles so that good performance may be possible. Since
it is possible to convert inplace between block list representation and an array
representation in linear time, one could actually attempt an almost inplace im-
plementation of sss-sort.” If ¢ is sufficiently big, the conversion should not be
much more expensive than copying the entire input once, i.e., we are talking
about conversion speeds of GBytes per second.

Algorithms that are conspicuously absent from Tab. 1 are distribution based
counterparts of register based merging and funnel-merging. Register based dis-
tribution, i.e., keeping the search tree in registers would be possible but it would
reintroduce expensive conditional branches and only gain some rather cheap
in-cache memory accesses. On the other hand, cache-oblivious or multi-level
cache-aware k-way distribution might be interesting (see also [7]). An interest-
ing feature of sss-sort in this respect is that the two-phase approach allows us
to precompute the distribution information for a rather large &k (in particular
larger than the TLB) and then implement the actual distribution exploiting sev-
eral levels of the memory hierarchy. Let us consider an example. Assume we have
223 bytes of L3 cache and want to distribute with & = 24, Then we distribute
223 byte batches of data to a temporary array. This array will be in cache and its
page addresses will be in the TLB. After a batch is distributed, each bucket is
moved to its final destination in main memory. The cost for TLB misses will now
be amortized over an average bucket size of 2% bytes. A useful side effect is that
cache misses due to the limited associativity of hardware caches are eliminated
[23,15].

Acknowledgments. This work was initiated at the Schloss Dagstuhl Perspec-
tives Workshop ”Software Optimization” organized by Susan L. Graham and
Reinhard Wilhelm. We would also like to thank the HP TestDrive team for
providing access to Itanium systems.

References

1. R. Agarwal. A super scalar sort algorithm for RISC processors. In ACM SIGMOD
Int. Conf. on Management of Data, pages 240-246, 1996.

2. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116-1127, 1988.

" More details are provided in a manuscript in preparation.

12

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

V.H. Allan, R.B. Jones, R.M. Lee, and S.J. Allan. Software Pipelining. Computing
Surveys, 27(3):367-432, September 1995.

G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and
M. Zagha. A comparison of sorting algorithms for the connection machine CM-2.
In ACM Symposium on Parallel Architectures and Algorithms, pages 3-16, 1991.
G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a cache-oblivious sorting
algorithm. In 6th Workshop on Algorithm Engineering and Experiments, 2004.
Carole Dulong, Rakesh Krishnaiyer, Dattatraya Kulkarni, Daniel Lavery, Wei Li,
John Ng, and David Sehr. An Overview of the Intel IA-64 Compiler. Intel Tech-
nology Journal, (Q4), 1999.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In 40th Symposium on Foundations of Computer Science, pages 285—
298, 1999.

J. L. Hennessy and D. A. Patterson. Computer Architecture a Quantitative Ap-
proach. Morgan Kaufmann, 3nd edition, 2002.

C. A. R. Hoare. Quicksort. Communication of the ACM, 4(7):321, 1961.

Intel. Intel Itanium 2 Processor Reference Manual for Software Development and
Optimization, April 2003.

D. Jiminez-Gonzalez, J-L. Larriba-Pey, and J. J. Navarro. Algorithms for Memory
Hierarchies, volume 2625 of LNC'S, chapter Case Study: Memory Conscious Parallel
Sorting, pages 171-192. Springer, 2003.

D. E. Knuth. The Art of Computer Programming — Sorting and Searching, vol-
ume 3. Addison Wesley, 2nd edition, 1998.

A. LaMarca and R. E. Ladner. The influence of caches on the performance of
sorting. In 8th Symposium on Discrete Algorithm, pages 370-379, 1997.

C. Martinez and S. Roura. Optimal sampling strategies in Quicksort and Quicks-
elect. STAM Journal on Computing, 31(3):683-705, June 2002.

K. Mehlhorn and P. Sanders. Scanning multiple sequences via cache memory.
Algorithmica, 35(1):75-93, 2003.

Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, San Francisco, Kalifornien, 1997.

David R. Musser. Introspective sorting and selection algorithms. Softw. Pract.
Ezper., 27(8):983-993, 1997.

C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet. AlphaSort: A RISC
machine sort. In SIGMOD, pages 233-242, 1994.

N. Rahman. Algorithms for Memory Hierarchies, volume 2625 of LNCS, chapter
Algorithms for Hardware Caches and TLB, pages 171-192. Springer, 2003.

A. Ranade, S. Kothari, and R. Udupa. Register efficient mergesorting. In High
Performance Computing — HiPC, volume 1970 of LNCS, pages 96-103. Springer,
2000.

Reid Riedlinger and Tom Grutkowski. The High Bandwidth, 256KB 2nd Level
Cache on an Ttanium™ Microprocessor. In Proceedings of the IEEE International
Solid-State Circuits Conference, San Francisco, February 2002.

Peter Sanders. Fast priority queues for cached memory. ACM Journal of Ezperi-
mental Algorithmics, 5, 2000.

S. Sen and S. Chatterjee. Towards a theory of cache-efficient algorithms. In 11th
ACM Symposium of Discrete Algorithms, pages 829-838, 2000.

R. Wickremesinghe, L. Arge, J. S. Chase, and J. S. Vitter. Efficient sorting using
registers and caches. ACM Journal of Experimental Algorithmics, 7(9), 2002.

13

