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Abstract. We survey a set of algorithmic techniques that make it pos-
sible to build a high performance storage server from a network of cheap
components. Such a storage server offers a very simple programming
model. To the clients it looks like a single very large disk that can handle
many requests in parallel with minimal interference between the requests.
The algorithms use randomization, redundant storage, and sophisticated
scheduling strategies to achieve this goal. The focus is on algorithmic
techniques and open questions. The paper summarizes several previous
papers and presents a new strategy for handling heterogeneous disks.

1 Introduction

It is said that our society is an information society, i.e., efficiently storing and
retrieving a vast amount of information has become a driving force of our econ-
omy and society. Most of this information is stored on hard disks — many hard
disks actually. Some applications (e.g., geographical information systems, sat-
telite image libraries, climate simulation, particle physics) already measure their
data bases in petabytes (10! bytes). Currently, the largest of these applications
use huge tape libraries, but hard disks can now store the same data for a similar
price offering much higher performance [13]. To store such amounts of data one
would need about 10 000 disks. Systems with thousands of disks have already
been build and there are projects for “mid-range” systems that would scale to
12 000 disks.

This paper discusses algorithmic challenges resulting from the goal to operate
large collections of hard disks in an efficient, reliable, flexible, and user-friendly
way. Some of these questions are already relevant if you put four disks in your
PC. But things get really interesting (also from a theoretical point of view)
if we talk about up to 1024 disks in a traditional monolithic storage server
(e.g. http://www.hds.com/products/systems/9900v/), or even heterogenous
networks of workstations, servers, parallel computers, and many many disks. In
this paper all of this is viewed as a storage server.

We concentrate on a simple model that already addresses the requirement
of user-friendliness to a large extent. Essentially, the entire storage server is
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Fig. 1. A storage server appears to the outside world like a huge disk accepting many
parallel request from inside and outside the system.

presented to the operating system of the computers that run the applications
(clients) as a single very large disk (see Fig. 1): There is a single logical address
space, i.e., an array of bytes A[0..N — 1].! N is essentially the total cumulative
usable capacity of all disks. The clients can submit requests for bytes Ala..b] to
the storage server. There will be some delay (some milliseconds as in a physical
disk) and then data is delivered at a high rate (currently up to 50 MByte/s from a
single disk). Otherwise, the clients can behave completely naively: In particular,
requests should be handled in parallel with minimal additional delays. Large
requests (many megabytes) should be handled by many disks in parallel. If any
single component of the system fails, no data should be lost and the effect on
performance should be minimal. If the system is upgraded with additional disks,
usually larger than those previously present, the logical address space should be
extended accordingly and future requests should profit from the the increased
cumulative data rate of the system.

The storage server can be implemented as part of the operating software of a
monolithic system or as a distributed program with processes on the client com-
puters and possibly on dedicated server machines or network attached storage,
i.e., disks that are directly connected to the computer. All these components

! We use a..b as a shorthand for the range a, ... ,b and Ala..b] stands for the subarray

(Alal, ..., A[p]).



communicate over a network. Higher level functionality such as file systems or
data base systems can be implemented on top of our virtual address space much
in the same way they are today build on top of a physical disk.

We will develop the algorithmic aspects of a storage server in a step by step
manner giving intuitive arguments why they work but citing more specialized
papers for most proofs. The basic idea is to split the logical address space A into
fixed size logical blocks that are mapped to random disks. Sect. 3 explains that
this is already enough to guarantee low latencies for write requests with high
probability using a small write buffer. To get basic fault tolerance we need to
store the data redundantly. Sect. 4 shows that two independently placed copies
of each block suffice to also guarantee low read latency for arbitrary sets of block
read requests. Sect. 5 demonstrates how we can support accesses to variable size
pieces of blocks with similar performance guarantees. We are also not stuck with
storing every block twice. Sect. 6 explains how more sophisticated encoding gives
us control over different tradeoffs with respect to efficiency, waste of space, and
fault tolerance. Up to that point we make the assumption that the clients submit
batches of requests in a synchronized fashion — this allows us to give rigorous
performance guarantees. In Sect. 7 we lift this assumption and allow requests
to enter the storage server independently of each other. Although a theoretical
treatment gets more difficult, the basic approach of random redundant allocation
still works and we get simple algorithms that can be implemented in a distributed
fashion. The algorithms described in Sect. 8 use the redundant storage when a
disk or other components of the system fails. It turns out that the clients see
almost nothing of the fault not even in terms of performance. Furthermore, after
a very short time, the system is again in a safe state where further component
failures can be tolerated. Sect. 3 assumes that a write operation can return as
soon as there is enough space to keep it in RAM memory. In Sect. 9 we explain
what can be done if this is not acceptable because a loss of power could erase the
RAM. For simplicity of exposition we assume most of the time that the system
consists of D identical disks but Sect. 10 generalizes to the case of different
capacity disks that can be added incrementally.

2 Related Work

A widely used approach to storage server is RAID [27] (Redundant Arrays of
Independent Disks). Different RAID levels (0-5) offer different combinations
of two basic techniques: In mirroring (RAID Level 1), each disk has a mirror
disk storing the same data. This is similar to the random duplicate allocation
(RDA) introduced in Sect. 4 only that the latter stores each block independently
on different disks. We will see that this leads to better performance in several
respects. Striping (RAID Level 0) [31] is a simple and elegant way to exploit
disk parallelism: Logical blocks are split into D equal sized pieces and each piece
is stored on a different disk. This way, accesses to logical blocks are always
balanced over all disks. This works well for small D, but for large D, we would
get a huge logical block size that is problematic for applications that need fine



grained access. Fault tolerance can be achieved at low cost by splitting logical
blocks into D — 1 pieces and storing the bit-wise xor of these pieces in a parity
block (RAID Levels 3, 5).

Larger storage servers are usually operated in such a way that files or par-
titions are manually assigned to small subsets of disks that are operated like
a RAID array. The point of view taken in this paper is that this management
effort is often avoidable without a performance penalty. In applications where
the space and bandwidth requirement are highly dynamic, automatic methods
may even outperform the most careful manual assignment of data to disks.

Load balancing by random placement of data is a well known technique (e.g.,
[7,23]). Combining random placement and redundancy has first been considered
in parallel computing for PRAM emulation [18] and online load balancing [6]. For
scheduling disk accesses, these techniques have been used for multimedia appli-
cations [40,41,19, 24,8, 36]. The methods described here are mostly a summary
of four papers [35, 32,33, 16]. Sect. 10 describes new results.

There are many algorithms explicitly designed to work efficiently with coarse-
grained block-wise access. Most use the model by Vitter and Shriver that allows
identical parallel disks and a fixed block size. Vitter [42] has written a good
overview article. More overviews and several introductory articles are collected
in an LNCS Tutorial [22].

3 Write Buffering

3.1 Greedy Writing

Consider the implementation of an opera-
tion write(a, B,1) that writes a client ar-

ray al0..B — 1] to the logical address space Sequence of blocks
Ali..i+B—1]. The main observation exploited write whenever
in this section is that write can in principle be oneof m

implemented to return almost immediately:
Just copy the data to a buffer space.? The
matching read operation read(B,i) returns
the cached data without a disk access.

An obvious limitation of the buffering
strategy is that we will eventually run out
of buffer space without a good strategy for
actually outputting the data to the disks. We
postpone the question how data is mapped to
the disks until Sect. 3.2 because the following Fig. 2. Optimal Writing,.
greedy writing algorithm works for any given
assignment of data to the disks. We maintain
a queue of output requests for each disk. Whenever a disk falls idle, one request

buffersisfree

2 We can even do without a copy if we “steal” a from the client and only release it
when the data is finally copied or output.



from this queue is submitted to the disk. Fig. 2 illustrates this strategy. In some
sense, greedy writing is optimal:

Theorem 1 ([16]). Consider the I/O model of Vitter and Shriver [43] (fixed
block size, fized output cost). Assume some sequence of block writes is to be
performed in that logical order and at most m blocks can be buffered by the
storage server. Then greedy writing minimizes the number of I/0 steps needed
if the disk queues are managed in a FIFO (first in first out) manner.

Proof. (Outline) An induction proof shows that greedy writing is optimal among
all output strategies that maintain queues in a FIFO manner. Another simple
lemma shows that any schedule can be transformed into a FIFO schedule without
increasing the I/O time or the memory requirement. [

Things get more complicated for more realistic I/O models that take into
account that I/O times depend on the time to move the disk head between the
position of two blocks.

Open Problem: 1 Can you find (approzimately) optimal writing algorithms
for the case that I/O costs depend on the position of blocks on the disks? Even
for fized block size® and cost estimates only dependent on seek time little is known
if the buffer size is limited.*

3.2 Random Allocation

Theorem 1 is a bit hollow because performance can still be very bad if all blocks
we need to write have to go to the same disk. We would like to have an allocation
strategy that avoids such cases. But this seems impossible — for any given
mapping of the address space to the disks, there will be sets of requests that all
go to the same disk. Randomization offers a way out of this dilemma. We allocate
logical blocks to random disks for some fixed (large) block size B. (Sect. 10
discusses details how this mapping should actually be implemented.) Random
mapping makes it very unlikely that a particular set of blocks requested by the
clients reside on the same disk. More generally, we get the following performance
guarantee for arbitrary sequences of write requests:

Theorem 2 ([35,16]). Consider the I/O model of Vitter and Shriver [{3] (D
disks, fized block size, fized output cost). Assume some sequence of n randomly
mapped different blocks are to be written and at most m blocks can be buffered by
the storage server. Then greedy writing accepts the last block after an expected
number of (14 O(D/m)) 5 output steps. After the last block has been accepted,
the longest queue has length O(% log D).

3 Variable block sizes open another can of worms. One immediately gets NP-hard prob-
lems. But allowing a small amount of additional memory removes most complications
in that respect.

* For infinite buffer size, the problem is easy if we look at seek times only (just sort by
track) or rotational delays only [39]. For both types of delays together we have an
NP-hard variant of the traveling salesman problem with polynomial time solutions
in some special cases [5].



It can also be shown that longer execution times only happen with very small
probability.

Proof. (Outline) The optimal greedy writing algorithm dominates a “throttled”
algorithm where in each I/O step (1 — D/m)D blocks are written. The effect
of the throttled algorithm on a single disk can be analyzed using methods from
queuing theory if the buffer size is unlimited. The average queue length turns
out to be bounded by m/2D and hence the expected sum of all queue lengths
is bounded by m /2. More complicated arguments establish that large deviations
from this sum are unlikely and hence the influence of situations where the buffer
overflows is negligible. ]

Open Problem: 2 The number of steps needed to write n blocks and flush all
buffers should be a function that decreases monotonically with m. Prove such a
monotonic bound that is at least as good as Theorem 1 both for large and small
n.

3.3 Distributed Implementation

We now explain how the abstract algorithms described above can be imple-
mented in a real system. We will assume that one or several disks are connected
to a computer where one ore several processors share a memory. Several comput-
ers are connected by a communication network to form the storage server. Disks
directly attached to the network are viewed as small computers with a single
disk attached to them. The client applications either run on the same system or
send requests to the storage server via the network. Let us consider the possible
routes of data in the first case: When a write operation for an array s is called,
the data is located in the client memory on computer S. Array s contains data
from one or several randomly mapped blocks of data. Let us focus on the data
destined for one of the target disks ¢ that is attached to a server machine 7'. The
ideal situation would be that disk ¢ is currently idle and the data is shipped to
the network interface card of T' which directly fowards it to disk ¢, bypassing the
processor and main memory of T. Since this is difficult to do in a portable way
and since t may be busy anyway, the more likely alternative is that S contacts
T and asks it to reserve space to put s into the queue of ¢. If this is impossible,
the execution of the write operation blocks until space is available or S tries to
buffer s locally. Eventually, the data is transferred to the main memory of T.
When the request gets its turn, it is transmitted to the disk ¢ which means that
it ends up in the local cache of this disk and is then written.
This scenario deviates in several points from the theoretical analysis:

— The nice performance bounds only hold when all disks share the same global
pool of buffers whereas the implementation makes use only of the local mem-
ories of the computer hosting the target disk ¢. It can be shown that this
makes little difference if the local memories are large compared to log D
blocks. Otherwise, one could consider shipping the data to third parties
when neither S nor T have enough local memory. But this makes only sense
if the the network is very fast.



— Theorem 2 assumes that all written blocks are different. Overwriting a block
that is still buffered will save us an output. But it can happen that overwrit-
ing blocks that have recently been output can cause additional delays [35].
Again, this can be shown to be unproblematic if the local memory is large
compared to log D blocks. Otherwise dynamically remapping data can help.

— The logical blocks used for random mapping should be fairly large (cur-
rently megabytes) in order to allow accesses close to the peak performance
of the disks. This can cause a problem for applications that less rely on high
throughput for consecutive accesses than on low latency for many parallel
fine grained accesses. In that case many consecutive small blocks can lie on
the same disk which then becomes a bottleneck. In this case it might make
sense to use a separate address space with small logical blocks for fine grained
accesses.

4 Random Duplicate Allocation

In the previous section we have seen that random allocation and some buffering
allow us to write with high throughput and low latency. The same strategy
seems promising for reading data. Randomization ensures that data is spread
uniformly over the disks and buffer space can be used for prefetching data so
that it is available when needed. Indeed, there is a far reaching analogy between
reading and writing [16]: When we run a writing algorithm “backwards” we get
a reading algorithm. In particular, Theorem 1 transfers. However this reversal
of time implies that we need to know the future accesses in advance and we pay
the O(mlog(D)/D) steps for the maximum queue length up front.

emulated disk

logical blocks

Fig. 3. The concept of (R)andom (D)uplicate (A)llocation.

Therefore, we now bring in an additional ingredient: Each logical block is
stored redundantly. Figure 3 illustrates this concept. For now we concentrate
on the simple case that each block is allocated to two randomly chosen disks.
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Sect. 6 discusses generalizations. Redundancy gives us flexibility in choosing from
where to read the data and this allows us to reduce read latencies dramatically.
By choosing two different disks for the copies we get the additional benefit that
no data is lost when a disk fails.

We begin with two algorithms for scheduling a batch of n requested blocks of
fixed size that have been analyzed very accurately: The shortest queue algorithm
allocates the requests in a greedy fashion. Consider a block e with copies on disks
d and d' and let ¢(d) and £(d") denote the number of blocks already planned for
disks d and d' respectively. Then the shortest queue algorithm plans e for the
disk with smaller load. Ties are broken arbitrarily. It can be shown that this
algorithm produces a schedule that needs

k= % +logln D +6O(1)

expected I/0 steps [9]. This is very good for large n but has an additive term
that grows with the system size.

reguests disks
cap, flow

2,2

Fig. 4. A flow network showing how five requests are allocated to three disks. The flow
defined by the solid lines proves that the requests can be retrieved in two I/O steps.

We will see that optimal schedules do not have this problem — we can
do better by not committing our choices before we have seen all the requests.
Optimal schedules can be found in polynomial time [12]: Suppose we want to
find out whether & steps suffice to retrieve all requests. Consider a flow network
[2] that consists of four layers: A source node in the first layer is connected to
each of n request nodes. Each request node is connected to two out of D disk
nodes — one edge for each disk that holds a copy of the requested block. The
disk nodes are connected to a sink node ¢t. The edges between disk nodes and
t have capacity k. All other nodes have capacity 1. Now it is easy to see that
a flow saturating all edges leaving the source node exists if and only if & steps
are sufficient. A schedule can be read of an integral maximum flow by reading
request r from disk d if and only if the edge (r,d) carries flow. Figure 4 gives
an example. The correct value for k£ can be found by trial and error. First try
k= [n/D] then k = [n/D]+1, ..., until a solution is found. Korst [19] gives
a different flow formulation that uses only D nodes and demonstrates that the
problem can be solved in time O(n + D?). If n = O(D) it can be shown that
the problem can be solved in time O(nlogn) with high probability [35].



Theorem 3. [35] Consider a batch of n randomly and duplicately allocated
blocks to be read from D disks. The optimal algorithm needs at most

n
5]+
steps with probability at least 1 — O(l/D)M/DHl.

Proof. (Outline) Using a graph theoretical model of the problem, it can be shown
that the requests can be retrieved in k steps if and only if there is no subset A of
disks such that more than |A|k requested blocks have both their copies allocated
to a disk in A [38]. Hence, it suffices to show that it is unlikely that such an
overloaded subset exists. This is a tractable problem mostly because the number

of blocks allocated to A is binomially distributed. ]
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Fig. 5. The number of I/O steps (minus the lower bound [n/D1]) needed by optimal
scheduling when scheduling n € 256..4096 blocks on D = 256 disks.

Figure 5 shows the performance of the optimal scheduling algorithm. We
only give the data for D = 256 because this curve is almost independent of the
number of disks. We see that the performance is even better than predicted by
Theorem 3: We can expect to get schedules that need only [n/D] steps except if
n is a multiple of D or slightly below. For example, when n = 3.84D, we almost
always get a schedule with 4 steps, i.e., we are within 4 % of the best possible
performance. We also see that for large n we can even get perfect balance when
n is a multiple of D.

Open Problem: 3 Is there a threshold constant ¢ such that for n > c¢Dlog D,

optimal scheduling finds a schedule with [n/D7 I/0 steps even if n is a multiple
of D?



4.1 The Selfless Algorithm

One problem with optimal scheduling is that we do not have good performance
guarantees for scheduling large sets of blocks efficiently. Therefore it makes sense
to look for fast algorithms that are close to optimal. Here we describe linear time
algorithm that produces very close to optimal solutions [11].

The selfless algorithm distinguishes between committed and uncommited re-
quests. Uncommitted requests still have a choice between two disks. Committed
requests have decided for one of the two choices. Initially, all requests are un-
committed. A disk d is called committed if there are no uncommited requests
that have d as a choice. Let the load ¢(d) of disk d denote twice the number
of requests that have committed to d plus the number of uncommitted requests
that have d as an option. The load could be viewed as twice the expected num-
ber of committed requests of a disk if all uncommitted requests would choose
randomly between one of their two choices. The selfless algorithm is based on
two simple rules:

1. If there is an uncommitted disk with at most [n/D] remaining incident
requests, we commit all of them to this disk.

2. Otherwise, we choose an uncommitted disk d with minimum load, choose an
uncommited request with d as an option, and commit it to d.

This algorithm can be implemented to run in linear time using fairly standard
data structures: Disks are viewed as nodes of a graph. Uncommitted requests are
edges. Using an appropriate graph representation, edges can be removed in con-
stant time (e.g., [21]). When a disk becomes a candidate for Rule 1, we remember
it on a stack. The remaining nodes are kept in a priority queue ordered by their
load. Insert, decrement-priority and delete-minimum can be implemented to run
in amortized constant time using a slight variant of a bucket priority queue [14].

If we would plot the performance of the selfless algorithm in the same way as
in Figure 5 it would be absolutely impossible to see a difference, i.e., with very
high probability the selfless algorithm finds an optimal schedule. This will be
proven in an upcoming paper [11] using differential equation methods that have
previously been used for the mathematically closely related problem of cores of
random graphs [28].

5 Variable Size Requests

We now drop the assumption that we are dealing with fixed size jobs that take
unit time to retrieve. Instead, let £; < 1 denote the time needed to retrieve
request 7. This generalization can be used to model several aspects of storage
servers:

— We might want to retrieve just parts of a logical block

— Disks are divided into zones [30] of different data density and correspondingly
different data rate — blocks on the outer zones are faster to retrieve than
blocks on the inner zones. We assume here that both copies of a block are
stored on the same zone.
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The bad news is that it is strongly NP-hard to assign requests to disks so
that the I/O time is minimized [1]. The good news is that optimal scheduling
is still possible if we allow request to be split, i.e., we are allowed to combine a
request from pieces read from both copies. We make the simplifying assumption
here that a request of size £ = /1 + /5 stored on disks d; and dy can be retrieved
by spending time ¢; on disk d; and time ¢> on disk ds. This is approximately
true if requests are large.

Even the performance guarantees for random duplicate allocation transfer.
We report a simplified version of a result from [33] that has the same form as
Theorem 3 for unit size requests:

Theorem 4. Consider a set R of request with total size n = Y _p{, of ran-
domly and duplicately allocated requests to be read from D disks. The optimal
algorithm computes a schedule with I/0 time at most

[%-I + 1 with probability at least 1 — O(l/D)[n/D]_H

The proofs and the algorithms are completely analogous. The only difference is
that the maximum flows will now not be integral and hence require splitting of
requests. Splitting can also have a positive effect for unit size requests since it
eliminates threshold effects such es the steps visible in Fig. 5. A more detailed
analysis indicates that the retrieval time becomes a monotonic function of the
number of requests [33].

In a sense, Theorem 4 is much more important than Theorem 3. For unit
size requests, we can relatively easily establish the expected performance of an
algorithm by simulating all interesting cases a sufficient number of times. Here,
this is not possible since Theorem 4 holds for a vast space of possible inputs
(uncountably big and still exponential if we discretize the piece sizes).

6 Reducing Redundancy

Instead of simply replicating logical blocks, we can more generally encode a
logical block which has r times the size of a physical block into w physical blocks
such that reading any r out of the w blocks suffices to reconstruct the logical
block. Perhaps the most important case is w = r + 1. Using parity-encoding,
r of the blocks are simply pieces of the logical block and the last block is the
exclusive-or of the other blocks. A missing block can then be reconstructed by
taking the exclusive-or of the blocks read. Parity encoding is the easiest way
to reduce redundancy compared to RDA while maintaining some flexibility in
scheduling. Its main drawback is that the physical blocks being read are a factor
r smaller than the logical blocks so that high bandwidth can only be expected
if the logical blocks are fairly large. The special case r = D — 1,/W = D yields
the coding scheme used for RAID levels 3 and 5.

Choosing w > r 4+ 1 can be useful if more than one disk failure is to be
tolerated (see Sect. 8) or if we additionally want to reduce output latencies (see
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Sect. 9). A disadvantage of codes with w > r+1 is that they are computationally
more expensive than parity-encoding [20,15,29,10,4, 8].

Most of the scheduling algorithms for RDA we have discussed are easy to gen-
eralize for more general coding schemes. Only optimal scheduling needs some ad-
ditional consideration. A formulation that is a generalization of bipartite match-
ing [32] yields a polynomial time algorithm however.

Fig. 6. Encoding of a logical block of size 12 into 4 physical blocks and one parity
block of size 3 such that aligned logical requests of size 4s, s € {1, 2,3} can be fulfilled
by retrieving any 4 out of 5 physical blocks of size s.

A small trick also allows us to use general coding schemes for arbitrary request
sizes: As before, data is allocated for large logical blocks whereas actual requests
may retrieve parts of these blocks. But the coding is done in very small pieces
(say sectors of size 512) and the encoded pieces are stored in the physical blocks
in an interleaved fashion. Figure 6 gives an example.

7 Asynchronous Access

In Sect. 3.3 we have already explained how writing can be implemented in an
asynchronous, distributed way by providing one thread for each disk. We now ex-
plain how this can be generalized for read accesses in the presence of redundant
allocation. Client requests for a block of data arrive individually in an asyn-
chronous fashion. The clients want to have these requests answered quickly, i.e.,
they want small delays. The algorithms described in Sect. 4 can be generalized
for this purpose [34]. For example, the shortest queue algorithm would commit
the request to the disk that can serve it fastest.

However, we loose most of the performance guarantees. For example, it is easy
to develop an algorithm that minimizes the maximum delay among all known
requests but it is not clear how to anticipate the impact of these decisions on
requests arriving in the future.

Open Problem: 4 Give theoretical bounds for the expected latency of any of
the asynchronous scheduling algorithms discussed in [34] as a function of D
and € in the following model: A block access on any of the D disks takes unit
time. A request for a block arrives every (14€)/D time units. For non-redundant
random allocation it can be shown that the expected delay is @(1/€). Experiments
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and heuristic considerations suggest that time O(log(1/€)) is achievable using
redundancy.

Asynchrony also introduces a new algorithmic concept that we want to dis-
cuss in more detail: Lazy decisions. The simplest lazy algorithm — lazy queuing
— queues a request readable on disks d and d' in queues for both d and d'. The
decision which disk actually fetches the block is postponed until the last possible
moment. When a disk d falls idle, the thread responsible for this disk inspects
its queue and removes one request r queued there. Then it communicates with
the thread responsible for the other copy of r to make sure that r is not fetched
twice. Lazy queueing has the interesting property that it is equivalent to an
“omniscient” shortest queue algorithm, i.e., it achieves the same performance
even if it does not know how long it takes to retrieve a request.

Theorem 5. Given an arbitrary request stream where a disk d needs t(d,r)
time units to serve request r. Then the lazy queue algorithm produces the same
schedule as a shortest queue algorithm which exactly computes disk loads by
summing the t(d,r)-values of the scheduled requests.

The only possible disadvantage of lazy algorithms compared to “eager” al-

gorithms such as shortest queue is that a simple implementation can incur ad-
ditional communication delays at the performance critical moment when a disk
is ready to retrieve the next request (asking another thread and waiting for a
reply). This problem can be mitigated by trying to agree on a primary copy of
a request r before the previous request finishes. The disk holding the primary
copy can then immediately fetch r and in parallel it can send a confirmation to
the thread with the other copy.

Figure 7 shows that RDA significantly outperforms traditional output schemes.
Even mirroring that has the same amount of redundancy produces much larger
degrees when the storage server approaches its limits. Measurements not shown
here indicate that the gap is much larger when we are interesting in the largest
delays that are encountered sufficiently often to be significant for real time ap-
plications such as video streaming.

It can also be shown that fluctuations in the arrival rate of requests have little
impact on performance if the the number of requests arriving over the time in-
terval of an average delay is not too big. Furthermore, the scheduling algorithms
can be adapted in such a way that applications that need high throughput even
at the price of large delays can coexist with applications that rely on small delays
[32].

8 Fault Tolerance

When a disk fails, the peak system throughput decreases by a small factor of 1/D.
Furthermore, requests which have a copy on the faulty disks lose their scheduling
flexibility. Since only few requests are affected, load balancing still works well
[33]. In addition, there are now logical blocks that have less redundancy than the
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Fig. 7. Average delays for 107 requests to D = 64 disks arriving at time intervals of
(14¢€)/D. The mirror algorithm uses random allocation to a RAID-1 array. Lazy sharing
is a refinement of lazy queue — an idle disk d leaves a request r to the alternative disk
d'(r) if the queue of d’ is shorter than the queue of d.

others so that additional disk failures could now lead to a loss of data. To get out
of this dangerous situation, the lost redundancy has to be reestablished. This
can be achieved without exchanging any hardware by dispersing these blocks
over unused space of the other disks. This can be done very quickly because the
data read and written for this purpose is uniformly distributed over all disks. If
we are willing to invest a fraction of € of the peak performance of the system,
the reconstruction can finish in a fraction of about 1/¢(D — 1) of the time needed
to read and write one disk. For example, in a large system with 10 000 disks
with 100GByte each and a disk I/O rate of 50MByte/s we could in principle
reconstruct a failed disk in as little as ten seconds investing 4 % of our peak I/O
rate. Section 10 will explain how a random mapping of the data is maintained
in this situation.

Failures of disk controllers or entire machines can be handled in a similar
manner if the random duplicate allocation is modified in such a way that different
copies are allocated to different pieces of hardware. The ultimate realization of
this strategy divides the storage server into halves that are physically so far apart
that even a fire or another catastrophe is unlikely to destroy both halves at the
same time. The limiting factor here are the costs of a high speed interconnection
between the halves so that for such systems one may consider to have more than
two copies of each block and to send data to the remote half only occasionally.
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A major challenge in practical fault tolerance is that it is very difficult to test
the behavior of distributed software under faults. Since the data losses can be
really expensive, storage servers might therefore be a prime candidate for formal
verification:

Open Problem: 5 Define a useful abstract model of a storage server and its
software and prove that it operates correctly under disk failures, power loss, ... .

9 Reducing Write Latency

Somewhat paradoxically, there are many applications where writes are much
more frequent than reads, i.e., much of what is written is never read. The reason
is that a lot of the data needed by a client can be cached in main memory (by
the storage server or by the application). One could argue that one would not
have to output this data at all but this neglects that many applications must be
able to recover their old state after a power loss.

There are several ways to handle this situation. One would be to make sure
that write buffers are in memory with enough battery backup that they can be
flushed to disk at a power loss. The next step on the safety ladder makes sure
that the data is buffered in two processors with independent power supply before
a write operation returns. But some applications will still prefer to wait until
the data is actually output. In this situation, the strategy from Section 3 leads
to fairly long waiting time under high load.

In this situation, the generalized coding schemes outlined in Sect. 6 can be
used. If a logical block can be reconstructed from any r out of w pieces, we can
return from a write operation after ' pieces are output (r < r' < w) and we get
a flexible tradeoff between write latency and fault tolerance. For example, for
r =1 and w = 3 we could return already when two copies have been written.
Which copies are written can be decided using any of the scheduling algorithms
discussed above, for example the lazy queueing algorithm from Sect. 7. The
remaining copy is not written at all or only with reduced priority so that it
cannot delay other time critical disk accesses.

10 Inhomogeneous Dynamically Evolving Storage Servers

A storage server that operates reliably 24h a day 365 days a year should allow us
to add disks dynamically when the demands for capacity or bandwidth increase.
Since technology is continuously advancing, we would like to add new disks with
higher capacity and bandwidth than the existing disks. Even if we would be
willing to settle for the old type, this becomes infeasible after a few years when
the old type is no longer for sale. In Sect. 8 we have already said that we want
to be able to remove failed disks from the system without replacing them by
new disks. The main algorithmic challenge in such systems is to maintain our
concept of load balancing by randomly mapping logical blocks to disks. We first
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explain how a single random mapping from the virtual address space to the disks
is obtained.

Inhomogeneity can be accommodated by mapping a block not directly to
the D inhomogeneous disks but first to D" volumes that accommodate N/D'B
blocks each. The volumes are then mapped to the disks in such a way that the
ratio r(d) = ¢(d)/v(d) between the capacity ¢(d) of a disk d and the number
of volumes v(d) allocated to it is about the same everywhere. More precisely,
when a volume is allocated, it is greedily moved to the disk that maximizes
r(d). If D'/D > Dmaxc(d)/ Y, c(d), we will achieve a good utilization of disk
capacity.?

When a disk fails, the volumes previously allocated to it will be distributed
over the remaining disks. This is safe as long as ming r(d) exceeds N/D'. When
a new disk d' is added, volumes from the disks with smallest r(d) are moved to
the new disk until 7(d') would become minimal. In order to move or reconstruct
volumes, only the data in the affected volumes needs to be touched whereas all
the remaining volumes remain untouched.

It remains to define a random mapping of blocks to volumes. We present a
pragmatic solution that outperforms a true random mapping in certain aspects
but where an accurate analysis of the scheduling algorithms remains an open
question. We achieve a perfectly balanced allocation of blocks to volumes, by
striping blocks over the volumes, i.e., blocks iD’..(i + 1)D’ — 1 are mapped in
such a way that each volume receives one block. To achieve randomness, block
iD"+ 7,0 <j < D, is mapped via a (pseudo)random permutation 7; to volume
7; (7). Figure 8 summarizes the translation of logical addresses into block offsets,
disk IDs, and positions on the disk.

In order to find out which blocks need to be moved or reconstructed when a
disk is added or replaced, we would like to have permutations that are easy to
invert. Feistel permutations [25] are one way to achieve that: Assume for now
that VD' is an integer and represent j as j = j, + j»V/D'. Now consider the
mapping

it ((ar Jo)) = (s Ja + fi1 (jb) mod VD)

where f; 1 is some (pseudo)random function. If we iterate such mappings two to
four times using pseudo-random functions f; 1, ... ,f; 4 we get something “pretty
random”. Indeed, such permutations can be shown to be random in some precise
sense that is useful for cryptology [25]. A Feistel permutation is easy to invert.

W;kl((aa b)) = (b — fir(a) mod VD', a)

We assume that the functions f; ; are represented in some compact way, e.g.,
using any kind of ordinary pseudo-random hash function h that maps triples

5 If disk bandwidth is more of an issue than disk capacity, we can also balance accord-
ing to the data rate a disk can support. But even without that, the lazy scheduling
algorithms from Sect. 7 will automatically direct some traffic away from the over-
loaded disks.
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Fig. 8. How a logical address is mapped to
a physical block. The numbers give an ex-
ample with one Petabyte of address space,
B = 2% and D' = 2'® that would cur-
rently require about 10 000 disks of 100
GByte each.

local information remote information

(i,7,k) to values in 0..D' — 1. In order to find out to which disk a block is
mapped, the only additional data structure we need is a lookup table of size D’.
This data structure is easy to replicate to the local memory of all processors. For
example, even in a large system with D = 10000, with disk capacities varying
by a factor of four, D' = 2'® would already achieve quite good load balance.
To achieve fault tolerance, this lookup table and the parameters of the hash
function h should be stored redundantly at a predefined place. But even if the
table gets lost, it can be reconstructed as long as the capacity of the disks and
the order in which they were added or removed is known — we only need to
make sure that the algorithms for mapping volumes to disks are deterministic.

Redundant Allocation

In order to use the above scheme in the context of duplicate allocation, we
partition the storage server into two partitions whose total storage capacity is
about equal. The volumes are mapped to both partitions and we have two sets
of random permutations — one for each partition. More generally, if we use a
coding scheme that writes w physical blocks for each logical block, we need w
partitions. To achieve good fault tolerance, components in different partitions
should share as few common points of failure as possible (controllers, processors,
power supplies, ... ). Therefore, the disks will not be assigned to the partitions
one by one but in coarse grained units like controllers or even entire machines.

Although this partitioning problem is NP-hard, there are good approximation
algorithms [3]. In particular, since we are dealing with a small constant number
of partitions, fully polynomial time approximation schemes can be developed
using standard techniques [44].

Maintaining reasonably balanced partitions while components enter (new
hardware) or leave (failures) the system in an online fashion is a more compli-
cated problem. In general, we will have to move components but these changes
in configuration should only affect a small number of components with total
capacity proportional to added or removed capacity. At least it is easy to main-
tain the invariant that the difference between the capacities of the smallest and
largest partition is bounded by the maximum component capacity.

11 Discussion

We have introduced some of the algorithmic backbone of scalable storage servers.
We have neglected many important aspects because we believe that they are or-
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thogonal to the concepts introduced here, i.e., their implementation does not
much affect the decisions for the aspects discussed here: We need an infras-
tructure that allows reliable high bandwidth communication between arbitrary
processors in the network. Although random allocation helps by automatically
avoiding hot spots, good routing strategies can be challenging in inhomogeneous
dynamically changing networks.

Caching can make actual disk accesses superfluous. This is a well understood
topic for centralized memory [17,26] but distributed caching faces interesting
tradeoffs between communication overhead and cache hit rate.

There are many more important issues with a different flavor such as locking
mechanisms to coordinate concurrent accesses, file systems, real time issues, ...

In addition, there are interesting aspects that are less well understood yet and
pose interesting questions for future work. For example, we have treated all data
equal. But in reality, some data is accessed more frequently than other data.
Besides the short term measure of caching, this leads to the question of data
migration (e.g. [37]). Important data should be spread evenly over the disks, it
should be allocated to the fastest zones of the disks, and it could be stored with
higher redundancy. The bulk of the data that is accessed rarely, could be stored
on cheaper disks or even on disks that are powered down for saving energy. Such
Massive Arrays of Idle Disks [13] are a candidate for replacing tape libraries
and could scales to 10s of thousands of disks.
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