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Abstra
t. We survey a set of algorithmi
 te
hniques that make it pos-

sible to build a high performan
e storage server from a network of 
heap


omponents. Su
h a storage server o�ers a very simple programming

model. To the 
lients it looks like a single very large disk that 
an handle

many requests in parallel with minimal interferen
e between the requests.

The algorithms use randomization, redundant storage, and sophisti
ated

s
heduling strategies to a
hieve this goal. The fo
us is on algorithmi


te
hniques and open questions. The paper summarizes several previous

papers and presents a new strategy for handling heterogeneous disks.

1 Introdu
tion

It is said that our so
iety is an information so
iety, i.e., eÆ
iently storing and

retrieving a vast amount of information has be
ome a driving for
e of our e
on-

omy and so
iety. Most of this information is stored on hard disks | many hard

disks a
tually. Some appli
ations (e.g., geographi
al information systems, sat-

telite image libraries, 
limate simulation, parti
le physi
s) already measure their

data bases in petabytes (10

15

bytes). Currently, the largest of these appli
ations

use huge tape libraries, but hard disks 
an now store the same data for a similar

pri
e o�ering mu
h higher performan
e [13℄. To store su
h amounts of data one

would need about 10 000 disks. Systems with thousands of disks have already

been build and there are proje
ts for \mid-range" systems that would s
ale to

12 000 disks.

This paper dis
usses algorithmi
 
hallenges resulting from the goal to operate

large 
olle
tions of hard disks in an eÆ
ient, reliable, 
exible, and user-friendly

way. Some of these questions are already relevant if you put four disks in your

PC. But things get really interesting (also from a theoreti
al point of view)

if we talk about up to 1024 disks in a traditional monolithi
 storage server

(e.g. http://www.hds.
om/produ
ts/systems/9900v/), or even heterogenous

networks of workstations, servers, parallel 
omputers, and many many disks. In

this paper all of this is viewed as a storage server.

We 
on
entrate on a simple model that already addresses the requirement

of user-friendliness to a large extent. Essentially, the entire storage server is
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Fig. 1. A storage server appears to the outside world like a huge disk a

epting many

parallel request from inside and outside the system.

presented to the operating system of the 
omputers that run the appli
ations

(
lients) as a single very large disk (see Fig. 1): There is a single logi
al address

spa
e, i.e., an array of bytes A[0::N � 1℄.

1

N is essentially the total 
umulative

usable 
apa
ity of all disks. The 
lients 
an submit requests for bytes A[a::b℄ to

the storage server. There will be some delay (some millise
onds as in a physi
al

disk) and then data is delivered at a high rate (
urrently up to 50 MByte/s from a

single disk). Otherwise, the 
lients 
an behave 
ompletely naively: In parti
ular,

requests should be handled in parallel with minimal additional delays. Large

requests (many megabytes) should be handled by many disks in parallel. If any

single 
omponent of the system fails, no data should be lost and the e�e
t on

performan
e should be minimal. If the system is upgraded with additional disks,

usually larger than those previously present, the logi
al address spa
e should be

extended a

ordingly and future requests should pro�t from the the in
reased


umulative data rate of the system.

The storage server 
an be implemented as part of the operating software of a

monolithi
 system or as a distributed program with pro
esses on the 
lient 
om-

puters and possibly on dedi
ated server ma
hines or network atta
hed storage,

i.e., disks that are dire
tly 
onne
ted to the 
omputer. All these 
omponents

1

We use a::b as a shorthand for the range a; : : : ; b and A[a::b℄ stands for the subarray

hA[a℄; : : : ; A[b℄i.
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ommuni
ate over a network. Higher level fun
tionality su
h as �le systems or

data base systems 
an be implemented on top of our virtual address spa
e mu
h

in the same way they are today build on top of a physi
al disk.

We will develop the algorithmi
 aspe
ts of a storage server in a step by step

manner giving intuitive arguments why they work but 
iting more spe
ialized

papers for most proofs. The basi
 idea is to split the logi
al address spa
e A into

�xed size logi
al blo
ks that are mapped to random disks. Se
t. 3 explains that

this is already enough to guarantee low laten
ies for write requests with high

probability using a small write bu�er. To get basi
 fault toleran
e we need to

store the data redundantly. Se
t. 4 shows that two independently pla
ed 
opies

of ea
h blo
k suÆ
e to also guarantee low read laten
y for arbitrary sets of blo
k

read requests. Se
t. 5 demonstrates how we 
an support a

esses to variable size

pie
es of blo
ks with similar performan
e guarantees. We are also not stu
k with

storing every blo
k twi
e. Se
t. 6 explains how more sophisti
ated en
oding gives

us 
ontrol over di�erent tradeo�s with respe
t to eÆ
ien
y, waste of spa
e, and

fault toleran
e. Up to that point we make the assumption that the 
lients submit

bat
hes of requests in a syn
hronized fashion | this allows us to give rigorous

performan
e guarantees. In Se
t. 7 we lift this assumption and allow requests

to enter the storage server independently of ea
h other. Although a theoreti
al

treatment gets more diÆ
ult, the basi
 approa
h of random redundant allo
ation

still works and we get simple algorithms that 
an be implemented in a distributed

fashion. The algorithms des
ribed in Se
t. 8 use the redundant storage when a

disk or other 
omponents of the system fails. It turns out that the 
lients see

almost nothing of the fault not even in terms of performan
e. Furthermore, after

a very short time, the system is again in a safe state where further 
omponent

failures 
an be tolerated. Se
t. 3 assumes that a write operation 
an return as

soon as there is enough spa
e to keep it in RAM memory. In Se
t. 9 we explain

what 
an be done if this is not a

eptable be
ause a loss of power 
ould erase the

RAM. For simpli
ity of exposition we assume most of the time that the system


onsists of D identi
al disks but Se
t. 10 generalizes to the 
ase of di�erent


apa
ity disks that 
an be added in
rementally.

2 Related Work

A widely used approa
h to storage server is RAID [27℄ (Redundant Arrays of

Independent Disks). Di�erent RAID levels (0{5) o�er di�erent 
ombinations

of two basi
 te
hniques: In mirroring (RAID Level 1), ea
h disk has a mirror

disk storing the same data. This is similar to the random dupli
ate allo
ation

(RDA) introdu
ed in Se
t. 4 only that the latter stores ea
h blo
k independently

on di�erent disks. We will see that this leads to better performan
e in several

respe
ts. Striping (RAID Level 0) [31℄ is a simple and elegant way to exploit

disk parallelism: Logi
al blo
ks are split into D equal sized pie
es and ea
h pie
e

is stored on a di�erent disk. This way, a

esses to logi
al blo
ks are always

balan
ed over all disks. This works well for small D, but for large D, we would

get a huge logi
al blo
k size that is problemati
 for appli
ations that need �ne
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grained a

ess. Fault toleran
e 
an be a
hieved at low 
ost by splitting logi
al

blo
ks into D � 1 pie
es and storing the bit-wise xor of these pie
es in a parity

blo
k (RAID Levels 3, 5).

Larger storage servers are usually operated in su
h a way that �les or par-

titions are manually assigned to small subsets of disks that are operated like

a RAID array. The point of view taken in this paper is that this management

e�ort is often avoidable without a performan
e penalty. In appli
ations where

the spa
e and bandwidth requirement are highly dynami
, automati
 methods

may even outperform the most 
areful manual assignment of data to disks.

Load balan
ing by random pla
ement of data is a well known te
hnique (e.g.,

[7, 23℄). Combining random pla
ement and redundan
y has �rst been 
onsidered

in parallel 
omputing for PRAM emulation [18℄ and online load balan
ing [6℄. For

s
heduling disk a

esses, these te
hniques have been used for multimedia appli-


ations [40, 41, 19, 24, 8, 36℄. The methods des
ribed here are mostly a summary

of four papers [35, 32, 33, 16℄. Se
t. 10 des
ribes new results.

There are many algorithms expli
itly designed to work eÆ
iently with 
oarse-

grained blo
k-wise a

ess. Most use the model by Vitter and Shriver that allows

identi
al parallel disks and a �xed blo
k size. Vitter [42℄ has written a good

overview arti
le. More overviews and several introdu
tory arti
les are 
olle
ted

in an LNCS Tutorial [22℄.

3 Write Bu�ering

3.1 Greedy Writing

m/D

...

...

...
hash function

1 2 3

queues

D

h

Sequence Σ

one of

buffers is free

of blocks
write whenever

m

Fig. 2. Optimal Writing.

Consider the implementation of an opera-

tion write(a;B; i) that writes a 
lient ar-

ray a[0::B � 1℄ to the logi
al address spa
e

A[i::i+B�1℄. The main observation exploited

in this se
tion is that write 
an in prin
iple be

implemented to return almost immediately:

Just 
opy the data to a bu�er spa
e.

2

The

mat
hing read operation read(B; i) returns

the 
a
hed data without a disk a

ess.

An obvious limitation of the bu�ering

strategy is that we will eventually run out

of bu�er spa
e without a good strategy for

a
tually outputting the data to the disks. We

postpone the question how data is mapped to

the disks until Se
t. 3.2 be
ause the following

greedy writing algorithm works for any given

assignment of data to the disks. We maintain

a queue of output requests for ea
h disk. Whenever a disk falls idle, one request

2

We 
an even do without a 
opy if we \steal" a from the 
lient and only release it

when the data is �nally 
opied or output.
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from this queue is submitted to the disk. Fig. 2 illustrates this strategy. In some

sense, greedy writing is optimal:

Theorem 1 ([16℄). Consider the I/O model of Vitter and Shriver [43℄ (�xed

blo
k size, �xed output 
ost). Assume some sequen
e of blo
k writes is to be

performed in that logi
al order and at most m blo
ks 
an be bu�ered by the

storage server. Then greedy writing minimizes the number of I/O steps needed

if the disk queues are managed in a FIFO (�rst in �rst out) manner.

Proof. (Outline) An indu
tion proof shows that greedy writing is optimal among

all output strategies that maintain queues in a FIFO manner. Another simple

lemma shows that any s
hedule 
an be transformed into a FIFO s
hedule without

in
reasing the I/O time or the memory requirement.

Things get more 
ompli
ated for more realisti
 I/O models that take into

a

ount that I/O times depend on the time to move the disk head between the

position of two blo
ks.

Open Problem: 1 Can you �nd (approximately) optimal writing algorithms

for the 
ase that I/O 
osts depend on the position of blo
ks on the disks? Even

for �xed blo
k size

3

and 
ost estimates only dependent on seek time little is known

if the bu�er size is limited.

4

3.2 Random Allo
ation

Theorem 1 is a bit hollow be
ause performan
e 
an still be very bad if all blo
ks

we need to write have to go to the same disk. We would like to have an allo
ation

strategy that avoids su
h 
ases. But this seems impossible | for any given

mapping of the address spa
e to the disks, there will be sets of requests that all

go to the same disk. Randomization o�ers a way out of this dilemma. We allo
ate

logi
al blo
ks to random disks for some �xed (large) blo
k size B. (Se
t. 10

dis
usses details how this mapping should a
tually be implemented.) Random

mapping makes it very unlikely that a parti
ular set of blo
ks requested by the


lients reside on the same disk. More generally, we get the following performan
e

guarantee for arbitrary sequen
es of write requests:

Theorem 2 ([35, 16℄). Consider the I/O model of Vitter and Shriver [43℄ (D

disks, �xed blo
k size, �xed output 
ost). Assume some sequen
e of n randomly

mapped di�erent blo
ks are to be written and at most m blo
ks 
an be bu�ered by

the storage server. Then greedy writing a

epts the last blo
k after an expe
ted

number of (1 +O(D=m))

n

D

output steps. After the last blo
k has been a

epted,

the longest queue has length O

�

m

D

logD

�

.

3

Variable blo
k sizes open another 
an of worms. One immediately gets NP-hard prob-

lems. But allowing a small amount of additional memory removes most 
ompli
ations

in that respe
t.

4

For in�nite bu�er size, the problem is easy if we look at seek times only (just sort by

tra
k) or rotational delays only [39℄. For both types of delays together we have an

NP-hard variant of the traveling salesman problem with polynomial time solutions

in some spe
ial 
ases [5℄.
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It 
an also be shown that longer exe
ution times only happen with very small

probability.

Proof. (Outline) The optimal greedy writing algorithm dominates a \throttled"

algorithm where in ea
h I/O step (1 � D=m)D blo
ks are written. The e�e
t

of the throttled algorithm on a single disk 
an be analyzed using methods from

queuing theory if the bu�er size is unlimited. The average queue length turns

out to be bounded by m=2D and hen
e the expe
ted sum of all queue lengths

is bounded by m=2. More 
ompli
ated arguments establish that large deviations

from this sum are unlikely and hen
e the in
uen
e of situations where the bu�er

over
ows is negligible.

Open Problem: 2 The number of steps needed to write n blo
ks and 
ush all

bu�ers should be a fun
tion that de
reases monotoni
ally with m. Prove su
h a

monotoni
 bound that is at least as good as Theorem 1 both for large and small

n.

3.3 Distributed Implementation

We now explain how the abstra
t algorithms des
ribed above 
an be imple-

mented in a real system. We will assume that one or several disks are 
onne
ted

to a 
omputer where one ore several pro
essors share a memory. Several 
omput-

ers are 
onne
ted by a 
ommuni
ation network to form the storage server. Disks

dire
tly atta
hed to the network are viewed as small 
omputers with a single

disk atta
hed to them. The 
lient appli
ations either run on the same system or

send requests to the storage server via the network. Let us 
onsider the possible

routes of data in the �rst 
ase: When a write operation for an array s is 
alled,

the data is lo
ated in the 
lient memory on 
omputer S. Array s 
ontains data

from one or several randomly mapped blo
ks of data. Let us fo
us on the data

destined for one of the target disks t that is atta
hed to a server ma
hine T . The

ideal situation would be that disk t is 
urrently idle and the data is shipped to

the network interfa
e 
ard of T whi
h dire
tly fowards it to disk t, bypassing the

pro
essor and main memory of T. Sin
e this is diÆ
ult to do in a portable way

and sin
e t may be busy anyway, the more likely alternative is that S 
onta
ts

T and asks it to reserve spa
e to put s into the queue of t. If this is impossible,

the exe
ution of the write operation blo
ks until spa
e is available or S tries to

bu�er s lo
ally. Eventually, the data is transferred to the main memory of T.

When the request gets its turn, it is transmitted to the disk t whi
h means that

it ends up in the lo
al 
a
he of this disk and is then written.

This s
enario deviates in several points from the theoreti
al analysis:

{ The ni
e performan
e bounds only hold when all disks share the same global

pool of bu�ers whereas the implementation makes use only of the lo
al mem-

ories of the 
omputer hosting the target disk t. It 
an be shown that this

makes little di�eren
e if the lo
al memories are large 
ompared to logD

blo
ks. Otherwise, one 
ould 
onsider shipping the data to third parties

when neither S nor T have enough lo
al memory. But this makes only sense

if the the network is very fast.

6



{ Theorem 2 assumes that all written blo
ks are di�erent. Overwriting a blo
k

that is still bu�ered will save us an output. But it 
an happen that overwrit-

ing blo
ks that have re
ently been output 
an 
ause additional delays [35℄.

Again, this 
an be shown to be unproblemati
 if the lo
al memory is large


ompared to logD blo
ks. Otherwise dynami
ally remapping data 
an help.

{ The logi
al blo
ks used for random mapping should be fairly large (
ur-

rently megabytes) in order to allow a

esses 
lose to the peak performan
e

of the disks. This 
an 
ause a problem for appli
ations that less rely on high

throughput for 
onse
utive a

esses than on low laten
y for many parallel

�ne grained a

esses. In that 
ase many 
onse
utive small blo
ks 
an lie on

the same disk whi
h then be
omes a bottlene
k. In this 
ase it might make

sense to use a separate address spa
e with small logi
al blo
ks for �ne grained

a

esses.

4 Random Dupli
ate Allo
ation

In the previous se
tion we have seen that random allo
ation and some bu�ering

allow us to write with high throughput and low laten
y. The same strategy

seems promising for reading data. Randomization ensures that data is spread

uniformly over the disks and bu�er spa
e 
an be used for prefet
hing data so

that it is available when needed. Indeed, there is a far rea
hing analogy between

reading and writing [16℄: When we run a writing algorithm \ba
kwards" we get

a reading algorithm. In parti
ular, Theorem 1 transfers. However this reversal

of time implies that we need to know the future a

esses in advan
e and we pay

the O(m log(D)=D) steps for the maximum queue length up front.

2 copies each

emulated disk

h’
h hh’

...

physical blocks

D1 2

logical blocks

Fig. 3. The 
on
ept of (R)andom (D)upli
ate (A)llo
ation.

Therefore, we now bring in an additional ingredient: Ea
h logi
al blo
k is

stored redundantly. Figure 3 illustrates this 
on
ept. For now we 
on
entrate

on the simple 
ase that ea
h blo
k is allo
ated to two randomly 
hosen disks.
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Se
t. 6 dis
usses generalizations. Redundan
y gives us 
exibility in 
hoosing from

where to read the data and this allows us to redu
e read laten
ies dramati
ally.

By 
hoosing two di�erent disks for the 
opies we get the additional bene�t that

no data is lost when a disk fails.

We begin with two algorithms for s
heduling a bat
h of n requested blo
ks of

�xed size that have been analyzed very a

urately: The shortest queue algorithm

allo
ates the requests in a greedy fashion. Consider a blo
k e with 
opies on disks

d and d

0

and let `(d) and `(d

0

) denote the number of blo
ks already planned for

disks d and d

0

respe
tively. Then the shortest queue algorithm plans e for the

disk with smaller load. Ties are broken arbitrarily. It 
an be shown that this

algorithm produ
es a s
hedule that needs

k =

n

D

+ log lnD +�(1)

expe
ted I/O steps [9℄. This is very good for large n but has an additive term

that grows with the system size.

s t

disksrequests

2,2

2,2

cap, flow

2,1

Fig. 4. A 
ow network showing how �ve requests are allo
ated to three disks. The 
ow

de�ned by the solid lines proves that the requests 
an be retrieved in two I/O steps.

We will see that optimal s
hedules do not have this problem | we 
an

do better by not 
ommitting our 
hoi
es before we have seen all the requests.

Optimal s
hedules 
an be found in polynomial time [12℄: Suppose we want to

�nd out whether k steps suÆ
e to retrieve all requests. Consider a 
ow network

[2℄ that 
onsists of four layers: A sour
e node in the �rst layer is 
onne
ted to

ea
h of n request nodes. Ea
h request node is 
onne
ted to two out of D disk

nodes | one edge for ea
h disk that holds a 
opy of the requested blo
k. The

disk nodes are 
onne
ted to a sink node t. The edges between disk nodes and

t have 
apa
ity k. All other nodes have 
apa
ity 1. Now it is easy to see that

a 
ow saturating all edges leaving the sour
e node exists if and only if k steps

are suÆ
ient. A s
hedule 
an be read of an integral maximum 
ow by reading

request r from disk d if and only if the edge (r; d) 
arries 
ow. Figure 4 gives

an example. The 
orre
t value for k 
an be found by trial and error. First try

k = dn=De then k = dn=De+ 1, : : : , until a solution is found. Korst [19℄ gives

a di�erent 
ow formulation that uses only D nodes and demonstrates that the

problem 
an be solved in time O

�

n+D

3

�

. If n = O(D) it 
an be shown that

the problem 
an be solved in time O(n logn) with high probability [35℄.
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Theorem 3. [35℄ Consider a bat
h of n randomly and dupli
ately allo
ated

blo
ks to be read from D disks. The optimal algorithm needs at most

l

n

D

m

+ 1

steps with probability at least 1�O(1=D)

dn=De+1

.

Proof. (Outline) Using a graph theoreti
al model of the problem, it 
an be shown

that the requests 
an be retrieved in k steps if and only if there is no subset � of

disks su
h that more than j�jk requested blo
ks have both their 
opies allo
ated

to a disk in � [38℄. Hen
e, it suÆ
es to show that it is unlikely that su
h an

overloaded subset exists. This is a tra
table problem mostly be
ause the number

of blo
ks allo
ated to � is binomially distributed.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

av
er

ag
e 

I/O
 s

te
ps

 -
 c

ei
l(n

/D
)

n/D

Fig. 5. The number of I/O steps (minus the lower bound dn=De) needed by optimal

s
heduling when s
heduling n 2 256::4096 blo
ks on D = 256 disks.

Figure 5 shows the performan
e of the optimal s
heduling algorithm. We

only give the data for D = 256 be
ause this 
urve is almost independent of the

number of disks. We see that the performan
e is even better than predi
ted by

Theorem 3: We 
an expe
t to get s
hedules that need only dn=De steps ex
ept if

n is a multiple of D or slightly below. For example, when n = 3:84D, we almost

always get a s
hedule with 4 steps, i.e., we are within 4 % of the best possible

performan
e. We also see that for large n we 
an even get perfe
t balan
e when

n is a multiple of D.

Open Problem: 3 Is there a threshold 
onstant 
 su
h that for n > 
D logD,

optimal s
heduling �nds a s
hedule with dn=De I/O steps even if n is a multiple

of D?
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4.1 The Sel
ess Algorithm

One problem with optimal s
heduling is that we do not have good performan
e

guarantees for s
heduling large sets of blo
ks eÆ
iently. Therefore it makes sense

to look for fast algorithms that are 
lose to optimal. Here we des
ribe linear time

algorithm that produ
es very 
lose to optimal solutions [11℄.

The sel
ess algorithm distinguishes between 
ommitted and un
ommited re-

quests. Un
ommitted requests still have a 
hoi
e between two disks. Committed

requests have de
ided for one of the two 
hoi
es. Initially, all requests are un-


ommitted. A disk d is 
alled 
ommitted if there are no un
ommited requests

that have d as a 
hoi
e. Let the load `(d) of disk d denote twi
e the number

of requests that have 
ommitted to d plus the number of un
ommitted requests

that have d as an option. The load 
ould be viewed as twi
e the expe
ted num-

ber of 
ommitted requests of a disk if all un
ommitted requests would 
hoose

randomly between one of their two 
hoi
es. The sel
ess algorithm is based on

two simple rules:

1. If there is an un
ommitted disk with at most dn=De remaining in
ident

requests, we 
ommit all of them to this disk.

2. Otherwise, we 
hoose an un
ommitted disk d with minimum load, 
hoose an

un
ommited request with d as an option, and 
ommit it to d.

This algorithm 
an be implemented to run in linear time using fairly standard

data stru
tures: Disks are viewed as nodes of a graph. Un
ommitted requests are

edges. Using an appropriate graph representation, edges 
an be removed in 
on-

stant time (e.g., [21℄). When a disk be
omes a 
andidate for Rule 1, we remember

it on a sta
k. The remaining nodes are kept in a priority queue ordered by their

load. Insert, de
rement-priority and delete-minimum 
an be implemented to run

in amortized 
onstant time using a slight variant of a bu
ket priority queue [14℄.

If we would plot the performan
e of the sel
ess algorithm in the same way as

in Figure 5 it would be absolutely impossible to see a di�eren
e, i.e., with very

high probability the sel
ess algorithm �nds an optimal s
hedule. This will be

proven in an up
oming paper [11℄ using di�erential equation methods that have

previously been used for the mathemati
ally 
losely related problem of 
ores of

random graphs [28℄.

5 Variable Size Requests

We now drop the assumption that we are dealing with �xed size jobs that take

unit time to retrieve. Instead, let `

i

� 1 denote the time needed to retrieve

request i. This generalization 
an be used to model several aspe
ts of storage

servers:

{ We might want to retrieve just parts of a logi
al blo
k

{ Disks are divided into zones [30℄ of di�erent data density and 
orrespondingly

di�erent data rate | blo
ks on the outer zones are faster to retrieve than

blo
ks on the inner zones. We assume here that both 
opies of a blo
k are

stored on the same zone.

10



The bad news is that it is strongly NP-hard to assign requests to disks so

that the I/O time is minimized [1℄. The good news is that optimal s
heduling

is still possible if we allow request to be split, i.e., we are allowed to 
ombine a

request from pie
es read from both 
opies. We make the simplifying assumption

here that a request of size ` = `

1

+ `

2

stored on disks d

1

and d

2


an be retrieved

by spending time `

1

on disk d

1

and time `

2

on disk d

2

. This is approximately

true if requests are large.

Even the performan
e guarantees for random dupli
ate allo
ation transfer.

We report a simpli�ed version of a result from [33℄ that has the same form as

Theorem 3 for unit size requests:

Theorem 4. Consider a set R of request with total size n =

P

r2R

`

r

of ran-

domly and dupli
ately allo
ated requests to be read from D disks. The optimal

algorithm 
omputes a s
hedule with I/O time at most

l

n

D

m

+ 1 with probability at least 1�O(1=D)

dn=De+1

The proofs and the algorithms are 
ompletely analogous. The only di�eren
e is

that the maximum 
ows will now not be integral and hen
e require splitting of

requests. Splitting 
an also have a positive e�e
t for unit size requests sin
e it

eliminates threshold e�e
ts su
h es the steps visible in Fig. 5. A more detailed

analysis indi
ates that the retrieval time be
omes a monotoni
 fun
tion of the

number of requests [33℄.

In a sense, Theorem 4 is mu
h more important than Theorem 3. For unit

size requests, we 
an relatively easily establish the expe
ted performan
e of an

algorithm by simulating all interesting 
ases a suÆ
ient number of times. Here,

this is not possible sin
e Theorem 4 holds for a vast spa
e of possible inputs

(un
ountably big and still exponential if we dis
retize the pie
e sizes).

6 Redu
ing Redundan
y

Instead of simply repli
ating logi
al blo
ks, we 
an more generally en
ode a

logi
al blo
k whi
h has r times the size of a physi
al blo
k into w physi
al blo
ks

su
h that reading any r out of the w blo
ks suÆ
es to re
onstru
t the logi
al

blo
k. Perhaps the most important 
ase is w = r + 1. Using parity-en
oding,

r of the blo
ks are simply pie
es of the logi
al blo
k and the last blo
k is the

ex
lusive-or of the other blo
ks. A missing blo
k 
an then be re
onstru
ted by

taking the ex
lusive-or of the blo
ks read. Parity en
oding is the easiest way

to redu
e redundan
y 
ompared to RDA while maintaining some 
exibility in

s
heduling. Its main drawba
k is that the physi
al blo
ks being read are a fa
tor

r smaller than the logi
al blo
ks so that high bandwidth 
an only be expe
ted

if the logi
al blo
ks are fairly large. The spe
ial 
ase r = D � 1;W = D yields

the 
oding s
heme used for RAID levels 3 and 5.

Choosing w > r + 1 
an be useful if more than one disk failure is to be

tolerated (see Se
t. 8) or if we additionally want to redu
e output laten
ies (see

11



Se
t. 9). A disadvantage of 
odes with w > r+1 is that they are 
omputationally

more expensive than parity-en
oding [20, 15, 29, 10, 4, 8℄.

Most of the s
heduling algorithms for RDA we have dis
ussed are easy to gen-

eralize for more general 
oding s
hemes. Only optimal s
heduling needs some ad-

ditional 
onsideration. A formulation that is a generalization of bipartite mat
h-

ing [32℄ yields a polynomial time algorithm however.

xorxorxor

parities

logical block

physical
blocks

Fig. 6. En
oding of a logi
al blo
k of size 12 into 4 physi
al blo
ks and one parity

blo
k of size 3 su
h that aligned logi
al requests of size 4s, s 2 f1; 2; 3g 
an be ful�lled

by retrieving any 4 out of 5 physi
al blo
ks of size s.

A small tri
k also allows us to use general 
oding s
hemes for arbitrary request

sizes: As before, data is allo
ated for large logi
al blo
ks whereas a
tual requests

may retrieve parts of these blo
ks. But the 
oding is done in very small pie
es

(say se
tors of size 512) and the en
oded pie
es are stored in the physi
al blo
ks

in an interleaved fashion. Figure 6 gives an example.

7 Asyn
hronous A

ess

In Se
t. 3.3 we have already explained how writing 
an be implemented in an

asyn
hronous, distributed way by providing one thread for ea
h disk. We now ex-

plain how this 
an be generalized for read a

esses in the presen
e of redundant

allo
ation. Client requests for a blo
k of data arrive individually in an asyn-


hronous fashion. The 
lients want to have these requests answered qui
kly, i.e.,

they want small delays. The algorithms des
ribed in Se
t. 4 
an be generalized

for this purpose [34℄. For example, the shortest queue algorithm would 
ommit

the request to the disk that 
an serve it fastest.

However, we loose most of the performan
e guarantees. For example, it is easy

to develop an algorithm that minimizes the maximum delay among all known

requests but it is not 
lear how to anti
ipate the impa
t of these de
isions on

requests arriving in the future.

Open Problem: 4 Give theoreti
al bounds for the expe
ted laten
y of any of

the asyn
hronous s
heduling algorithms dis
ussed in [34℄ as a fun
tion of D

and � in the following model: A blo
k a

ess on any of the D disks takes unit

time. A request for a blo
k arrives every (1+�)=D time units. For non-redundant

random allo
ation it 
an be shown that the expe
ted delay is �(1=�). Experiments

12



and heuristi
 
onsiderations suggest that time O(log(1=�)) is a
hievable using

redundan
y.

Asyn
hrony also introdu
es a new algorithmi
 
on
ept that we want to dis-


uss in more detail: Lazy de
isions. The simplest lazy algorithm | lazy queuing

| queues a request readable on disks d and d

0

in queues for both d and d

0

. The

de
ision whi
h disk a
tually fet
hes the blo
k is postponed until the last possible

moment. When a disk d falls idle, the thread responsible for this disk inspe
ts

its queue and removes one request r queued there. Then it 
ommuni
ates with

the thread responsible for the other 
opy of r to make sure that r is not fet
hed

twi
e. Lazy queueing has the interesting property that it is equivalent to an

\omnis
ient" shortest queue algorithm, i.e., it a
hieves the same performan
e

even if it does not know how long it takes to retrieve a request.

Theorem 5. Given an arbitrary request stream where a disk d needs t(d; r)

time units to serve request r. Then the lazy queue algorithm produ
es the same

s
hedule as a shortest queue algorithm whi
h exa
tly 
omputes disk loads by

summing the t(d; r)-values of the s
heduled requests.

The only possible disadvantage of lazy algorithms 
ompared to \eager" al-

gorithms su
h as shortest queue is that a simple implementation 
an in
ur ad-

ditional 
ommuni
ation delays at the performan
e 
riti
al moment when a disk

is ready to retrieve the next request (asking another thread and waiting for a

reply). This problem 
an be mitigated by trying to agree on a primary 
opy of

a request r before the previous request �nishes. The disk holding the primary


opy 
an then immediately fet
h r and in parallel it 
an send a 
on�rmation to

the thread with the other 
opy.

Figure 7 shows that RDA signi�
antly outperforms traditional output s
hemes.

Even mirroring that has the same amount of redundan
y produ
es mu
h larger

degrees when the storage server approa
hes its limits. Measurements not shown

here indi
ate that the gap is mu
h larger when we are interesting in the largest

delays that are en
ountered suÆ
iently often to be signi�
ant for real time ap-

pli
ations su
h as video streaming.

It 
an also be shown that 
u
tuations in the arrival rate of requests have little

impa
t on performan
e if the the number of requests arriving over the time in-

terval of an average delay is not too big. Furthermore, the s
heduling algorithms


an be adapted in su
h a way that appli
ations that need high throughput even

at the pri
e of large delays 
an 
oexist with appli
ations that rely on small delays

[32℄.

8 Fault Toleran
e

When a disk fails, the peak system throughput de
reases by a small fa
tor of 1=D.

Furthermore, requests whi
h have a 
opy on the faulty disks lose their s
heduling


exibility. Sin
e only few requests are a�e
ted, load balan
ing still works well

[33℄. In addition, there are now logi
al blo
ks that have less redundan
y than the
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Fig. 7. Average delays for 10

7

requests to D = 64 disks arriving at time intervals of

(1+�)=D. The mirror algorithm uses random allo
ation to a RAID-1 array. Lazy sharing

is a re�nement of lazy queue | an idle disk d leaves a request r to the alternative disk

d

0

(r) if the queue of d

0

is shorter than the queue of d.

others so that additional disk failures 
ould now lead to a loss of data. To get out

of this dangerous situation, the lost redundan
y has to be reestablished. This


an be a
hieved without ex
hanging any hardware by dispersing these blo
ks

over unused spa
e of the other disks. This 
an be done very qui
kly be
ause the

data read and written for this purpose is uniformly distributed over all disks. If

we are willing to invest a fra
tion of � of the peak performan
e of the system,

the re
onstru
tion 
an �nish in a fra
tion of about 1=�(D�1) of the time needed

to read and write one disk. For example, in a large system with 10 000 disks

with 100GByte ea
h and a disk I/O rate of 50MByte/s we 
ould in prin
iple

re
onstru
t a failed disk in as little as ten se
onds investing 4 % of our peak I/O

rate. Se
tion 10 will explain how a random mapping of the data is maintained

in this situation.

Failures of disk 
ontrollers or entire ma
hines 
an be handled in a similar

manner if the random dupli
ate allo
ation is modi�ed in su
h a way that di�erent


opies are allo
ated to di�erent pie
es of hardware. The ultimate realization of

this strategy divides the storage server into halves that are physi
ally so far apart

that even a �re or another 
atastrophe is unlikely to destroy both halves at the

same time. The limiting fa
tor here are the 
osts of a high speed inter
onne
tion

between the halves so that for su
h systems one may 
onsider to have more than

two 
opies of ea
h blo
k and to send data to the remote half only o

asionally.
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A major 
hallenge in pra
ti
al fault toleran
e is that it is very diÆ
ult to test

the behavior of distributed software under faults. Sin
e the data losses 
an be

really expensive, storage servers might therefore be a prime 
andidate for formal

veri�
ation:

Open Problem: 5 De�ne a useful abstra
t model of a storage server and its

software and prove that it operates 
orre
tly under disk failures, power loss, : : : .

9 Redu
ing Write Laten
y

Somewhat paradoxi
ally, there are many appli
ations where writes are mu
h

more frequent than reads, i.e., mu
h of what is written is never read. The reason

is that a lot of the data needed by a 
lient 
an be 
a
hed in main memory (by

the storage server or by the appli
ation). One 
ould argue that one would not

have to output this data at all but this negle
ts that many appli
ations must be

able to re
over their old state after a power loss.

There are several ways to handle this situation. One would be to make sure

that write bu�ers are in memory with enough battery ba
kup that they 
an be


ushed to disk at a power loss. The next step on the safety ladder makes sure

that the data is bu�ered in two pro
essors with independent power supply before

a write operation returns. But some appli
ations will still prefer to wait until

the data is a
tually output. In this situation, the strategy from Se
tion 3 leads

to fairly long waiting time under high load.

In this situation, the generalized 
oding s
hemes outlined in Se
t. 6 
an be

used. If a logi
al blo
k 
an be re
onstru
ted from any r out of w pie
es, we 
an

return from a write operation after r

0

pie
es are output (r � r

0

� w) and we get

a 
exible tradeo� between write laten
y and fault toleran
e. For example, for

r = 1 and w = 3 we 
ould return already when two 
opies have been written.

Whi
h 
opies are written 
an be de
ided using any of the s
heduling algorithms

dis
ussed above, for example the lazy queueing algorithm from Se
t. 7. The

remaining 
opy is not written at all or only with redu
ed priority so that it


annot delay other time 
riti
al disk a

esses.

10 Inhomogeneous Dynami
ally Evolving Storage Servers

A storage server that operates reliably 24h a day 365 days a year should allow us

to add disks dynami
ally when the demands for 
apa
ity or bandwidth in
rease.

Sin
e te
hnology is 
ontinuously advan
ing, we would like to add new disks with

higher 
apa
ity and bandwidth than the existing disks. Even if we would be

willing to settle for the old type, this be
omes infeasible after a few years when

the old type is no longer for sale. In Se
t. 8 we have already said that we want

to be able to remove failed disks from the system without repla
ing them by

new disks. The main algorithmi
 
hallenge in su
h systems is to maintain our


on
ept of load balan
ing by randomly mapping logi
al blo
ks to disks. We �rst

15



explain how a single random mapping from the virtual address spa
e to the disks

is obtained.

Inhomogeneity 
an be a

ommodated by mapping a blo
k not dire
tly to

the D inhomogeneous disks but �rst to D

0

volumes that a

ommodate N=D

0

B

blo
ks ea
h. The volumes are then mapped to the disks in su
h a way that the

ratio r(d) = 
(d)=v(d) between the 
apa
ity 
(d) of a disk d and the number

of volumes v(d) allo
ated to it is about the same everywhere. More pre
isely,

when a volume is allo
ated, it is greedily moved to the disk that maximizes

r(d). If D

0

=D � Dmax 
(d)=

P

d


(d), we will a
hieve a good utilization of disk


apa
ity.

5

When a disk fails, the volumes previously allo
ated to it will be distributed

over the remaining disks. This is safe as long as min

d

r(d) ex
eeds N=D

0

. When

a new disk d

0

is added, volumes from the disks with smallest r(d) are moved to

the new disk until r(d

0

) would be
ome minimal. In order to move or re
onstru
t

volumes, only the data in the a�e
ted volumes needs to be tou
hed whereas all

the remaining volumes remain untou
hed.

It remains to de�ne a random mapping of blo
ks to volumes. We present a

pragmati
 solution that outperforms a true random mapping in 
ertain aspe
ts

but where an a

urate analysis of the s
heduling algorithms remains an open

question. We a
hieve a perfe
tly balan
ed allo
ation of blo
ks to volumes, by

striping blo
ks over the volumes, i.e., blo
ks iD

0

::(i + 1)D

0

� 1 are mapped in

su
h a way that ea
h volume re
eives one blo
k. To a
hieve randomness, blo
k

iD

0

+ j, 0 � j < D, is mapped via a (pseudo)random permutation �

i

to volume

�

i

(j). Figure 8 summarizes the translation of logi
al addresses into blo
k o�sets,

disk IDs, and positions on the disk.

In order to �nd out whi
h blo
ks need to be moved or re
onstru
ted when a

disk is added or repla
ed, we would like to have permutations that are easy to

invert. Feistel permutations [25℄ are one way to a
hieve that: Assume for now

that

p

D

0

is an integer and represent j as j = j

a

+ j

b

p

D

0

. Now 
onsider the

mapping

�

i;1

((j

a

; j

b

)) = (j

b

; j

a

+ f

i;1

(j

b

) mod

p

D

0

)

where f

i;1

is some (pseudo)random fun
tion. If we iterate su
h mappings two to

four times using pseudo-random fun
tions f

i;1

, : : : ,f

i;4

we get something \pretty

random". Indeed, su
h permutations 
an be shown to be random in some pre
ise

sense that is useful for 
ryptology [25℄. A Feistel permutation is easy to invert.

�

�1

i;k

((a; b)) = (b� f

i;k

(a) mod

p

D

0

; a)

We assume that the fun
tions f

i;k

are represented in some 
ompa
t way, e.g.,

using any kind of ordinary pseudo-random hash fun
tion h that maps triples

5

If disk bandwidth is more of an issue than disk 
apa
ity, we 
an also balan
e a

ord-

ing to the data rate a disk 
an support. But even without that, the lazy s
heduling

algorithms from Se
t. 7 will automati
ally dire
t some traÆ
 away from the over-

loaded disks.
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Fig. 8. How a logi
al address is mapped to

a physi
al blo
k. The numbers give an ex-

ample with one Petabyte of address spa
e,

B = 2

20

, and D

0

= 2

18

that would 
ur-

rently require about 10 000 disks of 100

GByte ea
h.

(i; j; k) to values in 0::D

0

� 1. In order to �nd out to whi
h disk a blo
k is

mapped, the only additional data stru
ture we need is a lookup table of size D

0

.

This data stru
ture is easy to repli
ate to the lo
al memory of all pro
essors. For

example, even in a large system with D = 10000, with disk 
apa
ities varying

by a fa
tor of four, D

0

= 2

18

would already a
hieve quite good load balan
e.

To a
hieve fault toleran
e, this lookup table and the parameters of the hash

fun
tion h should be stored redundantly at a prede�ned pla
e. But even if the

table gets lost, it 
an be re
onstru
ted as long as the 
apa
ity of the disks and

the order in whi
h they were added or removed is known | we only need to

make sure that the algorithms for mapping volumes to disks are deterministi
.

Redundant Allo
ation

In order to use the above s
heme in the 
ontext of dupli
ate allo
ation, we

partition the storage server into two partitions whose total storage 
apa
ity is

about equal. The volumes are mapped to both partitions and we have two sets

of random permutations | one for ea
h partition. More generally, if we use a


oding s
heme that writes w physi
al blo
ks for ea
h logi
al blo
k, we need w

partitions. To a
hieve good fault toleran
e, 
omponents in di�erent partitions

should share as few 
ommon points of failure as possible (
ontrollers, pro
essors,

power supplies, : : : ). Therefore, the disks will not be assigned to the partitions

one by one but in 
oarse grained units like 
ontrollers or even entire ma
hines.

Although this partitioning problem is NP-hard, there are good approximation

algorithms [3℄. In parti
ular, sin
e we are dealing with a small 
onstant number

of partitions, fully polynomial time approximation s
hemes 
an be developed

using standard te
hniques [44℄.

Maintaining reasonably balan
ed partitions while 
omponents enter (new

hardware) or leave (failures) the system in an online fashion is a more 
ompli-


ated problem. In general, we will have to move 
omponents but these 
hanges

in 
on�guration should only a�e
t a small number of 
omponents with total


apa
ity proportional to added or removed 
apa
ity. At least it is easy to main-

tain the invariant that the di�eren
e between the 
apa
ities of the smallest and

largest partition is bounded by the maximum 
omponent 
apa
ity.

11 Dis
ussion

We have introdu
ed some of the algorithmi
 ba
kbone of s
alable storage servers.

We have negle
ted many important aspe
ts be
ause we believe that they are or-
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thogonal to the 
on
epts introdu
ed here, i.e., their implementation does not

mu
h a�e
t the de
isions for the aspe
ts dis
ussed here: We need an infras-

tru
ture that allows reliable high bandwidth 
ommuni
ation between arbitrary

pro
essors in the network. Although random allo
ation helps by automati
ally

avoiding hot spots, good routing strategies 
an be 
hallenging in inhomogeneous

dynami
ally 
hanging networks.

Ca
hing 
an make a
tual disk a

esses super
uous. This is a well understood

topi
 for 
entralized memory [17, 26℄ but distributed 
a
hing fa
es interesting

tradeo�s between 
ommuni
ation overhead and 
a
he hit rate.

There are many more important issues with a di�erent 
avor su
h as lo
king

me
hanisms to 
oordinate 
on
urrent a

esses, �le systems, real time issues, : : :

In addition, there are interesting aspe
ts that are less well understood yet and

pose interesting questions for future work. For example, we have treated all data

equal. But in reality, some data is a

essed more frequently than other data.

Besides the short term measure of 
a
hing, this leads to the question of data

migration (e.g. [37℄). Important data should be spread evenly over the disks, it

should be allo
ated to the fastest zones of the disks, and it 
ould be stored with

higher redundan
y. The bulk of the data that is a

essed rarely, 
ould be stored

on 
heaper disks or even on disks that are powered down for saving energy. Su
h

Massive Arrays of Idle Disks [13℄ are a 
andidate for repla
ing tape libraries

and 
ould s
ales to 10s of thousands of disks.
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