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Abstract

Many applications in parallel processing have to traverse large, implicitly de�ned

trees with irregular shape. The receiver initiated load balancing algorithm asyn-

chronous random polling has long been known to be very e�cient for these problems

in practice. Tight bounds for the parallel execution time in the LogP model are de-

rived based on the parameters of a problem model called tree shaped computations.

This model incorporates the problem size, the cost for basic operations, a measure

of granularity and an easy to quantify parameter which limits irregularity. Then,

with poll-and-shu�e, an asymptotically even more e�cient algorithm is introduced.

By using predominantly local communications it increases the usable communica-

tion bandwidth on hypercubic networks and meshes by a logarithmic factor. These

analytic results are complemented by practical re�nements and implementation re-

sults which successfully apply a portable and reusable library on machines with up

to 1024 processors.

Keywords: adaptive granularity control, asynchronous algorithm, hypercubic and mesh

network, parallel backtrack search, parallel random permutation, randomized load bal-

ancing algorithm
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1 Introduction

Many algorithms in operations research and arti�cial intelligence are based on the back-

tracking principle for traversing large irregularly shaped trees [8, 9, 15, 13, 19]. Similar

problems also play a role in parallel programming languages [1, 12] and even for loop

scheduling and some numerical problems like adaptive numerical integration it can be

useful to view the computations as an implicitly de�ned tree. Section 2 introduces the

abstract model of tree shaped computations which makes the common properties of these

applications visible while hiding unneccessary details thereby facilitating generic algo-

rithms and implementations.

For parallelizing tree shaped computations, a load balancing scheme is needed which

is able to evenly distribute the parts of an irregularly shaped tree over the processors. It

should work with minimal interprocessor communication and without knowledge of the

shape of the tree. Load balancers often su�er from the dilemma that subtrees which

are not subdivided turn out to be too large for proper load balancing whereas excessive

communication is necessary if the tree is shredded into too many pieces.

We �rst consider random polling dynamic load balancing, a simple algorithm which

avoids this problem: Every processing element (PE) handles at most one piece of work

(which may represent a part of a backtracking tree) at any point in time. If a PE runs out

of work, it sends requests to randomly chosen PEs until a busy one is found which splits

its piece of work and transmits one to the requestor. Previous results on this algorithm,

other receiver initiated preemptive algorithms and di�erent approaches are surveyed in

Section 3. Then random polling is analyzed in Section 4. The algorithm turns out to be

very e�cient for a wide range of applications and parallel architectures.

The poll-and-shu�e algorithm introduced in Section 5 is asymptotically even more

e�cient on interconnection networks like hypercubes, butter
ies or meshes because it

replaces the global communication of random polling with local communication and oc-

casional random permuations.

Section 6 complements these analytical discussions with some implementation results
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which further underline the already well known practical merits of randomized receiver

initiated load balancing for di�erent applications and for machines ranging from work-

station clusters to massively parallel computers. Finally, Section 7 summarizes the paper

and discusses some possible future research.

2 The Model

2.1 Machine Model

For the random polling algorithm, we basically adopt the LogP model [6] due to its

simplicity and genericity. There are P PEs numbered 0 through P � 1. We assume a

word length of 
 (log P ) bits.

1

Arithmetics on numbers of word length { including random

number generation { is assumed to require constant time. All messages delivered to a PE

are �rst put into a single FIFO message queue. In the full LogP model, three parameters

for \latency" L, \overhead" o and \gap" g contribute to the cost of message transfer.

We make the more conservative assumption that sending and receiving messages always

costs T

rout

:= L + o + g units of time. So the analysis also applies to the widespread

messaging protocols which block until a message has been copied into the message queue

of the recipient.

For the poll-and-shu�e algorithm we use a more detailed model of the interconnection

network and di�erentiate between the time for global randomized routing and neighbor-

hood communication which takes time proportional to the message length. Since in this

context, analyzing even asynchronous routing alone poses many open problems we restrict

ourselves to synchronized phases of communication and computation.

2.2 Tree Shaped Computations

We now abstract from the applications mentioned in the introduction by introducing tree

shaped computations which expose just enough of their common properties in order to

1

Throughout this paper logx stands for log

2

x.
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parallelize them e�ciently. All the work to be done is initially subsumed in a single root

problem I

root

. I

root

is initially located on PE 0 while all other PEs start idle, i.e., they

only have an empty problem I

;

.

What makes parallelization attractive, is the property that problem instances can

be subdivided into subproblems which can be solved independently by di�erent PEs.

For example, a subproblem could be \search this subtree by backtracking" or \integrate

function f over that subinterval". We model this property by a splitting operation split(I)

which splits a given (sub)problem I into two new subproblems subsuming the parent

problem. Let T

split

denote a bound on the time required for the split operation. For

example, in backtracking applications a subproblem is usually represented by a stack and

splitting can be implemented by copying the stack and manipulating the copies in such a

way that they represent disjoint search spaces covering the original search space [23].

The operation work(I; t) transforms a given subproblem I by performing sequential

work on it for t time units. The operation also returns when the subproblem is exhausted.

What makes parallelization di�cult, is that the size, i.e., the execution time T (I) :=

minft jwork(I; t) = I

;

g, of a subproblem cannot be predicted. In addition, the splitting

operation will rarely produce subproblems of equal size. For the analysis we assume

however that 8I : split(I) = (I

1

; I

2

) =) T (P ) = T (I

1

) + T (I

2

) regardless when and

where I

1

and I

2

are worked on. For a detailed discussion when this assumption is strictly

warranted and when it is a good approximation, refer to [29, 30]. Even if the condition

is violated, our treatment is still useful for handling the load balancing aspect of the

application, while it is up to the application to minimize detrimental dependencies between

subproblems. Section 6.3 presents an example.

Next we quantify some guaranteed \progress" made by splitting subproblems. Every

subproblem I belongs to a generation gen(I) recursively de�ned by gen(I

root

) := 0 and

split(I) = (I

1

; I

2

) =) gen(I

1

) = gen(I

2

) = gen(I) + 1. For many applications, it is

easy to give a bound on a maximum splitting depth h which guarantees that the size of

subproblems with gen(I) � h cannot exceed some atomic grain size T

atomic

. For example,
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a backtracking search tree of depth d and maximum branching factor b is easy to split

in such a way that h � d dlog be. We want to exclude problem instances with very little

parallelism and therefore assume h � logP . Otherwise, we might quickly end up with

less than P atomic pieces of work which cannot be split any more. Since h is the only

factor which constrains the shape of the emerging \subproblem splitting tree", it can be

viewed as a measure for the irregularity of the problem instance. (Obviously, very regular

instances with large h are possible. But in applications where this is frequently the case,

one should perhaps look for a splitting function exploiting these regularities to decrease

h.)

Finally, subproblems can be moved to other PEs by sending a single message. If

problem descriptions are long, the parameters of the LogP model must be adapted to

re
ect the cost of such a long message. The resulting time bounds will be conservative

since many messages are much shorter.

The task of the algorithm analysis is now to bound the parallel execution time T

par

required to solve a problem instance of size T

seq

:= T (I

root

) given the problem parameters

h, T

split

and T

atomic

and the machine parameters P and T

rout

. The bound is represented

in the form

T

par

� (1 + �)

T

seq

P

+ T

rest

(h; l; T

split

; T

atomic

; P; T

rout

; �) (1)

where � > 0 represents some small value we are free to choose. So, for parameters with

T

rest

� T

seq

=P we have a highly e�cient parallel execution.

3 Related Work

There is a quite large body of related research so that we can only give a rough outline.

Many algorithms use a simpler approach regarding tree decomposition by requiring all

\splits\ to occur before calls to \work" (in our terminology). However, this is only e�cient

for some applications since in the worst case a huge number of subproblems may have to

be generated or communicated (e.g. [14, 5, 24]).
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Random polling belongs to a family of receiver initiated load balancing algorithms

which have the advantage to split subproblems only on demand by idle PEs. This adaptive

approach has been used successfully for a variety of purposes such as parallel functional

[1] and logic programming [12] or game tree search [8]. Randomized partner selection goes

at least back to [9]. The partner selection strategy turns out to be crucial. The appar-

ently economic option to poll neighbors in the interconnection network can be extremely

ine�cient since it leads to a buildup of \clusters" of busy PEs shielding large subprob-

lems from being split [23]. Polling PEs in a \global round robin" fashion [14] avoids this

because no large subproblems can \hide". Execution times T

par

2 O

�

T

seq

P

+ hT

count

�

can

be achieved where T

count

is the time for incrementing a global counter. However, even so-

phisticated distributed counting algorithms have T

count

2 
(T

rout

logP= log logP ) [31]. It

was long known that random polling performs better than global round robin in practice

although the �rst analytical treatments could only prove an asymptotically weaker bound

ET

par

2 O

�

T

seq

P

+ hT

rout

logP

�

[14]. Tree shaped computations are a generalization of the

�-splitting model used in [14]. The gap between analysis and practical experience was

closed in [25, 26] by showing that T

par

� (1 + �)

T

seq

P

+O(hT

rout

) with high probability.

Independently, studies on scheduling multithreaded computations in the context of

the Cilk project lead to the restricted class of fully strict multithreaded computations for

which random polling (called randomized work stealing there) leads to a very e�cient

scheduling algorithm [3]. For many underlying applications the two models can be trans-

lated into each other. The critical path length T

1

in Cilk then becomes hT

split

+ T

atomic

for tree shaped computations. Cilk is able to model certain predictable dependencies be-

tween subproblems while tree shaped computations allow for di�erent splitting strategies

which may signi�cantly decrease h [23]. The Cilk model is natural for a multi-threaded

programming language, while tree shaped computations are directly useful for a portable

and reusable library [28, 30]. In the following, we concentrate on tree shaped compu-

tations. Adapting these results to Cilk or some more general model encompassing both

approaches is an interesting area for future work however.
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All the analytical results above make simplifying assumptions which are only war-

ranted if communication takes place in synchronized communication rounds. However,

the actual implementations are asynchronous in nature because globally synchronized

communication is undesirable. Idle PEs have to wait for the next communication round

and the network capacity is left unexploited most of the time. Unfortunately, we can-

not fully transfer an analysis for the synchronous case to an asynchronous model since

subproblems which are \in transit" cannot be split and long request queues can build

up around PEs which have \di�cult to split" subproblems. In Section 4 we show that

the latter problems do not inhibit the e�ciency of a simple asynchronous random polling

algorithm.

The poll-and-shu�e algorithm considered in Section 5 was �rst described in [27]. The

algorithm can also be viewed as an on-line tree embedding algorithm whose node load and

(average) dilation is as good as previously known algorithms for this model [18, 22, 11, 10]

but has the advantage that its built-in adaptive granularity control achieves e�ciency

arbitrarily close to one for su�ciently large problems.

Most results presented here are based on the doctoral dissertation [29] (in German).

4 Asynchronous Random Polling

Figure 1 gives pseudo-code for the basic random polling algorithm. PE 0 is initialized with

the root problem as speci�ed in the model. PEs in possession of nonempty subproblems

do sequential work on them but poll the network for incoming messages in intervals �t.

2

When a request is received, the local subproblem is split and one of the new subproblem

is sent to the requestor. Idle PEs send requests to randomly determined PEs and wait

for a reply until they receive a nonempty subproblem. Requests received in the meantime

are answered with an empty subproblem. Note that an empty subproblem can be coded

by a short message equivalent to a rejection of the request.

2

If the machine supports it, polling can be replaced by more e�cient and more elegant interrupt

mechanisms.
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var I, I

0

: Subproblem

I := if i

PE

= 0 then I

root

else I

;

while no global termination yet do

if T (I) = 0 then

send a request to a PE chosen uniformly at random

repeat

receive any message M (blockingly)

reply requests from PE j with I

;

until M is a reply to my request

unpack I from M

else

I := work(I;�t) (* do some sequential work *)

if there is an incoming request from PE j then

(I; I

0

) := split(I); send I

0

to PE j

Figure 1: Basic algorithm for asynchronous random polling.

Concurrently, a distributed termination detection protocol is run which recognizes

when all PEs have run out of work. We have adapted the four counter method [20] for

this purpose. Each PE counts the number of sent and received messages which contain

nonempty subproblems. When the global sum over these two counts yields identical re-

sults over two global addition rounds, there cannot be any work left (not even in transit).

Instead of the ring based summing scheme proposed in [20], we use a tree based asyn-

chronous global reduction operation. This is a simple and portable way to bound the

termination detection delay by O(T

rout

logP ).

We do not explicitly handle reporting results of the computation here since this is

quite cheap for many applications. For example, for numeric integration the results for

all subproblems solved on each PE can be added together by a single global reduction.
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4.1 Expected Time Bounds

This Section is devoted to proving the following bound on the expected parallel execution

time of asynchronous random polling dynamic load balancing:

Theorem 1. ET

par

� (1 + �)

T

seq

P

+O

�

T

atomic

+ h

�

1

�

+ T

rout

+ T

split

��

for an appropriate choice of �t.

In Section 4.2 we additionally show that large deviations from this time bound are

improbable. The basic idea for the proof is to partition the execution time of each in-

dividual PE into intervals of productive work on subproblems and intervals devoted to

load balancing. We �rst tackle the more di�cult part and show that a certain overall

e�ort on load balancing su�ces to split all remaining subproblems at least h times. By

de�nition of h this implies that they are smaller than T

atomic

. As a preparation, we assign

a technical meaning to the terms \ancestor", \arrive" and \reach":

De�nition 2. The ancestor of a subproblem I at time t is the uniquely de�ned subprob-

lem from which I was derived by applying the operations \work" and \split". A load

request arrives at the point of time t when it is put into the message queue of a PE.

A load request reaches a subproblem I at time t if it arrives at some PE at time t and

(later) leads to a splitting of I.

We start the analysis by bounding the expense associated with sending and answering

individual requests:

Lemma 3.

1. The total amount of active CPU work expended for processing a request is bounded

by T

split

+O(T

rout

).

2. If any requests have arrived at a PE, at least one of the requests is answered every

�t+ T

split

+O(T

rout

) time units.

3. The expected elapsed time between the arrival of a message and sending the corre-

sponding reply is in O(�t+ T

split

+ T

rout

).
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Proof. 1: A request triggers at most one split. The total expense for sending and receiving

is in O(T

rout

). 2: An additional time of �t for sequential work can elapse until the message

queue is checked the next time. 3: Some queues might be long so that some request are

delayed for a quite long time. However, there are at most P active requests at any point

in time. A request arriving at a random PE will therefore encounter an expected queue

length bounded by

P

i<P

\queue length at PE i"=P � 1.

When a subproblem is split by one ore more subsequent load request, there is a dead

time interval during which it cannot be reached by any other request.

Lemma 4. All dead times can be covered by associating a dead time T

dead

= �t+T

split

+

O(T

rout

) with each request reaching a subproblem.

Proof. Let I denote a subproblem which is reached by a request R at time t and at PE

i. Let k � 0 denote the number of requests in the message queue of PE i which reach

I before R. Only if I is moved to another PE j due to R, I cannot be reached by any

request arriving after t until I is put into the message queue of PE j. In the worst case,

the dead time is (k + 1)(�t + T

split

+ T

rout

). This is the case, when \work" has just

been called for the ancestor of I. Then a time �t passes until the load balancer is next

activated. Subsequently, the ancestor is split with an expense of T

split

and a subproblem

is sent away. This cycle is repeated k + 1 times. Then I is reachable on PE j. The total

dead time can be distributed over the k + 1 requests involved.

Now we know the various costs and delays associated with requests. If we could �nd

out how many request are necessary to split all subproblems h times with high probability,

we were almost done. However, the question is stated too imprecisely yet. Requests which

arrive during a dead time of a subproblem are \lost" for that subproblem. We therefore

only consider a subset of all completed requests which has the property to be \su�ciently

uniformly" distributed over time.

De�nition 5. A request may be colored red if there are at most P other red requests

during a time interval T

dead

after its arrival.
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Lemma 6. Let I hii denote the subproblem at PE i. For every � > 0 there is a constant

c > 0, such that after processing cPh red requests P [9i : gen(I hii) < h] � P

��

(for

su�ciently large P ).

Proof. We have P [9i : gen(I hii) < h] � PP [gen(I hii) < h] for some �xed PE index i.

So it su�ces to show that P [gen(I hii) < h] < P

���1

for su�ciently large P . gen(I hii)

can be bounded by the number of red requests which reach I hii. Uncolored requests can

be ignored here w.l.o.g.: Although it may happen that an uncolored request reaches I hii

and causes one ore more subsequent red requests to miss I hii, this split will be accounted

to the next following red request and its dead time su�ces to explain that the subsequent

red requests miss I hii. Using a combinatorial treatment, we now show that

X

k<h

P

k

� P

���1

where P

k

:= P [I hii is reached by k red requests] :

There are

�

chP

k

�

ways, to choose k red request which are to reach I hii. The probability

that they are all heading for PE i is P

�k

. Since there are at most P red requests in the

dead time after a request, there are at least chn � kP remaining red request which do

not reach I hii. The probability of this event is (1� 1=P )

chP�kP

� e

�(ch�k)

. All in all, we

have

P

k

�

�

chP

k

�

P

�k

e

�(ch�k)

�

�

chPe

k

�

k

P

�k

e

�(ch�k)

=

�

che

2

k

�

k

e

�ch

using the Stirling approximation

�

m

k

�

� (me=k)

k

. Since k < h, it is easy to verify that

the k-dependent part of the above expression is monotonously increasing with k for c >

1

e

and can be bounded from above by setting k = h, i.e.,

P

k

�

�

ce

2

�

h

e

�ch

= e

�h(c�ln c�2)

:

Now P [gen(I hii) < h] can be bounded by he

�h(c�ln c�2)

= e

�h

(

c�ln c�2�

ln h

h

)

�

e

�h

(

c�ln c�2�

1

e

)

. Since we assume that h 2 
(logP ) there is a c

0

such that h � c

0

lnP :

P [gen(I hii) < h] � P

�c

0

(

c�ln c�2�

1

e

)

� P

���1

for an appropriate c and su�ciently large P .

11



Now we bound the expense for all requests in order to have cPh red ones among them.

Lemma 7. Let c > 0 denote a constant. Requests can be colored in such a way that an

expected work in O(hP (�t+ T

split

+ T

rout

)) for all request processing su�ces to process

chP red requests.

Proof. Let R

1

; : : : ; R

m

denote all the requests processed and let t(R

1

) � � � � � t(R

m

))

denote the arrival time of R

i

. Going through this sequence of requests we color P subse-

quent requests red and then skip the requests following in an interval of T

dead

, etc. Since

there can never be more than P requests in transit there can be at most 2P uncolored

requests whose executions overlaps an individual red interval. Therefore, the expense for

P red requests can be bounded by PT

dead

plus the expense for processing 3P requests.

The expense for this is given in Lemma 3.

By combining lemmata 6 and 7 we get a bound for the communication expense of

random polling until only atomic subproblems are left.

Lemma 8. The expected overall expense for communicating, splitting and waiting until

there are no more subproblems with gen(I) < h is in O(hP (�t+ T

split

+ T

rout

)).

Bounding the expense for sequential work { i.e. calls of \work" { is easy. Let T

poll

denote the (constant) expense for probing the message queue unsuccessfully. It su�ces

to choose �t > T

poll

=� to make sure that only (1 + �)T

seq

time units are spent for those

iterations of the main loop where the local subproblem is not exhausted and no requests

arrive. All other loop iterations can be accounted to load balancing.

As the last component of our proof, we have to verify that atomic subproblems are

disposed of quickly and that termination detection is no bottleneck.

Lemma 9. If �t 2 


�

min(

T

atomic

h

; T

rout

+ T

split

)

�

and gen(I hii) � h for all PEs then the

remaining execution time is in O(T

atomic

+ h(�t+ T

split

+ T

rout

)) :

Proof. From the de�nition of h we can conclude that for all remaining subproblems I

we have T (I) � T

atomic

. For

T

atomic

h

2 O(T

rout

+ T

split

), O(h) iterations (of each PE) with
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cost O(�t+ T

split

+ T

rout

) each su�ce to �nish up all subproblems. Otherwise, a busy PE

spends at least a constant fraction of its time with productive work even if it constantly

receives requests.

3

Therefore, after a time in O(T

atomic

) no nonempty subproblems will be

left. After a time in O(T

rout

logP ) � O(hT

rout

), the termination detection protocol will

notice this condition.

The above building blocks can now be used to assemble a proof of Theorem 1. Choose

some �t 2 O(T

rout

+ T

split

) \


�

min

�

T

atomic

h

; T

rout

+ T

split

��

such that �t > T

poll

=� (where

T

poll

is the constant time required to poll the network in the absence of messages). This

is always possible and for the frequent case T

atomic

=h � T

rout

+ T

split

there is also a very

wide feasible interval for �t. Every operation of Algorithm 1 is either devoted to working

on a nonempty subproblem or to load balancing in the sense of Lemma 8. Therefore, after

an expected time of (1+ �)

T

seq

P

+O(h(1=�+ T

rout

+ T

split

)) su�ciently many requests have

been processed such that only subproblems with gen(I) � h are left with high probability.

The polynomially small fraction of cases where this number of requests is not su�cient

cannot in
uence the expectation of the execution time since even a sequential solution of

the problem instance takes only O(P ) times as long as a parallel execution. According

to Lemma 9, an additional time in O(T

atomic

+ h(1=�+ T

split

+ T

rout

)) su�ces to �nish up

the remaining subproblems and to detect termination.

4.2 Analysis with High Probability

In order to keep the algorithm and its analysis as simple as possible, Theorem 1 only

bounds the expected parallel execution time. We now outline how the same bounds can

be obtained with high probability.

Theorem 10. For �t and � as in Theorem 1,

T

par

� (1 + �)

T

par

P

+

~

O

�

T

atomic

+ h(

1

�

+ T

split

+ T

rout

)

�

3

In the full LogP model even �t 2 


�

min(

T

atomic

h

;max(T

split

+ o; g))

�

su�ces.
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if h 2 
(P logP ) or queue lengths in 


�

p

P

�

are avoided by algorithmic means.

4

The proof is largely analogous to the proof of Theorem 1 except that the waiting times

due to long message queues have to be considered more closely. It su�ces to show that

the total waiting time su�ered by O(hP ) requests is in

~

O (�t+ T

split

+ T

rout

). This is

equivalent to showing that the sum of the queue lengths met by O(hP ) requests is in

~

O (hP ). Both cases in Theorem 10 can be reduced to the following criterion:

Lemma 11. If �q is an upper bound for the queue length during a run of random polling

and if �q 2 O

�q

hP

logP

�

, then the sum of all queue lengths met by O(hP ) requests is in

~

O (hP ).

Proof. Consider some � > 0. Let m � ahP denote the number of requests considered

and let �q �

q

bhP

logP

be a bound on the queue lengths. (with appropriate constants a and

b). Let the random variable T

i

(1 � i � m) denote the index of the PE where request i

arrives and let Y

i

(1 � i � m) denote the queue length met by request i. LetX :=

P

m

i=1

Y

i

and let X

i

:= E [X j T

1

; : : : ; T

i

] (0 � i � m) denote the conditional expected value of

X depending on T

1

through T

i

. According to [21, Theorem 4.13 and Example 4.12] X

0

,

: : : , X

m

is a Martingal sequence. Furthermore, we have X

i

=

P

i

j=1

Y

j

+ E

P

m

j=i+1

Y

j

=

P

i

j=1

Y

j

+

P

m

j=i+1

EY

j

and therefore jX

i+1

�X

i

j = jY

i+1

�EY

i+1

j � �q. Let c denote a

constant still to be determined. Using Azumas inequality [21, Theorem 4.16] we can infer

P [jX �EXj � chP ] = P [jX

m

�X

0

j � chP ] � 2e

�

(chP )

2

2m�q

2

� 2e

�

(chP )

2

2(ahP )(bhP= logP )

= 2e

�

c

2

logP

2ab

= 2P

�

c

2

2ab

� P

��

for c >

r

�

2ab

and su�ciently large P :

Analogous to the proof of Lemma 3 we have EX � ahP . All in all, the sum of the queue

lengths met, X, is in

~

O (hP ).

4

Let

~

O (�) denote the following shorthand for asymptotic behavior with high probability [16]: A random

variable X is in

~

O (g(P )) i� 8� > 0 : 9c > 0 : 9P

0

: 8P � P

0

: P [X � cf(P )] � 1� P

��
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Due to the trivial bound �q � P the criterion applies for h 2 
(P logP ). Since

h 2 
(logP ) the same is true if �q 2 O

�

p

P

�

.

We see that isolated long queue lengths do not a�ect the overall runtime for problem

instances with h 2 
(P logP ). Furthermore, there are some simple algorithmic measures

in order to keep the queues short. A radical approach would be to interrupt the normal

computation when any queue length exceeds c

p

P for some constant c in order to drain

the system of all requests. On most systems, the e�ort for this would be much smaller

than the e�ort for sending 


�

P

p

P

�

random requests which are (with high probability)

necessary to build long queues. In addition, for h 2 O

�

p

P

�

it is unlikely that such a

large number of requests is sent at all.

A much simpler approach would be to act only locally on long queues. Since the

subproblem at this PE will have accumulated a large gen(I) anyway, we can simply reject

some requests without splitting until the queue length has normalized.

4.3 Re�nements

A rather obvious improvement is to initialize the PEs by broadcasting the root problem

to all PEs and then partition it using logP subsequent splits where the bits of the PE

index are used to decide which subproblem is kept. (This can be generalized for the

case where P is not a power of two.) In practice, this broadcast is almost free because

information common to all subproblems should be broadcast anyway in order to keep

the subproblem descriptions themselves small. However, from a theoretical point of view

basic random polling is already remarkably e�cient. In [29] it is demonstrated that the

expected number of required message exchanges until all PEs are busy is bounded by

log P + log lnP + 1 (using a synchronous model).

An important practical advantage of random polling is that it even works on inho-

mogeneous networks with external load by other users as long as load requests are still

answered. If this becomes necessary, a search process can even switch to blocking receives

when the system detects the presence of an interactive user.
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5 The Poll-and-Shu�e Algorithm

Regarding the number of messages sent, random polling seems to be hardly improvable.

At least no deterministic load balancer [32] nor any receiver initiated load balancer [29]

can achieve good e�ciency without exchanging 
 (hP ) messages for some instances. On

the other hand, as discussed in Section 3, the tempting solution to ask only neighbors in

the interconnection network for work leads to a buildup of clusters of busy PEs resulting

in insu�cient splitting of large subproblems and many useless load requests. Therefore,

we introduce an algorithm for hypercubes with mixed global and local communication

which is then analyzed in Section 5.1. In Section 5.2 this algorithm is adapted to other

interconnection networks. While in the analysis of asynchronous random polling we took

great pains to stick to a practically realistic model, we now focus on the basic princi-

ple of avoiding global communciation and prefer simplicity over e�ciency whenever the

asymptotic bounds are not in danger.

Figure 2 gives pseudo-code for poll-and-shu�e load balancing on a logP -dimensional

hypercube network. Let the shorthand I hji stand for the subproblem PE j is responsible

for and let � stand for exclusive-or. The principle is similar to random polling but the

PEs operate synchronously in work phases of duration �t. log P phases form a cycle.

After computation phase i within a cycle, requests can be exchanged along dimension i of

the hypercube. The idea is that by using a fresh dimension for each iteration, clustering

e�ects cannot become visible within a cycle. After a cycle, the subproblems are permuted

randomly so that any possibly existing clusters would be completely dissolved.

A random permutation over PE indices can be computed in time O(log P ) +

~

O (logP= log log P ) on a hypercube by routing each PE index to a random PE; permuting

locally; enumerating the messages using a pre�x sum and rerouting the messages to the

PE with this number. (For a detailed analysis refer to [29].)
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var I : Subproblem

I := if i

PE

= 0 then I

root

else I

;

while not �nished do synchronously

for i:=0 to logP � 1 do synchronously

I := work(I;�t)

if T (I) = 0 then (I; I hi

PE

� 2

i

i) := split(I hi

PE

� 2

i

i)

endfor

globally permute subproblems randomly

Figure 2: Poll-and-shu�e on a hypercube.

5.1 Analysis

We prove a bound similar to that of Theorem 1 but now the term for the communication

overhead per communication is not T

rout

but only O(l) where l is a bound for the message

length needed to represent a subproblem. For simplicity, � is treated as a constant now.

Theorem 12. T

par

�

�

1 + �+

~

O

�

1

log logP

��

T

seq

P

+

~

O(T

atomic

+ h(l + T

split

)) for any

constant � > 0 and an appropriate choice of �t.

The basic idea for the analysis is also similar to random polling. Again we start with

the most di�cult problem namely bounding the number of phases with many idle PEs.

If we omit all edges along dimensions i; : : : ; logP � 1, the hypercube is partitioned

into i-dimensional subcubes we call i-cubes. Let S, T denote some arbitrary subproblems.

Then S

i

| T denotes the event that S and T are neighbors along dimension i. In

random polling, a subproblem was equally probable to receive a request from any idle

PE. Similarly, our analyis is now based on the fact that (almost) all pairings S

i

| T are

equiprobable in phase i:

Lemma 13. Consider the communication after any i-th phase of a cycle. Let S de-

note an arbitrary subproblem and T the set of subproblems not in the same i-cube as

17



S. Empty subproblems are assumed to be distinguishable. Then, for any T; T

0

2 T ,

P

h

S

i

| T j (S;T )

i

= P

h

S

i

| T

0

j (S;T )

i

where (S;T ) denotes the subset of the event

space leading to the same S and T at the considered point in time.

Proof. Wlog., assume that \work" und \split" work deterministically (otherwise we could

make a case distinction for any possible outcome of random choices in these operations).

Let M denote the subgroup of the permutation group S

P

de�ned by exchanging i-

cubes and mirroring individual i-cubes. (In [29] the proof is executed in more detail using

formal de�nitions of the permutations involved.) From elementary group theory, we know

that M (like any supgroup) can be used to partition S

P

into equivalence classes by de�ning

the coset C

�

:= �M = f�m jm 2Mg for any � 2 S

P

.

Now let � denote the permutation applied in the last shu�ing operation. Let C

T

:=

n

� 2 C

�

jS

i

| T

o

and C

T

0

:=

n

� 2 C

�

jS

i

| T

0

o

. It su�ces to show that jC

T

j = jC

T

0

j. A

simple and elegant way to do this is to show that there is a bijectivemapping f

TT

0

2 C

T

0

C

T

.

By symmetry it su�ces to give an injection. The following sequence does the job: First

mirror the i-cube where T is located until T and T

0

have the same position within their

respective i-cube. Then swap the i-cubes where T and T

0

are located. Since this f

TT

0

is a

sequence of injective mappings from the group M , it is injective itself and also an element

of M . So, jC

T

j = jC

T

0

j and this settles the claim.

Now we have a tool for proving that in (most) phases with low PE utilization, any

subproblem is split with some minimum probability. Consider some constant 
 2 (0; 1)

we are free to choose. Call a phase red if i < logP � log

2




and at least 
P PEs are idle

at its end.

Lemma 14.

~

O (h) red phases su�ce to reduce all subproblems to size at most T

atomic

.

Proof. Consider a �xed subproblem S. After a red phase at least 
P � 2

i

subproblems

outside the i-cube of S are empty. Color 
P � 2

i

of those red. By Lemma 13 each red

subproblem is equiprobable to be a neighbor of S along dimension i and will therefore lead

to a split. So, the probability that S is split by a request from a PE with a red subproblem

18



is


P�2

i

P�2

i

� 
=2 for i < logP � log

2




and these probabilities are independent. De�ne a

random variableX

j

:= 1 i� S is split in the j-th red phase by a PE with a red subproblem.

Using a standard Cherno�-bound argument and similar to the proof of Lemma 6 it follows

that P [gen(S) < h] � P

h

P

j�2c�h=


X

j

< h

i

� P

���1

for h 2 
(logP ), any constant

� and an appropriately choosen constant c. The probaility that any subproblem has

generation less then h (and thereby possibly nonatomic size) can be at most a factor of

P larger.

We now outline how the proof of Theorem 12 can be completed: First, note that a

cycle with logP phases can be completed in time log P

�

�t+ T

split

+ cl +

~

O

�

l

log logP

��

where c is a constant only depending on the speed of the communication links. This is

true even if we use unpipelined dimension order packet routing for �nding and performing

the random permutation [17, Theorem 3.34].

There can be at most

l

T

seq

P (1�
)�t

m

phases with at least (1 � 
)P busy PEs at the end

because after that no work could be left.

By Lemma 14,

~

O (h) red phases su�ce to reduce all subproblems to atomic size and

dT

atomic

=�te subsequent phases su�ce to �nish them up. In each cycle, a constant number

of phases with i � logP � log

2




might neither have high PE utilization nor substantially

contribute to splitting but for su�ciently large P their contribution to the overall execu-

tion time is negligible.

A termination detection can be performed using a global and-reduction once per cycle.

The costs for this can be charged to the logP neighborhood exchanges per cycle.

By choosing �t = 2(1+

1

�

)(T

split

+ cl) and 
 = 1�1=

p

1 + �=2 this information can be

combined to yield the desired bound for su�ciently large P . The calculations needed for

this are simple yet take about three pages in [29] so we omit them.

5.2 Other Networks

Note that unless l is very small, Theorem 12 is no improvement over random polling

for some hypercube variants which can exploit their large bisection width to get T

rout

2
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~

O (logP + l). However, poll-and-shu�e is a normal hypercube algorithm in the sense of

[17] and can therefore be emulated with constant slowdown on hypercubic networks such

as butter
y, de Bruijn, shu�e-exchange or cube-connected-cycle. These constant degree

networks have a bisection width in � (P= log P ) and therefore poll-and-shu�e can be a

factor � (logP ) faster than random polling there. Since we can charge the subproblem

migrations required by the hypercube emulation to the neighborhood exchanges, the local

computations can be considered to have perfect speedup yielding an equally strong bound

as for the full hypercube:

Corollary 15. For poll-and-shu�e on hypercubic networks

T

par

�

�

1 + �+

~

O

�

1

log logP

��

T

seq

P

+

~

O

�

T

atomic

+ h(

1

�

+ l + T

split

)

�

for any constant � > 0 and an appropriate choice of �t.

Similarly, it is easy to embed a hypercube into an r-dimensional mesh in such a way

that a cycle can be completed in time log P (�t+ T

split

) + O

�

lP

1=r

�

if we use worst-case

e�cient algorithms like sorting for the random permutations.

Corollary 16. For poll-and-shu�e on meshes

T

par

� (1 + �)

T

seq

P

+

~

O

�

T

atomic

+ h

�

1

�

+

lP

1=r

log P

+ T

split

��

for any constant � > 0 and an appropriate choice of �t 2 �

�

T

split

+

lP

1=r

logP

�

.

A hypercube can even be embedded into a mesh where P is not a power of two. In

this case some mesh PEs have to emulate several hypercube PEs. But as for networks of

interactive workstation this does not impede the possibility to achieve high e�ciencies.

Also note, that the � (logP ) factor improvement over random polling implies a larger

useable bandwidth so that it can also materialize on machines with fast hardware routers

where latencies are usually assumed to be independent of the network diameter.
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5.3 Re�nements

On current relatively small machines, basic poll-and-shu�e cannot compete with asyn-

chronous random polling. The penalty for synchronization and periodic global permuta-

tions more than outweighs the asymptotically dominant locality advantage.

A simple observation is that it is su�cient to synchronize neighboring PEs along

dimension i after phase i. Also, the analysis is una�ected if busy PEs waiting for syn-

chronization continue their work and idle PEs can ask for work along a dimension j < i

(on a mesh they can even ask anywhere in their i-cube).

Expensive permutations can be saved if they are only triggered when the PE utilization

is low. Also, local requests could be mixed with occasional global requests to avoid some

global permutations. One variant of this analytically di�cult but practically appealing

idea is considered in Section 6.2.

6 Practical Aspects

The results of the analysis of random polling are quite clear, backed up by a lot of previous

implementation results and are easy to interpret. As long as T

atomic

is not huge it can

be neglected. T

split

is easy to measure and of little signi�cance for slow networks. The

most important parameter is h which can be estimated based on the problem size and the

properties of the splitting function. Together with the theoretical bounds these simple

considerations su�ce to estimate the performance for worst case instances. Load balancing

will be e�cient as long as T

seq

=P is large compared to the time for O(h) global message

exchanges and splits. This is important in practice and cannot be replaced even by the

most detailed empirical evaluation which can never make reliable predictions beyond the

instances measured.

In this experimental section, we therefore concentrate on orthogonal results which are

not covered by the theoretical analysis. In Section 6.1 we discuss implementation aspects.

Section 6.2 studies the impact of some improvements to random polling. An application
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going beyond the model of tree shaped computations is investigated in Section 6.3.

6.1 Portability, Reusability, E�ciency

The library PIGSeL (Parallel Implicit Graph Search Library) [28, 7] was built around the

concept of tree shaped computations. An application has to implement the operations

\work" and \split" together with functions for packing and unpacking of subproblems,

for initialization and for solution handling.

5

The parallelization has random polling as its

default load balancer and can be reused by di�erent applications.

The library is also portable except for a thin communication layer which has been

adapted to MPI, PVM, Cosy [4] and PARIX so far, so that it runs on most MIMD

machines. The performance of the library at least equalizes previous less portable imple-

mentations. The same application code runs equally well on a network of workstations

and on a massively parallel machine. Perhaps most interesting are measurements on a

Parsytec GCel/3 with a 32 � 32 mesh of transputers.

6

A heuristic backtrack search for

optimal \Golomb rulers" [2, 28, 29] achieves an almost perfect speedup of 958 for a quite

small problem instance with (12.4 s parallel execution time) even though the GCel has a

high penalty for global communication. For a very small problem instance with parallel

execution time 0.88 s, the e�ciency is still above 1=2 (speedup 578). Previous research

on massively parallel search in irregular trees only achieves good e�ciency for problem

instances which are an order of magnitude larger [15, 24].

6.2 Improving Random Polling?

In order to test some algorithmic ideas for improving random polling we made measure-

ments with PIGSeL and the 15-puzzle [13] which is a well known toy widely used as a

benchmark in AI. You have to shift 15 scrambled squares in a 4� 4 frame into the right

order. In order to get a large sample of problem instances of widely varying size we used

5

There is a higher level interface centered around an abstraction for search tree nodes.

6

We thank the Paderborn Center for Parallel Computing (PC

2

) for making this machine available.
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the 100 instances for the 15-puzzle given in [13]. Each instance requires a series of itera-

tively deepened searches. We used all failing iterations as individual test instances since

those are fully modeled by tree shaped computations and exhibit no speedup anomalies.

It turns out that the fast initialization from Section 4.3 can increase speedup by a

factor up to three for very tiny instances which achieve almost no speedup otherwise.

This is useful for the initial iterations of iterative deepening searches since it obviates

specialized treatments as they are used in other studies such as [24]. If the instances

are known to be small it pays to disable dynamic load balancing completely because this

reduces communication and simpli�es termination detection. In this case, load balancing

can be improved by randomly generating more than one subproblem per PE. (For details

refer to [29].)

Figure 3 shows speedups for the 15-puzzle instances on 1024 PEs of a Parsytec GCel.

In addition to the basic algorithm and the algorithm with fast initialization, it covers an

algorithm which uses more localized communication without incurring the overhead of the

poll-and-shu�e algorithm. To this end, the fast initialization is modi�ed such that the P

initial subproblems are implicitly placed using a pseudorandom permutation (otherwise

clusters could build up immediately). During dynamic load balancing, only a subset of

PEs \close" to an idle PE is considered when sending a request. The size of this \neighbor

set" is doubled after every request sent (in a local unsynchronized way). After all PEs

have become reachable, the size of the neighbor set is reset to 4.

While fast initialization alone gains only a small improvement (the larger improve-

ments for tiny problems are di�cult to see in this graph), the localized algorithm is

noticably faster. Perhaps more noteworthy than this moderate improvement is the fact

that many other schemes like using some �xed communication radius, or trying to increase

the neighbor set more slowly turned out to be slower than global random polling. Also,

the randomized initialization is essential. This indicates that polling \almost" globally is

really practically important and not only a requirement imposed by the approach to the

analysis. For very large instances, all three variants level at a speedup below 900 because
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Figure 3: Speedup for 15-puzzle instances on a 1024 PE GCel.

in this measurement �t was set to get high performance for small instances. With a larger

�t speedups go up to 960.

6.3 Depth First Branch-and-Bound

The 0-1 knapsack problem is one of the most intensively studied problems in combinatorial

optimization [19]. An instance is de�ned by m items with weight w

i

and pro�t p

i

and a

knapsack of capacity M . We are looking for x

i

2 f0; 1g such that

P

p

i

x

i

is maximized

subject to the constraint

P

w

i

x

i

� M , i.e., we want to achieve a maximal pro�t with

items in the knapsack without exceeding its capacity.

For large m and arbitrary w

i

, the best known algorithms are based on a very �ne-

grained depth �rst branch-and-bound search [19]. The branch-and-bound heuristic im-

plies that a new solution found at one PE may a�ect the size of a subproblem searched

elsewhere. Therefore, most instances of the knapsack problem are no tree shaped compu-

tations in the strict sense. Nevertheless, random polling works surprisingly well, if it is

supplemented by a fast, bottleneck free algorithm for updating bounds (the solution han-
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Figure 4: Speedup for 256 instances of the knapsack problem on 1024 PEs.

dling component of PIGSeL implements such a mechanism) and a tree splitting function

which takes into account that most subtrees are pruned.

A standard way for generating di�cult to solve test instances is to choose w

i

uniformly at random from an interval [w

max

; w

min

] and p

i

from a correlated interval

[w

i

+ p

min

; w

i

+ p

max

]. The double-logarithmic plot in Figure 4 shows the relation be-

tween speedup and sequential execution time for 256 random instances with m = 2000,

w

i

2 [0:01; 1:01], p

i

2 [w

i

+ 0:1; w

i

+ 0:125] and M =

P

w

i

=2 on 1024 PEs of a Parsytec

GCel. The problem parameters were chosen in order to get instances with large m which

are tractable but not easy to solve. Other tractable random instances would either contain

almost no parallelism or have a small m and are easier to parallelize.

Beginning at per PE loads of about 10 seconds we start to observe good performance.

Very large problem instances show a considerable superlinear speedup. For these in-

stances, the sequential algorithm appears to have run into some kind of \dead end". The

parallel algorithm is more robust because it follows multiple search paths at once. The

overall parallel execution time for 1024 PEs is 1410 times smaller than the sequential
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time. (Cache e�ects and the like can be excluded since transputers have no cache and the

fast on-chip memory cannot be used for the application code on the system. Also, the

parallel version actually searches less nodes.)

7 Conclusions

Tree shaped computations represent an extreme case for parallel computing in two re-

spects. On the one hand, parallelism is very easy to expose since subproblems can be

solved completely independently. Apart from that they are the worst case with respect to

irregularity. Not only can splitting be arbitrarily uneven (only constrained by the maxi-

mum splitting depth h) but it is not even possible to estimate the size of a subproblem.

The asynchronous random polling variant of receiver initiated load balancing paral-

lelizes tree shaped computations provably e�ciently, namely with T

par

� (1 + �)

T

seq

P

+

O

�

T

atomic

+ h

�

1

�

+ T

rout

+ T

split

��

with high probability, where h is the maximal splitting

depth, T

rout

the overhead for a message exchange, T

split

the splitting overhead and T

atomic

the atomic granularity.

The asynchronous algorithm avoids the waiting costs of synchronized variants and our

analysis shows that the unreachability of subproblems in transit is no problem. Message

queues may become longer than in the synchronized case but this has no in
uence on the

expected execution time and queue lengths can be e�ciently controlled if desired.

The global communication of random polling has its good reasons. Nevertheless, the

poll-and-shu�e algorithms replaces this by local communication without increasing the

number of communications by more than a constant factor, yielding an asymptotically

even faster algorithm.

Although tree shaped computations span a remarkably wide area of applications, an

important area for future research is to generalize the analysis to models which cover

dependencies between subproblems. The predictable dependencies modelled by fully strict

multithreaded computations [3] are one step in this direction. But in many classic search
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problems the main di�culty are heuristics which prune the search tree in an unpredictable

way. Our experiments with the knapsack problem and results like the \Young Brothers

Wait Concept" for parallel game tree search [8] indicate that it is often a good strategy

to combine random polling load balancing with an application speci�c splitting function

and a protocol for e�ciently propagating information which leads to tree pruning.
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