
Random Arc Allocation and Applications

?

Peter Sanders and Berthold V�ocking

Max Planck Institut f�ur Informatik

Saarbr�ucken, Germany

[sanders,voecking]@mpi-sb.mpg.de

Abstract. The paper considers a generalization of the well known ran-

dom placement of balls into bins. Given n circular arcs of lengths �

1

,

: : : ,�

n

we study the maximum number of overlapping arcs on a circle

if the starting points of the arcs are chosen randomly. We give almost

exact tail bounds on the maximum overlap of the arcs. These tail bounds

yield a characterization of the expected maximum overlap that is tight

up to constant factors in the lower order terms. We illustrate the strength

of our results by presenting new performance guarantees for several ap-

plication: Minimizing rotational delays of disks, scheduling accesses to

parallel disks and allocating memory to limit cache interference misses.

1 Introduction

Randomly assigning tasks or data to computational resources has proved an

important load balancing technique for many algorithmic problems. The model

we study here was motivated by three di�erent applications one of the authors

became involved with where the lack of an accurate analysis of such a simple

system became an obstacle. Section 3 gives more details on these applications:

minimizing rotational delays in disk scheduling, scheduling parallel disks, and

memory allocation to limit cache con
icts. The common theme there is that

jobs (disk blocks, strings of disk blocks, memory segments) have to be allocated

to a contiguous resource that wraps around (disk tracks, striped disks, memory

locations mod cache size). In all three applications randomization is used to

make worst case situations unlikely.

The following model describes all three applications. It is so simple that we

expect further applications. An arc allocation describes the arrangement of n

circular arcs that are pieces of a unit circle, i.e., a circle with circumference 1.

We represent points on this circle by numbers from the half open interval [0; 1).

Let 0 � a

i

< 1 denote the starting point of left endpoint of arc i and �

i

the

arc length of arc i. Arc i spans the half open interval [a

i

; a

i

+ �

i

mod 1) where

x mod 1 denotes the fractional part of x and where [a; b) for a > b denotes

the set [a; 1] [[0; b) in this paper. Let � =

P

i

�

i

=n denote the average arc

length. If all arc length are identical, �

i

= � for all 0 � i < n, we have a

uniform arc allocation. In a random arc allocation, the starting points are chosen

independently and uniformly at random. Let L(x) denote the number of arcs

?

Partially supported by the Future and Emerging Technologies programme of the EU

under contract number IST-1999-14186 (ALCOM-FT).

containing x. Let L = sup

x2[0;1]

L(x) denote the maximum overlap of an arc

allocation. In this paper, we estimate the expectation E[L] of the maximum

overlap and derive tail bounds for L.

Let us go back to the interpretation of arcs as jobs to be executed/allocated.

The maximum overlap L is important because all jobs can be executed using

between L and L+1 trips around the circle if all jobs are known in advance (see

Section 3.1). Furthermore, there is a natural online allocation algorithm that

needs at most 2L trips around the circle (see Section 3.3).

1.1 New Results for Random Arc Allocation

In this paper we present almost exact tail bounds on the maximum overlap for

random arc allocation. These tail bounds yield a complete characterization of

the expected maximum overlap. Let � = L� �n denote the di�erence between

maximum and average load. We are able to describe E[�] almost exactly in

terms of Lambert's W function [5]. This function is discussed in more detail

below. The tail bounds imply the following estimates for E[�].

A) If � �

lnn

n

then E[�] = O

�

�n exp

�

W

�

ln(1=�)

�n

���

.

B) For � 2 [

lnn

n

;

1

2

], E[�] = O

s

�n ln

�

1

�

�

!

.

C) For � 2 [

1

2

; 1�

lnn

n

], E[�] = O

s

(1� �)n ln

�

1

1� �

�

!

.

D) If � � 1�

lnn

n

then E[�] = O

�

(1� �)n exp

�

W

�

ln(1=(1� �))

(1� �)n

���

.

Our estimates on E[�] in all four cases are essentially tight in the sense

that they describe the case of uniform arc length exactly up to constant factors.

Observe that the cases D) and C) are symmetric to the cases A) and B) in � and

1��, resp. In fact, these bounds are derive using a simple symmetry arguments

treating holes (i.e., the uncovered pieces of the circle) like arcs. In case A) it

holds E[L] = E[�]. Exact estimates for this case can be derived relatively easily

using Cherno� bounds. More interesting is case D. To obtain tight estimates in

this case, we need to combine Cherno� bounds with a random walk analysis.

Now let us come to a discussion of Lambert's W function. This function is

de�ned to be the unique positive solution to the equation W(x) � exp(W(x)) = x

for x > 0. Of particular interest for us is the function exp(W(x)). Asymptot-

ically, this function can be estimated by lim

x!1

exp(W(x)) = x= ln(x). For

example, consider the estimate of E[�] for the subcase that arcs are very short,

say � = O(1=n). In this case, the characterization above gives E[L] = E[�] =

O((lnn)= ln lnn). Furthermore, if � = �(

log n

n

) then we obtain E[L] = E[�] =

O((lnn)= ln lnn).

Finally, in some applications there might be arcs wrapping around the circle

several times, i.e., �

i

> 1. Clearly, in this case our bounds for E[�] transfer

immediately when using �

0

=

1

n

P

i

�

i

mod 1 instead of �. In Section 2 we prove

these bounds for the uniform case. The generalization to variable arc lengths is

deferred to the full paper.

1.2 Results for Chains-into-bins

Many applications in computer science also require a discrete variant of arc

allocation where the circle is subdivided into M equal bins and where arc end

points are multiples of a bin size. We note that our proof techniques and hence

our upper bounds directly transfer to this discrete model. Observe that discrete

arc allocation is equivalent to the following chains-into-bins problem: N =

P

i

�

i

balls connected into n chains are allocated toM bins that are arranged in a circle.

A chain is allocated by throwing its �rst ball into a bin chosen independently,

uniformly at random and by putting its remaining balls into adjacent bins in a

round robin fashion. In this notation, the bounds in A) and B) become

E[L

(cb)

] = �

N

M

W

�

ln

�

M

n

N

�

N=M

!!

if N �M ; (1)

E[�

(cb)

] = �

r

N

M

ln

�

M

n

N

�

!

if N =
(M ln(Mn=N)) and � �M=2 :(2)

where L

(cb)

is the number of balls in the fullest bin and �

(cb)

= L

(cb)

�N=M .

In the way one can translate the results in the cases C) and D).

Let us compare our results for chains-into-bins to the well known results

for balls-into-bins processes. These processes are among of the most intensively

studied stochastic processes in the context of algorithm analysis (e.g., [10, 17,

12]). The simplest balls-into-bins process assumes that N balls are placed at

random into M bins [10, 17]. Balls-into-bins are the special case of chains-into-

bins where all chains consist of a single ball, i.e., n = N . We get

E[L

(bb)

] = �

�

N

M

W

�

�

lnM

N=M

��

if N �M ; (3)

E[�

(bb)

] = �

r

N

M

lnM

!

if N =
(M lnM) : (4)

The Bounds (3) and (4) are well known although other papers [10, 17, 13] use a

di�erent, slightly more complicated notation that yields more information about

constant factors.

Another instructive perspective is that arc allocations are related to balls-

into-bins systems with 1=� bins. Our analyses for L and � will give further

insights into the relationship between the two di�erent random processes.

1.3 Previous Results

Barve et al. [2] introduce the chains-into-bins problem and show why several tail

bounds for the case N = n also apply to the general case. Apparently, E[L

(cb)

]

can only grow if chains are atomized into individual balls (although this is not

proven yet). Our bounds improve these results by showing that �

(cb)

can be

much smaller if n� N , i.e., if chains are long.

Chains-into-bins have been analyzed asking what is the expected number

of bins with at least a balls [11]. This measure was needed to estimate the

number of cache misses in executing a class of cache-e�cient algorithms. Refer

to Section 3.3 for more details.

Arc allocations have been studied in mathematics under the aspect of when

the arcs cover the circle (e.g., [15]). This is related to the minimum overlap which

seems to be more important for most computer science applications. We have

adopted the convention from these papers to measure arc lengths between 0 and

1 rather than 0 and 2� in order to avoid notational overhead.

An arc allocation de�nes a circular arc graph [9, 8] with n nodes where there

is an edge between nodes i and j if the corresponding arcs overlap. A set of

overlapping arcs de�nes a clique of the circular arc graph. In this terminology,

we are studying the size of the maximum overlap clique of a random circular arc

graph. But note that the maximum overlap clique is not necessarily maximum

clique of a circular arc graph [3].

2 Uniform Arcs

In this section we assume that all arcs have the same length. The following tail

bound imply the expectation Bounds A) and B) respectively.

Theorem 1. Suppose n arcs of length � �

1

2

are placed at random onto the

unit circle. Let � � �n denote an upper bound on the average overlap. Then, for

every � > 0,

Pr[� � ��+ 1] � n

�

e

�

(1 + �)

1+�

�

�

(5)

Pr[� � 5��] �

6

�

�

e

�

(1 + �)

1+�

�

�

: (6)

Bound (5) that is best suited for short arcs is derived by bounding the max-

imum overlap by the overlap at the discrete set of starting positions of arcs. We

defer the analysis to the full paper since simple Cherno� bound arguments are

su�cient in this case.

Perhaps the most interesting case are rather long arcs with � < 1=2. Sec-

tion 2.1 derives Bound (6) that is a up to a factor �(n) more tight in this case.

The proof combines Cherno� bound arguments with random walk arguments

that may be interesting for other applications too. Bounds C) and D) for even

longer arcs can be proven using an almost symmetric argument on the minimum

overlap of non-arcs or holes. The proof is deferred to the full paper. In the full

paper we furthermore argue that our results are essentially tight by giving lower

bounds in terms of a balls-into-bins process considering 1=� equally spaced po-

sitions on the circle. Section 2.2 reports simulation results that even give some

hints as to what the constant factors in Bounds B) and C) might be.

2.1 Proof of Bound (5)

Proof. De�ne � = d1=�e � 2. Let x

0

; : : : ; x

��1

denote � points on the circle

that decompose the circle into � intervals X

i

= [x

i

; x

i+1

) of identical length

d

1

�

e � �. (Here and in the following i + 1 abbreviates (i + 1) mod �.) Observe

that every arc has at most one endpoint in each interval. De�ne �

i

= L(x

i

)��n

and �

0

i

= sup

x2X

i

(L(x)� L(x

i

)). In this way, the maximum overlap in interval

X

i

is exactly �n+�

i

+�

0

i

. Our argument is based on the following two claims:

8� > 0 : Pr[�

i

� ��] �

�

e

�

(1 + �)

1+�

�

�

(7)

8� > 0 : Pr[�

0

i

� �(2 + 2�)� j �

i

+�

i+1

� 2��] � 2

�

e

�

(1 + �)

1+�

�

(1+�)�

(8)

Let us show that, in fact, these claims imply the theorem. First suppose � � 1.

The maximum overlap in interval X

i

is bounded above by L(x

i

) + L(x

i+1

) =

2�n + �

i

+ �

i+1

because every arc overlapping with interval X

i

covers x

i

or

x

i+1

. This implies the inequality a1: � � max

i

f�n + �

i

+ �

i+1

g so that we

obtain

Pr[� � 3��]

(a1)

� Pr[9

��1

i=0

: �n+�

i

+�

i+1

� 3��]

(a2)

� Pr

�

9

��1

i=0

: �

i

� ��

�

(a3)

�

1

�

�

e

�

(1 + �)

1+�

�

�

(a4)

�

2

�

�

e

�

(1 + �)

1+�

�

�

;

where inequality (a2) follows from �n � ��, (a3) follows from Claim (7), and

(a4) follows from � = d

1

�

e.

Now assume � < 1. Observe that this implies b1: � � �(3+2�)=5. Furthermore,

we apply b2: � = max

i

f�

i

+�

0

i

g and obtain

Pr[� � 5��]

(b1)

� Pr[� � �(3 + 2�)�]

(b2)

� Pr[9

��1

i=0

: �

i

� �� _�

0

i

� �(2 + 2�)�]

(b3)

�

��1

X

i=0

Pr[�

i

� ��] +Pr[�

0

i

� �(2 + 2�)� j�

i

+�

i+1

� 2��]

(b4)

� �

�

e

�

(1 + �)

1+�

�

�

+ 2�

�

e

�

(1 + �)

1+�

�

(1+�)�

�

6

�

�

e

�

(1 + �)

1+�

�

�

:

The following basic fact from probability theory implies inequality (b3). For

events X , X

0

, and Y with X

0

� X it holds Pr[X _ Y] � Pr[X] +Pr[Y nX

0

] �

Pr[X] +Pr[Y jX

0

]. Furthermore, inequality (b4) follows from the Claims (7,8).

It remains to prove the two claims. Observe that E[L(x

i

)] � � so that the

bound in Claim (7) follows directly from a Cherno� bound. Hence it only remains

to show the Claim (8). We will estimate�

0

i

by investigating the following random

walk. Recall that each arc has at most one endpoint in interval X

i

. Let m denote

the number of those arcs that have an endpoint in X

i

. As we condition on

�

i

+�

i+1

� 2��, we can assume

m � L(x

i

) + L(x

i+1

) = 2�+�

i

+�

i+1

� (2 + 2�)� :

For the time being, assume that m is �xed. Let y

1

; : : : ; y

m

denote the endpoints

in X

i

, sorted from left to right. If we are given these endpoints without further

information then the orientation of the corresponding arcs (i.e., whether y

j

is

a left or right endpoint) de�nes a random experiment that can be described

in terms of binary random variables as follows. Let s

1

; : : : ; s

m

denote random

variables with

s

j

=

�

+1 if y

j

is a left endpoint, and

�1 if y

j

is a right endpoint.

The only assumption that we made about the allocation of the arcs is�

i

+�

i+1

�

2��. As this assumption does not a�ect the arc's orientation, the variables

s

1

; : : : ; s

m

are independent and Pr[s

j

= 1] = Pr[s

j

= �1] =

1

2

, for 1 � j � m.

Now let us de�ne S

j

=

P

j

k=1

s

j

, for 0 � j � m. Notice that the sequence

S

0

; S

1

; : : : ; S

m

corresponds to a random walk in which a particle starts at po-

sition 0 and goes up or down by one position in each step with probability

1

2

each, that is, �

0

i

= max

0�i�m

(S

i

). Hence, we can estimate �

0

i

by analyzing this

random walk. Applying Theorem III.7.1 from [6] we can derive the following

probability bound. For every r � 0,

Pr[9jf1; : : : ;mg : S

j

� r] =

1

X

k=r+1

Pr[S

m

= k] +Pr[S

m

= k + 1] � 2Pr[S

m

> r]:

Next we observe that the random variable X

m

= S

m

=2 +m=2 follows the bino-

mial distribution and, hence, can be estimated using a Cherno� bound. In this

way, we obtain

Pr[S

m

> �m] = Pr[X

m

> (1 + �)m=2] �

�

e

�

(1 + �)

1+�

�

m=2

;

for every � > 0. As a consequence,

Pr[�

0

i

> �m] � 2Pr[S

m

> �m] � 2

�

e

�

(1 + �)

1+�

�

m=2

:

Clearly, �

0

i

is monotonically increasing in m. Therefore, the worst-case choice

for m is m = (2 + 2�)�, and we obtain,

Pr[�

0

i

> �(2 + 2�)�] � 2

�

e

�

(1 + �)

1+�

�

(1+�)�

;

which proves Claim (8). Thus Theorem 6 is shown.

Fig. 1. Comparison of the

theoretical prediction � =

q

en � �(1� �) ln

1

�(1��)

with simulations for di�er-

ent n. The measurements

are averages of 10000 repe-

titions for n � 128 and 1000

repetitions for n = 1024.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

av
er

ag
e

∆/
n1/

2
arc length α

prediction
n=1024

n=128
n=16

2.2 Simulations

Fig. 1 shows simulations for three di�erent values of n and compares them

with our analytic bound from the case B) and C) of our characterization for

E[�]. Merging the bounds in these two cases we obtain the elegant estimate

E[�] �

r

�(1� �)n ln

�

1

�(1��)

�

:

In fact, the measured and predicted curves are quite close together when we

choose an appropriate constant factor (namely

p

e) in front of this estimate. Even

for n = 16, where a signi�cant in
uence of lower order terms can be expected,

� is fairly well approximated. An interesting phenomenon is that the measured

graphs for �(�) are not completely symmetric around � = 1=2. This asymmetry

is not re
ected by our theoretical analysis since we use the same Cherno� bounds

to estimate the overlap of arcs in case of � �

1

2

and the overlap of holes in case of

� >

1

2

. In fact, however, the deviation of holes below the mean can be expected

to be slightly less than the deviation of arcs above the mean, which explains the

asymmetry that can be observed in the experiments.

3 Applications

We now present three examples, where our bounds on arc allocation yield perfor-

mance guarantees. In Section 3.1, Bound (2) guarantees that rotational delays in

accessing a single disks eventually become small compared to data access times.

Section 3.2 gives a di�erent disk scheduling application where load balancing

data accesses over several disks is the objective. Whereas the �rst two exam-

ple concern execution time, the last example in Section 3.3 bounds the memory

consumption of a technique for reducing cache interference misses.

In all three applications very bad worst case behavior is avoided using ran-

domization. The price paid is that the best case behavior gets worse. Since best

case behavior may sometimes not be far from real inputs, it is crucial for our

performance bounds to demonstrate that this possible penalty is very small. This

is a quite strong incentive to study lower order terms in the performance bounds

rather than bounds that leave the constant factors open.

3.1 Disks and drums

One of our main motivations for studying arc allocations was the desire to �nd

disk scheduling algorithms that take rotational delays into account. For example,

consider a data base query selecting the set S = fx 2 r : x:a = yg from a relation

r. Assume we have an index of r with respect to attribute a that tells us a set

of small disk blocks where we can �nd S. In this situation, the access time

for retrieving S is dominated by rotational delays and seek times rather than

the access or transmission time of the data [14]. Unfortunately, simultaneously

minimizing seek times and rotational delays is NP-hard [1]. On the other hand,

the explosive growth of disk storage densities in the last years suggests to consider

the case where the accessed �le �ts into a narrow zone on the disk. In this case,

seek times can be bounded by a constant that is only slightly larger than the

overhead for request initiation, data transmission, and settling the head into

a stable state. Such constant overheads can be absorbed into the size of the

blocks and we end up with a problem where only block lengths and rotational

delays matter. Interestingly, this reasoning leads to a model logically identical

to drums | rotating storage devices from the 50s [4] that are technologically

outdated since the 70s. Drums have a separate read/write head for every data

track and hence su�er no seek delays.

To read a block on a drum one just has to wait until its start rotates to the

position of the read head and then read until the end of the block. Suppose we

want to read a batch of n blocks e�ciently. Each block can be modeled as an arc

in an arc allocation problem in the obvious way. Obviously, L is a lower bound

for the number of drum rotations needed to retrieve all n blocks. Fuller [7, 16]

found optimal and near optimal drum scheduling algorithms that can retrieve

the blocks in at most L+1 drum rotations. One such algorithm, Shortest Latency

Time First (SLTF), is very simple: When the drum is at point x, pick the unread

block i whose starting point a

i

is closest, read it, set x = a

i

+�

i

mod 1 and iterate

until all blocks are read.

The question arises, how good is an optimal schedule. In the worst case,

n rotations may be needed. For example, if all blocks have the same starting

point. In this case, even a good scheduling algorithm is of little help. Our results

provide us with very attractive performance guarantees if the starting points are

randomized. We need time n�+O(

p

n) rotations and hence for large n, almost

all of the schedule time is spent productively reading data.

Performance guarantees for random starting points need not merely be pre-

dictions for the average case if we randomize the mapping of logical blocks to

physical positions. Here is one scheme with particular practical appeal: Start

with a straightforward non-randomized mapping of logical blocks to physical

positions by �lling one track after the other. Now rotate the mapping on each

track by a random amount. This way, accesses to consecutive blocks mapped to

the same track remain consecutive. A technical problem is that starting points

are not completely independent so that our analysis does not strictly apply.

However, starting points of two blocks in a batch of blocks to be read are either

independent or the two blocks do not overlap (we merge consecutive blocks on

the same track). Therefore it seems likely that our upper bounds still apply.

3.2 Parallel disk striping

Assume a �le is to be allocated toM parallel disks numbered 0 throughM�1 so

that accesses to any consecutive range of data in the �le can be done e�ciently. A

common allocation approach is striping | block i of the data stream is allocated

to disk i modM . The situation gets more complicated if n �les are accessed

concurrently. Barve et al. [2] propose simple randomized striping (SR) where

block i of a �le f is mapped to disk r

f

+ i modM where r

f

is a random o�set

between 0 and M � 1. The number of I/O steps needed to access N blocks

from the n data streams and M disks is the variable L

(cb)

in the corresponding

chains-into-bins problem. Our results improve the performance bounds shown in

[2] for the case that n� N .

3.3 Cache e�cient allocation of DRAM memory

Many algorithms that are e�cient on memory hierarchies are based on accessing

n arrays in such a way that accesses in each array are sequential but where

it is unpredictable how accesses to di�erent arrays are interleaved. In [11] it is

shown that these algorithms even work well on hardware caches where we have

no direct control over the cache content provided that the starting points of the

arrays modulo the cache size M are chosen at random. (Essentially the SR disk

striping from [2] is applied to words in the cache.) Now the question arises how

to allocate the arrays. Assume we have a large contiguous amount of memory

available starting at address x modM . A naive approach allocates one array

after the other in arbitrary order by picking a random location y modM and

allocating the array so that it starts at point x+(y�x modM). On the average

this strategy wastes nM=2 of storage. A better way is by applying the simple

SLTF algorithm we have seen for drum scheduling. This way we need spaceML

on the average wasting only M� of memory.

This bound for the o�ine algorithm also translates into a performance guar-

antee for an online allocation algorithm where requests for memory segments

arrive one at a time. The following greedy algorithm can be easily proven to be

2-competitive: Keep a list of free memory intervals sorted by starting address.

Allocate a new segment in the �rst free interval that has room at the right ad-

dress o�sets. Hence, space 2M(L+�) memory su�ces to ful�ll all requests. In

the �nal version of [11] citing our result replaces a lengthy derivation that shows

a bound of 4eML for the online algorithm. No result on the o�ine case was

available there.

Acknowledgements

We would like to thank Ashish Gupta and Ashish Rastogi for fruitful cooperation

on disk scheduling algorithms.

References

1. M. Andrews, M. A. Bender, and L. Zhang. New algorithms for the disk scheduling

problem. In IEEE, editor, 37th Annual Symposium on Foundations of Computer

Science, pages 550{559. IEEE Computer Society Press, 1996.

2. R. D. Barve, E. F. Grove, and J. S. Vitter. Simple randomized mergesort on

parallel disks. Parallel Computing, 23(4):601{631, 1997.

3. B. Bhattacharya, P. Hell, and J. Huang. A linear algorithm for maximum weight

cliques in proper circular arc graphs. SIAM Journal on Discrete Mathematics,

9(2):274{289, May 1996.

4. A. A. Cohen. Technical developments: Magnetic drum storage for digital infor-

mation processing systems (in Automatic Computing Machinery). Mathematical

Tables and Other Aids to Computation, 4(29):31{39, January 1950.

5. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Je�rey, and D. E. Knuth. On the

lambert W function. Advances in Computational Mathematics, 5:329{359, 1996.

6. W. Feller. An Introduction to Probability Theory and its Applications. Wiley, 3rd

edition, 1968.

7. S. H. Fuller. An optimal drum scheduling algorithm. IEEE Trans. on Computers,

21(11):1153, November 1972.

8. M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity

of coloring circular arcs and chords. SIAM Journal on Algebraic and Discrete

Methods, 1(2):216{227, June 1980.

9. V. Klee. What are the intersections graphs of arcs in a circle? Amer. Math.

Monthly, 76:810{813, 1969.

10. V. F. Kolchin, B. A. Sevatyanov, and V. P. Chistiakov. Random Allocations. V.

H. Winston, 1978.

11. K. Mehlhorn and P. Sanders. Scanning multiple sequences via cache memory.

Algorithmica, 2002. to appear.

12. M. Mitzenmacher, A. Richa, and R. Sitaraman. The power of two random choices:

A survey of the techniques and results. In P. Pardalos, S. Rajasekaran, and

J. Rolim, editors, Handbook of Randomized Computing. Kluwer, 2000.

13. M. Raab and A. Steger. \balls into bins" { A simple and tight analysis. In RAN-

DOM: International Workshop on Randomization and Approximation Techniques

in Computer Science. LNCS, 1998.

14. C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. Computer,

27(3):17{28, March 1994.

15. A. F. Siegel and L. Holst. Covering the circle with random arcs of random sizes.

J. Appl. Probab., 19:373{381, 1982.

16. H. S. Stone and S. F. Fuller. On the near-optimality of the shortest-access-time-

�rst drum scheduling discipline. Communications of the ACM, 16(6), June 1973.

Also published in/as: Technical Note No.12, DSL.

17. J. S. Vitter and P. Flajolet. Average case analysis of algorithms and data struc-

tures. In Handbook of Theoretical Computer Science, volume A: Algorithms and

Complexity, chapter 9, pages 431{524. Elsevier, 1990.

