
Engineering a Sorted List Data Stru
ture for

32 Bit Keys

�

Roman Dementiev

y

Lutz Kettner

y

Jens Mehnert

y

Peter Sanders

y

Abstra
t

Sear
h tree data stru
tures like van Emde Boas (vEB)

trees are a theoreti
ally attra
tive alternative to
om-

parison based sear
h trees be
ause they have better

asymptoti
 performan
e for small integer keys and large

inputs. This paper studies their pra
ti
ability using 32

bit keys as an example. While dire
t implementations of

vEB-trees
annot
ompete with good implementations

of
omparison based data stru
tures, our tuned data

stru
ture signi�
antly outperforms
omparison based

implementations for sear
hing and shows at least
om-

parable performan
e for insertion and deletion.

1 Introdu
tion

Sorted lists with an auxiliary data stru
ture that sup-

ports fast sear
hing, insertion, and deletion are one of

the most versatile data stru
tures. In
urrent algorithm

libraries [11, 2℄, they are implemented using
ompar-

ison based data stru
tures su
h as ab-trees, red-bla
k

trees, splay trees, or skip lists (e.g. [11℄). These im-

plementations support insertion, deletion, and sear
h in

time O(logn) and range queries in time O(k + logn)

where n is the number of elements and k is the size of

the output. For w bit integer keys, a theoreti
ally at-

tra
tive alternative are van Emde Boas strati�ed trees

(vEB-trees) that repla
e the logn by a logw [14, 10℄:

A vEB tree T for storing subsets M of w = 2

k+1

bit

integers stores the set dire
tly if jM j = 1. Otherwise

it
ontains a root (hash) table r su
h that r[i℄ points

to a vEB tree T

i

for 2

k

bit integers. T

i

represents

the set M

i

= fx mod 2

2

k

: x 2 M ^ x � 2

k

= ig.

1

Furthermore, T stores minM , maxM , and a top data

stru
ture t
onsisting of a 2

k

bit vEB tree storing the

set M

t

=

�

x� 2

k

: x 2M

	

. This data stru
ture takes

spa
eO(jM j logw) and
an be modi�ed to
onsume only

linear spa
e. It
an also be
ombined with a doubly

�

Partially supported by the Future and Emerging Te
hnologies

programme of the EU under
ontra
t number IST-1999-14186

(ALCOM-FT).

y

MPI Informatik, Stuhlsatzenhausweg 85, 66123 Saarbr�u
ken,

Germany, [dementiev,kettner,jmehnert,sanders℄�mpi-sb.

mpg.de

1

We use the C-like shift operator `�', i.e., x� i =

�

x=2

i

�

.

linked sorted list to support fast su

essor and prede-

essor queries.

However, we are only aware of a single implementa-

tion study [15℄ where the
on
lusion is that vEB-trees

are of mainly theoreti
al interest. In fa
t, our experi-

ments show that they are slower than
omparison based

implementations even for 32 bit keys.

In this paper we address the question whether im-

plementations that exploit integer keys
an be a pra
-

ti
al alternative to
omparison based implementations.

In Se
tion 2, we develop a highly tuned data stru
ture

for large sorted lists with 32 bit keys. The starting point

were vEB sear
h trees as des
ribed in [10℄ but we arrive

at a nonre
ursive data stru
ture: We get a three level

sear
h tree. The root is represented by an array of size

2

16

and the lower levels use hash tables of size up to

256. Due to this small size, hash fun
tions
an be im-

plemented by table lookup. Lo
ating entries in these

tables is a
hieved using hierar
hies of bit patterns sim-

ilar to the integer priority queue des
ribed in [1℄.

Experiments des
ribed in Se
tion 3 indi
ate that

this data stru
ture is signi�
antly faster in sear
hing el-

ements than
omparison based implementations. For

insertion and deletion the two alternatives have
ompa-

rable speed. Se
tion 4 dis
usses additional issues.

More Related Work: There are studies on exploiting

integer keys in more restri
ted data stru
tures. In

parti
ular, sorting has been studied extensively (refer

to [13, 7℄ for a re
ent overview). Other variants are

priority queues (e.g. [1℄), or data stru
tures supporting

fast sear
h in stati
 data [6℄. Di
tionaries
an be

implemented very eÆ
iently using hash tables.

However, none of these data stru
tures is appli
able

if we have to maintain a sorted list dynami
ally. Simple

examples are sweep-line algorithms [3℄ for orthogonal

obje
ts,

2

best �rst heuristi
s (e.g., [8℄), or �nding free

slots in a list of o

upied intervals (e.g. [4℄).

2

General line segments are a ni
e example where a
omparison

based data stru
ture is needed (at least for the Bentley-Ottmann

algorithm) | the a
tual
oordinates of the sear
h tree entries

hange as the sweep line progresses but the relative order
hanges

only slowly.

2 The Data Stru
ture

We now des
ribe a data stru
ture Stree that stores an

ordered set of elements M with 32-bit integer keys sup-

porting the main operations element insertion, element

deletion, and lo
ate(y). Lo
ate returns min(x 2 M :

y � x).

We use the following notation: For an integer x, x[i℄

represents the i-th bit, i.e., x =

P

31

i=0

2

i

x[i℄. x[i::j℄, i �

j+1, denotes bits i through j in a binary representation

of x = x[0::31℄, i.e., x[i::j℄ =

P

j

k=i

2

k�i

x[i℄. Note that

x[i::i � 1℄ = 0 represents the empty bit string. The

fun
tion msbPos(z) returns the position of the most

signi�
ant nonzero bit in z, i.e., msbPos(z) = blog

2

z
 =

max fi : x[i℄ 6= 0g.

3

Our Stree stores elements in a doubly linked sorted

element list and additionally builds a strati�ed tree data

stru
ture that serves as an index for fast a

ess to the

elements of the list. If lo
ate a
tually returns a pointer

to the element list, additional operations like su

essor,

prede
essor, or range queries
an also be eÆ
iently

implemented. The index data stru
ture
onsists of

the following ingredients arranged in three levels, root,

Level 2 (L2), and Level 3 (L3):

The root-table r
ontains a plain array with one entry

for ea
h possible value of the 16 most signi�
ant bits

of the keys. r[i℄ = null if there is no x 2 M with

x[16::31℄ = i. If jM

i

j = 1, it
ontains a pointer to the

element list item
orresponding to the unique element

of M

i

. Otherwise, r[i℄ points to an L2-table
ontaining

M

i

= fx 2M : x[16::31℄ = ig. The two latter
ases

an be distinguished using a
ag stored in the least

signi�
ant bit of the pointer.

4

An L2-table r

i

stores the elements in M

i

. If jM

i

j � 2

it uses a hash table storing an entry with key j if

9x 2M

i

: x[8::15℄ = j.

Let M

ij

= fx 2M : x[8::15℄ = j; x[16::31℄ = ig. If

jM

ij

j = 1 the hash table entry points to the element list

and if jM

ij

j � 2 it points to an L3-table representing

M

ij

using a similar tri
k as in the root-table.

An L3-table r

ij

stores the elements in M

ij

. If

jM

ij

j � 2, it uses a hash table storing an entry with

key k if 9x 2 M

ij

: x[0::7℄ = k. This entry points

to an item in the element list storing the element with

x[0::7℄ = k; x[8::15℄ = j; x[16::31℄ = i.

3

msbPos
an be implemented in
onstant time by
onverting

the number to
oating point and then inspe
ting the exponent.

In our implementation, two 16-bit table lookups turn out to be

somewhat faster.

4

This is portable without further measures be
ause all modern

systems use addresses that are multiples of four (ex
ept for

strings).

Minima and Maxima: For the root and ea
h L2-

table and L3-table, we store the smallest and largest

element of the
orresponding subset of M . We store

both the key of the element and a pointer to the element

list.

The root-top data stru
ture t
onsists of three bit-

arrays t

1

[0::2

16

� 1℄, t

2

[0::4095℄, and t

3

[0::63℄. We

have t

1

[i℄ = 1 i� M

i

6= ;. t

2

[j℄ is the logi
al-

or of t

1

[32j℄::t

1

[32j + 31℄, i.e., t

2

[j℄ = 1 i� 9i 2

f32j::32j + 31g : M

i

6= ;. Similarly, t

3

[k℄ is the

logi
al-or of t

2

[32k℄::t

2

[32k + 31℄ so that t

3

[k℄ = 1 i�

9i 2 f1024k::1024k+ 1023g : M

i

6= ;.

The L2-top data stru
tures t

i

onsists of two bit

arrays t

1

i

[0::255℄ and t

2

i

[0::7℄ similar to the bit arrays

of the root-top data stru
ture. The 256 bit table t

1

i

ontains a 1-bit for ea
h nonempty entry of r

i

and the

eight bits in t

2

i

ontain the logi
al-or of 32 bits in t

1

i

.

This data stru
ture is only allo
ated if jM

i

j � 2.

The L3-top data stru
tures t

ij

with bit arrays

t

1

ij

[0::255℄ and t

2

ij

[0::7℄ re
e
t the entries of M

ij

in a

fashion analogous to the L2-top data stru
ture.

Hash Tables use open addressing with linear probing

[9, Se
tion 6.4℄. The table size is always a power of two

between 4 and 256. The size is doubled when a table

of size k
ontains more than 3k=4 entries and k < 256.

The table shrinks when it
ontains less than k=4 entries.

Sin
e all keys are between 0 and 255, we
an a�ord to

implement the hash fun
tion as a full lookup table h

that is shared between all tables. This lookup table is

initialized to a random permutation h : 0::255! 0::255.

Hash fun
tion values for a table of size 256=2

i

are

obtained by shifting h[x℄ i bits to the right. Note

that for tables of size 256 we obtain a perfe
t hash

fun
tion, i.e., there are no
ollisions between di�erent

table entries.

Figure 1 gives an example summarizing the data

stru
ture.

2.1 Operations: With the data stru
ture in pla
e,

the operations are simple in prin
iple although some

ase distin
tions are needed. To give an example,

Figure 2
ontains high level pseudo
ode for lo
ate(y)

that �nds the smallest x 2 M with y � x. lo
ate(y)

�rst uses the 16 most signi�
ant bits of y, say i =

y[16::31℄ to �nd a pointer to M

i

in the root table.

If M

i

is empty (r[i℄ = null), or if the pre
omputed

maximum of M

i

is smaller than y, lo
ate looks for

the next nonzero bit i

0

in the root-top data stru
ture

and returns the smallest element of M

i

0

. Otherwise, the

next element must be in M

i

. Now, j = y[8::15℄ serves

as the key into the hash table r

j

stored with M

i

and the

1M ={111111}04M ={1111}

0

00000000

1 11
...

111
...32

0

32

0

root

4
...

Element List

M={1,11,111,1111,111111}

65535

root−top4095

63

10

32

32

1..111

hash0

1..1111

L3

L2

11

000 00 00000 000 000000 00 0000000

...

v

hash

v

... 00 00

t

111 1111 1111111

00M ={1,11,111}

0
M ={1,11,111,1111}

1t

2t

3

0000

...

v

...

v

Figure 1: The Stree-data stru
ture for M = f1; 11; 111; 1111; 111111g (de
imal).

(* return handle of minx 2M : y � x *)

Fun
tion lo
ate(y : N) : ElementHandle

if y > maxM then return 1 // no larger element

i := y[16::31℄ // index into root table r

if r[i℄ = null or y > maxM

i

then return minM

t

1

:lo
ate(i)

if M

i

= fxg then return x // single element
ase

j := y[8::15℄ // key for L2 hash table at M

i

if r

i

[j℄ = null or y > maxM

ij

then return minM

i;t

1

i

:lo
ate(j)

if M

ij

= fxg then return x // single element
ase

return r

ij

[t

1

ij

:lo
ate(y[0::7℄)℄ // L3 Hash table a

ess

(* �nd the smallest j � i su
h that t

k

[j℄ = 1 *)

Method lo
ate(i) for a bit array t

k

onsisting of n bit words

(* n = 32 for t

1

, t

2

, t

1

i

, t

1

ij

; n = 64 for t

3

; n = 8 for t

2

i

, t

2

ij

*)

(* Assertion: some bit in t

k

to the right of i is nonzero *)

j := i div n // whi
h n bit word in b
ontains bit i?

a := t

k

[nj::nj + n� 1℄ // get this word

set a[(i mod n) + 1::n� 1℄ to zero // erase the bits to the left of bit i

if a = 0 then // nothing here ! look in higher level bit array

j := t

k+1

:lo
ate(j) // t

k+1

stores the or of n-bit groups of t

k

a := t

k

[nj::nj + n� 1℄ // get the
orresponding word in t

k

return nj + msbPos(a)

Figure 2: Pseudo
ode for lo
ating the smallest x 2M with y � x.

pattern from level one repeats on level two and possibly

on level 3. lo
ate in a hierar
hy of bit patterns walks

up the hierar
hy until a \nearby" nonzero bit position

is found and then goes down the hierar
hy to �nd the

exa
t position.

We now outline the implementation of the remain-

ing operations. A detailed sour
e
ode is available at

http://www.mpi-sb.mpg.de/~kettner/proj/veb/.

�nd(x) des
ends the tree until the list item
orrespond-

ing to x is found. If x 62 M a null pointer is returned.

No a

ess to the top data stru
tures is needed.

insert(x) pro
eeds similar to lo
ate(x) ex
ept that

it modi�es the data stru
tures it traverses: Minima and

maxima are updated and the appropriate bits in the

top data stru
ture are set. At the end, a pointer to the

element list item of x's su

essor is available so that x

an be inserted in front of it. When anM

i

orM

ij

grows

to two elements, a new L2/L3-table with two elements

is allo
ated.

del(x) performs a downward pass analogous to �nd(x)

and updates the data stru
ture in an upward pass: Min-

ima and maxima are updated. The list item
orrespond-

ing to x is removed. When an L2/L3-table shrinks to

a single element, the
orresponding hash table and top

data stru
ture are deallo
ated. When an element/L3-

table/L2-table is deallo
ated, the top-data stru
ture

above it is updated by erasing the bit
orresponding

to the deallo
ated entry; when this leaves a zero 32 bit

word, a bit in the next higher level of bits is erased et
.

2.2 Variants: The data stru
ture allows several in-

teresting variants:

Saving Spa
e: Our Stree data stru
ture
an
on-

sume
onsiderably more spa
e than
omparison based

sear
h trees. This is parti
ularly severe if many trees

with small average number of elements are needed. For

su
h appli
ations, the 256 KByte for the root array r

ould be repla
ed by a hash table with a signi�
ant but

\nonfatal" impa
t on speed. The worst
ase for all in-

put sizes is if there are pairs of elements that only di�er

in the 8 least signi�
ant bits and di�er from all other

elements in the 16 most signi�
ant bits. In this
ase,

hash tables and top data stru
tures at levels two and

three are allo
ated for ea
h su
h pair of elements. The

standard tri
k to remedy this problem is to store most

elements only in the element list. The lo
ate oper-

ation then �rst a

esses the index data stru
ture and

then s
ans the element list until the right element is

found. The drawba
k of this is that s
anning a linked

list
an
ause many
a
he faults. But perhaps one
ould

develop a data stru
ture where ea
h item of the element

list
an a

ommodate several elements. A similar more

problem spe
i�
 approa
h is to store up to K elements

in the L2-tables and L3-tables without allo
ating hash

tables and top data stru
tures. The main drawba
k of

this approa
h is that it leads to tedious
ase distin
-

tions in the implementation. An interesting measure is

to
ompletely omit the element list and to repla
e all

the L3 hash tables by a single uni�ed hash table. This

not only saves spa
e, but also allows a fast dire
t a
-

ess to elements whose keys are known. However range

queries get slower and we need hash fun
tions for full

32 bit keys.

Multi-sets
an be stored by asso
iating a singly linked

list of elements with identi
al key with ea
h item of the

element list.

Other Key Lengths: We
an further simplify and

speed up our data stru
ture for smaller key lengths. For

8 and 16 bit keys we would only need the root table and

its asso
iated top data stru
ture whi
h would be very

fast. For 24 bit keys we
ould at least save the third

level. We
ould go from 32 bits to 36{38 bits without

mu
h higher
osts on a 64 bit ma
hine. The root table

ould distinguish between the 18 most signi�
ant bits

and the L2 and L3 tables
ould also be enlarged at some

spa
e penalty. However, the step to 64 bit keys
ould be

quite
ostly. The root-table
an no longer be an array;

the root top data stru
ture be
omes as
omplex as a 32

bit data stru
ture; hash fun
tions at level two be
ome

more expensive.

Floating Point Keys
an be implemented very easily

by exploiting that IEEE floats keep their relative order

when interpreted as integers.

3 Experiments

We now
ompare several implementations of sear
h tree

like data stru
tures. As
omparison based data stru
-

tures we use the STL map whi
h is based on red-bla
k

trees and ab tree from LEDA whi
h is based on (a; b)-

trees with a = 2, b = 16 whi
h fared best in a previ-

ous
omparison of sear
h tree data stru
tures in LEDA

[12℄.

5

We present three implementations of integer data

stru
tures. orig-Stree is a dire
t C++ implemen-

tation of the algorithm des
ribed in [10℄, LEDA-Stree

is an implementation of the same algorithm available

in LEDA [15℄, and Stree is our tuned implementa-

tion. orig-Stree and LEDA-Stree store sets of integers

rather than sorted lists but this should only make them

faster than the other implementations.

5

To use (2; 16)-trees in LEDA you
an de
lare a sortseq with

implementation parameter ab tree. The default implementation

for sortseq based on skip lists is mu
h slower in our experiments.

 100

 1000

 256 1024 4096 16384 65536 218 220 222 223

T
im

e
fo

r
lo

ca
te

 [n
s]

n

orig-STree
LEDA-STree

STL map
(2,16)-tree

STree

Figure 3: Lo
ate operations for random keys that are drawn independently from M .

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1024 4096 16384 65536 218 220 222 223

T
im

e
fo

r
in

se
rt

 [n
s]

n

orig-STree
LEDA-STree

STL map
(2,16)-tree

STree

Figure 4: Constru
ting a tree using n insertions of random elements.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

1024 4096 16384 65536 218 220 222 223

T
im

e
fo

r
de

le
te

 [n
s]

n

orig-STree
LEDA-STree

STL map
(2,16)-tree

STree

Figure 5: Deleting n random elements in the order in whi
h they were inserted.

 100

 1000

 64 256 1024 4096 16384 216 218 220 222 223

T
im

e
fo

r
lo

ca
te

 [n
s]

n

STL map (hard)
(2,16)-tree (hard)

STree (hard)
STree (random)

Figure 6: Lo
ate operations for hard inputs.

The implementations run under Linux on a 2GHz

Intel Xeon pro
essor with 512 KByte of L2-
a
he using

an Intel E7500 Chip set. The ma
hine has 1GByte of

RAM and no swap spa
e to ex
lude swapping e�e
ts.

We use the g++ 2.95.4
ompiler with optimization

level -O6. We report the average exe
ution time per

operation in nanose
onds on an otherwise unloaded

ma
hine. The average is taken over at least 100

000 exe
utions of the operation. Elements are 32 bit

unsigned integers plus a 32 bit integer as asso
iated

information.

Figure 3 shows the time for the lo
ate operation for

random 32 bit integers and independently drawn ran-

dom 32 bit queries for lo
ate. Already the
omparison

based data stru
tures show some interesting e�e
ts. For

small n, when the data stru
tures �t in
a
he, red-bla
k

trees outperform (2; 16)-trees indi
ating that red-bla
k

trees exe
ute less instru
tions. For larger n this pi
ture

hanges dramati
ally, presumably be
ause (2; 16)-trees

are more
a
he eÆ
ient.

Our Stree is fastest over the entire range of inputs.

For small n, it is mu
h faster than
omparison based

stru
tures up to a fa
tor of 4.1. For random inputs

of this size, lo
ate mostly a

esses the root-top data

stru
ture whi
h �ts in
a
he and hen
e is very fast. It

even gets faster with in
reasing n be
ause then lo
ate

rarely has to go to the se
ond or even third level t

2

and t

3

of the root-top data stru
ture. For medium size

inputs there is a range of steep in
rease of exe
ution

time be
ause the L2 and L3 data stru
tures get used

more heavily and the memory
onsumption qui
kly

ex
eeds the
a
he size. But the speedup over (2; 16)-

trees is always at least 1.5. For large n the advantage

over
omparison based data stru
tures is growing again

rea
hing a fa
tor of 2.9 for the largest inputs.

The previous implementations of integer data stru
-

tures reverse this pi
ture. They are always slower than

(2; 16)-trees and very mu
h so for small n.

6

We tried the
odes until we ran out of memory

to give some indi
ation of the memory
onsumption.

Previous implementations only rea
h 2

18

elements. At

least for random inputs, our data stru
ture is not more

spa
e
onsuming than (2; 16)-trees.

7

Figures 4{5 show the running times for insertions

and deletions of random elements. Stree outperforms

(2; 16)-trees in most
ases but the di�eren
es are never

very big. The previous implementations of integer

6

For the LEDA implementation one obvious pra
ti
al improve-

ment is to repla
e dynami
 perfe
t hashing by a simpler hash table

data stru
ture. We tried that using hashing with
haining. This

brings some improvement but remains slower than (2; 16)-trees.

7

For hard inputs, Stree and (2; 16)-trees are at a signi�
ant

disadvantage
ompared to red-bla
k trees.

data stru
tures and, for large n, red-bla
k trees are

signi�
antly slower than Stree and (2; 16)-trees.

The dominating fa
tor here is memory management

overhead. In fa
t, our �rst versions of Stree had

big problems with memory management for large n.

We tried the default new and delete, the g++ STL

allo
ator, and the LEDA memory manager. We got

the best performan
e with with a re
on�gured LEDA

memory manager that only
alls mallo
 for
hunks of

size above 1024 byte and that is also used for allo
ating

the hash table arrays

8

. The g++ STL allo
ator also

performed quite well.

We have not measured the time for a plain lookup

be
ause all the data stru
tures
ould implement this

more eÆ
iently by storing an additional hash table.

Figures 6 shows the result for an attempt

to obtain
lose to worst
ase inputs for Stree.

For a given set size jM j = n, we store

M

hard

=

�

2

8

i�; 2

8

i�+ 255 : i = 0::n=2� 1

	

where

� =

�

2

25

=n

�

. M

hard

maximizes spa
e
onsumption of

our implementation. Furthermore, lo
ate queries of the

form 2

8

j�+128 for random j 2 0::n=2� 1 for
e Stree

to go through the root table, the L2-table, both levels

of the L3-top data stru
ture, and the L3-table. As to

be expe
ted, the
omparison based implementations are

not a�e
ted by this
hange of input. For n � 2

18

, Stree

is now slower than its
omparison based
ompetitors.

However, for large n we still have a similar speedup as

for random inputs.

4 Dis
ussion

We have demonstrated that sear
h tree data stru
tures

exploiting numeri
 keys
an outperform
omparison

based data stru
tures. A number of possible questions

remain. For example, we have not put parti
ular

emphasis on spa
e eÆ
ient implementation. Some

optimizations should be possible at the
ost of
ode

omplexity but with no negative in
uen
e on speed.

An interesting test would be to embed the data

stru
ture into other algorithms and explore how mu
h

speedup
an be obtained. However, although sear
h

trees are a performan
e bottlene
k in several important

appli
ations that have also been intensively studied

experimentally (e.g. the best �rst heuristi
s for bin

pa
king [5℄), we are not aware of real inputs used in

any of these studies.

9

8

By default
hunks of size bigger than 256 bytes and all arrays

are allo
ated with mallo
.

9

Many inputs are available for di
tionary data stru
ture from

the 1996 DIMACS implementation
hallenge. However, they

all a�e
t only �nd operations rather than lo
ate operations.

Without the need to lo
ate, a hash table would always be fastest.

A
knowledgments: We would like to thank Kurt

Mehlhorn and Stefan N�aher for valuable suggestions.

Referen
es

[1℄ A. Andersson and M. Thorup. A pragmati
 implemen-

tation of monotone priority queues. In DIMACS'96

implementation
hallenge, 1996.

[2℄ M. H. Austern. Generi
 programming and the STL

: using and extending the C++ standard template

library. Addison-Wesley, 7 edition, 2001.

[3℄ J. L. Bentley and T. A. Ottmann. Algorithms for

reporting and
ounting geometri
 interse
tions. IEEE

Transa
tions on Computers, pages 643{647, 1979.

[4℄ P. Berman and B. DasGupta. Multi-phase algorithms

for throughput maximization for real-time s
heduling.

Journal of Combinatorial Optimization, 4(3):307{323,

2000.

[5℄ E. G. Co�man, M. R. Garey Jr., , and D. S. Johnson.

Approximation algorithms for bin pa
king: A survey.

In D. Ho
hbaum, editor, Approximation Algorithms for

NP-Hard Problems, pages 46{93. PWS, 1997.

[6℄ P. Cres
enzi, L. Dardini, and R. Grossi. IP address

lookup made fast and simple. In Euopean Symposium

on Algorithms, pages 65{76, 1999.

[7℄ D. J. Gonzalez, J. Larriba-Pey, and J. J. Navarro

and. Algorithms for Memory Hierar
hies, volume 2625

of LNCS,
hapter Case Study: Memory Cons
ious

Parallel Sorting, pages 171{192. Springer, 2003.

[8℄ D. S. Johnson. Fast algorithms for bin pa
king.

Journal of Computer and System S
ien
es, 8:272{314,

1974.

[9℄ D. E. Knuth. The Art of Computer Programming |

Sorting and Sear
hing, volume 3. Addison Wesley, 2nd

edition, 1998.

[10℄ K. Mehlhorn and S. N�aher. Bounded ordered di
tio-

naries in O(log logN) time and O(n) spa
e. Informa-

tion Pro
essing Letters, 35(4):183{189, 1990.

[11℄ K. Mehlhorn and S. N�aher. The LEDA Platform of

Combinatorial and Geometri
 Computing. Cambridge

University Press, 1999.

[12℄ S. N�aher. Comparison of sear
h-tree data stru
tures in

LEDA. personal
ommuni
ation.

[13℄ N. Rahman. Algorithms for Memory Hierar
hies, vol-

ume 2625 of LNCS,
hapter Algorithms for Hardware

Ca
hes and TLB, pages 171{192. Springer, 2003.

[14℄ P. van Emde Boas. Preserving order in a forest in less

than logarithmi
 time. Information Pro
essing Letters,

6(3):80{82, 1977.

[15℄ M. Wenzel. W�orterb�u
her f�ur ein bes
hr�anktes Uni-

versum (di
tionaries for a bounded universe). Master's

thesis, Saarland University, Germany, 1992.

