
Asymptotic Complexity from Experiments?

A Case Study for Randomized Algorithms

Peter Sanders

1?

, Rudolf Fleischer

2

1

Max Planck Insitut f�ur Informatik

Saarbr�ucken, Germany

sanders@mpi-sb.mpg.de

2

Department of Computer Science

University of Waterloo

200 University Avenue West

rudolf@uwaterloo.ca

Abstract. In the analysis of algorithms we are usually interested in ob-

taining closed form expressions for their complexity, or at least asymp-

totic expressions in O(�)-notation. Unfortunately, there are fundamental

reasons why we cannot obtain such expressions from experiments. This

paper explains how we can at least come close to this goal using the

scienti�c method. Besides the traditional role of experiments as a source

of preliminary ideas for theoretical analysis, experiments can test falsi�-

able hypotheses obtained by incomplete theoretical analysis. Asymptotic

behavior can also be deduced from stronger hypotheses which have been

induced from experiments. As long as a complete mathematical analy-

sis is impossible, well tested hypotheses may have to take their place.

Several examples for probabilistic problems are given where the average

complexity can be well approximated experimentally so that the support

for the hypotheses is quite strong. Randomized Shellsort has performance

close to O(n log n); random polling dynamic load balancing between P

processors achieves full load sharing in log

2

P +O(log log P ) steps; ran-

domized writing to D independent disks using a shared bu�er size W

achieves average e�ciency at least 1�D=(2W ).

1 Introduction

The complexity analysis of algorithms is one of the core activities of computer

scientists in general and in the branch of theoretical computer science known

as algorithmics in particular. The ultimate goal would be to �nd closed form

expressions for the runtime or other measures of ressource consumption. Since

this is often too complicated, we are usually content with asymptotic expressions

for the worst case complexity depending on input parameters like the problem

size. Even this task can be very di�cult so that it is important to use all available

tools.

?

Partially supported by the IST Programme of the EU under contract number IST-

1999-14186 (ALCOM-FT).



This paper investigates to what extent experiments can help to �nd these

expressions. It is common practice to plot complexity measures derived from

experiments to generate conjectures. But people are rightfully wary about over-

interpretation of these results so that the experimental \sca�olding" usually

disappears from the publication of the results. Here, it is explained why with

some care experiments can often play a stronger role. One way to make the

meaning of \some care" more precise is to apply the terminology of the scienti�c

method [15]. The scienti�c method views science as a cycle between theory and

practice. Theory can inductively or (partially) deductively formulate falsi�able

hypotheses which can be tested by experiments. The results may then yield new

or re�ned hypotheses. This mechanism is widely accepted in the natural sciences

and is often viewed as a key to the success of these disciplines.

Sect. 2 reviews some of the main problems and explains how to partially

solve them. Sect. 3 surveys some related work and Sect. 4 gives several concrete

examples for randomized algorithms whose expected ressource consumption only

depends on the input size but which are nontrivial to analyze analytically. Fi-

nally, Sect. 5 discusses the role of results found using the scienti�c method.

2 Some Problems with Experiments

Too many inputs: Perhaps the most fundamental problem with experiments in

algorithmics is that we can rarely test all possible inputs even for bounded input

size because there are usually exponentially many of them. If we do application

oriented research this problem may be mitigated by libraries of test instances

which are considered \typical" (e.g. [5]). Here we want to concentrate on exper-

iments as a tool for theory however so that we are interested in cases where it is

possible to bound the complexity for all inputs of size n in time polynomial in n.

For example, there is a large class of oblivious algorithms where the execution

time only depends on a small number of parameters like the input size, for ex-

ample, matrix multiplication. Although many oblivious algorithms are easy to

analyze directly, experiments can sometimes help. Furthermore, there are algo-

rithmic problems with few inputs. For example, the locality properties of several

space �lling curves were �rst found experimentally and then proven analytically.

Later it turned out that a class of experiments can be systematically converted

into theoretical results valid for arbitrary curve sizes [14].

Experiments are more important for randomized algorithms. Often random-

ization can convert all instances into average case instances. For example, every

sorting algorithm which is e�cient on the average can be transformed into an

e�cient algorithm for worst case inputs by permuting the inputs randomly. In

this case, a few hundred experiments with random inputs can give a reliable pic-

ture of the expected performance of the algorithm for inputs of the given size.

On the other hand, closed form analysis of randomized algorithms can be very

di�cult. For example, the average case performance of Shellsort is open for a

long time now [19]. Also refer to Sect. 4.3.



Unbounded input size: Another problem with experiments is that we can only

test a �nite number of input sizes. For example, assume we �nd that some

sorting algorithm needs an average of C(n) � 3n logn comparisons for n <

10

6

elements. We still cannot claim that C(n) � 3n logn is a theorem since

quadratic behavior might set in for n > 42 � 10

6

. Here, the scienti�c method

partially saves the situation. We can formulate the hypothesis C(n) � 3n logn

which is scienti�cally sound since it can be falsi�ed by presenting an instance

of size n with C(n) > 3n logn. Note that not every sound hypothesis is a good

hypothesis. For example, it we would cowardly change the above hypothesis to

C(n) � 100000n logn it would be di�cult to falsify it even if it later turns out

that the true bound is C(n) = n logn + 0:1n log

2

n. But qualitative issues like

accuracy, simplicity, and generality of hypotheses are also an issue in the natural

sciences and this does not hinder people to use the scienti�c method there.

O(�)-s are not falsi�able: The next problem is that asymptotic expressions can-

not be used directly in formulating a scienti�c hypothesis since it could never be

falsi�ed experimentally. For example, if we claim that a certain sorting algorithm

needs at most C(n) � O(n logn) comparisons it cannot even be falsi�ed by a

set of inputs which clearly shows quadratic behavior since we could always claim

that this quadratic development would stop for su�ciently large inputs. This

problem can be solved by formulating a hypothesis which is stronger than the

asymptotic expression we really have in mind. The hypothesis C(n) � 3n logn

used above is a trivial example. A less trivial example is given in Sect. 4.3.

Complexity of the Machine Model: Although the actual execution time of an

algorithm is perhaps the most interesting subject of analysis, this measure of

ressource consumption is often di�cult to model by closed form expressions.

Caches, virtual memory, memory management, compilers and interference with

other processes all in
uence execution time in a di�cult to predict way.

1

At some

loss of accuracy, this problem can be solved by counting the number of times a

certain set of source code operations is executed which cover all the inner loops

of the program. This count su�ces to grasp the asymptotic behavior of the

code in a machine independent way. For example, for comparison based sorting

algorithms it is usually su�cient to count the number of key comparisons.

Finding Hypotheses: Except in very simple cases, it is almost impossible to guess

an appropriate formula for a worst case upper bound given only measurements;

even if the investigated ressource consumption only depends on the input size.

The measured function may be nonmonotonic while we are only interested in

a monotonic upper bound. There are often considerable contributions of lower

order terms for small inputs. Experience shows that curve �tting often won't

1

Remember that the above complexity is also an argument in favour of doing experi-

ments because the full complexity of the hardware is di�cult to model theoretically.

We only mention it as a problem in the current context of inducing asymptotic

expressions from experiments.



work in particular if we are interested in �ne distinctions like logarithmic factors

[12]. Again, the scienti�c method helps to mitigate this problem. Often, we are

able to handle a related or simpli�ed version of the system analytically or we

can make \heuristic" steps in a derivation of a theoretical bound. Although the

result is not a theorem about the target system, it is good enough as a hypothesis

about its behavior in the sense of the scienti�c method. Sect. 4 gives several

examples of this powerful approach which so far seems to be underrepresented

in algorithmics.

3 Related Work

The importance of experiments in algorithm design has recently gained much at-

tention. New workshops (ALENEX, WAE) and journals (ACM J. of Experimen-

tal Algorithmics) have been installed and established conferences (e.g., SODA,

ESA) explicitly call for experimental work. Using the scienti�c method as a basis

for algorithmics was proposed by Hooker [6]. McGeoch, Precup and Cohen [12]

give heuristic algorithms for �nding upper bounds on measured function values

which are found to be reliable within a factor

p

n. They stress that �nding more

accurate bounds would be futile in general. This is no contradiction to the ex-

amples given in Sect. 4 where even log logn terms are discussed because Sect. 4

uses additional problem speci�c information via the scienti�c method.

4 Examples

Our �rst example in Sect. 4.1 can be viewed as the traditional role of experiments

as a method to generate conjectures on the behavior of algorithms but it has an

additional interpretation where the experiment plus theory on a less attractive

algorithm yields a useful hypothesis. Sect. 4.2 gives an example where an ex-

periment is used to validate a simpli�cation made in the middle of a derivation.

Sections 4.3 and 4.4 touch the di�cult question of how to use experiments to

learn something about the asymptotic complexity of an algorithm. In addition,

Sect. 4.4 is a good example how experiments can suggest that an analysis can

be sharpened.

This paper only scratches the surface of a related important methodological

topic; namely how to perform experiments accurately and e�ciently and how to

evaluate the con�dence in our �ndings statistically. In Sect. 4.2 we apply such a

statistical test and �nd a very high level of con�dence. In Sect. 4.4 we give an

example how the number of repetitions can be coupled to the measured standard

error. We also shortly discuss the choice of random number generator.

4.1 Theory With Simpli�cations: Writing to Parallel Disks

Consider the following algorithm, EAGER, for writing D randomly allocated

blocks of data to D parallel disks. EAGER is an important ingredient of a



0.8

0.4

0.2

0.1

0.05

0.03
0 1 2 4 6 8 10 12

ov
er

he
ad

 1
-N

/t

W/D

D/(2W)
D=256

D=8

Fig. 1. Overhead (i.e., 1�e�ciency) of EAGER. N = 10

6

�D blocks were written.

general technique for scheduling parallel disks [18]. We maintain one queue Q

i

for each disk. The queues share a bu�er space of sizeW = O(D). We �rst put all

the blocks into the queues and then write one block from each nonempty queue.

If after that the sum of the queue lengths exceeds W , additional write steps are

invested. We have no idea how to analyze this algorithm. Therefore, in [18] a

di�erent algorithm, THROTTLE, is proposed that only admits (1� �)D blocks

per time step to the bu�ers. Then it is quite easy to show using queuing theory

that the expected sum of the queue lengths is D=(2�). Further, it can be shown

that the sum of the queue lengths is concentrated around its mean with high

probability so that a slightly larger bu�er su�ces to make waiting steps rare.

2

Still, in many practical situations EAGER is not only simpler but also some-

what more e�cient. Was the theoretical analysis futile and misguided? One of

the reasons why we think the theory is useful is that it suggests a nice explana-

tion of the measurements shown in Fig. 1. It looks like 1 �D=(2W ) is a lower

bound for the average e�ciency of EAGER and a quite tight one for large D.

This curve was not found by �tting a curve but by the observation that algorithm

EAGER with � slightly larger than D=(2W ) would yield a similar e�ciency.

More generally speaking, the algorithms we are most interested in might be

too di�cult to understand analytically. Then it makes sense to analyze a related

2

The current proof shows that W 2 O(D=�) su�ces but we conjecture that this can

be sharpened considerably using more detailed calculations.



and possibly inferior algorithm and to use the scienti�c method to come to

theoretical insights about the original algorithm. In theoretical computer science,

the latter step is sometimes omitted leading to friction between theory and

practice.

4.2 \Heuristic" Deduction: Random Polling

Let us consider the following simpli�ed model for the startup phase of ran-

dom polling dynamic load balancing [9, 3, 17] which is perhaps the best avail-

able algorithm for parallelizing tree shaped computations of unknown structure:

There are n processing elements (PEs) numbered 0 through n � 1. At step

t = 0, a random PE is busy while all other PEs are idle. In step t, a random

shift k 2 f1; : : : ; n� 1g is determined and the idle PE with number i asks PE

i + k mod n for work. Idle PEs which ask idle PEs remain idle; all others are

busy now. How many steps T are needed until all PEs are busy? A trivial lower

bound is T � logn steps since the number of busy PEs can at most double

in each step. An analysis for a more general model yields an E[T ] = O(logn)

upper bound [17]. We will now argue that there is a much tighter upper bound

of E[T ] � logn+ log lnn+ 1.

De�ne the 0/1-random variableX

ik

to be 1 i� PE i is busy at the beginning of

step k. For �xed k, these variables are identically distributed and P [X

i0

= 1] =

1� 1=n. Let U

k

=

P

i<n

X

ik

. We have

EU

k

= E

X

i<n

X

ik

=

X

i<n

P [X

ik

= 1] = nP [X

ik

= 1] :

Since the X

ik

are not independent even for �xed k, we are stuck with this line

of reasoning. However, if we simply assume independence, we get

P [X

i;k+1

= 0] = P [X

ik

= 0]

X

j 6=i

1

n� 1

P [X

jk

= 0] = P [X

ik

= 0]

2

;

and, by induction,

P [X

ik

= 0] = (1� 1=n)

2

k

� e

�2

k

=n

:

Therefore, E[U

k

] � n(1 � e

�2

k

=n

) and for k = logn + log lnn, E[U

k

] � n � 1.

One more step must get the last PE busy.

We have tested the hypothesis by simulating the process 1000 times for n = 2

j

and j 2 f1; : : : ; 16g. Fig. 2 shows the results.

On the other hand, the measurements do exceed logn+log lnn. We conjecture

that our results can be veri�ed using a calculation which does not need the

independence assumption.

The probability that the measured values are only accidentally below the

conjectured bound can be estimated using the Student-t test. Following [13] we

get a probability

1�A

�

p

1000

�

T � (log n+ log lnn+ 1)

�

j999

�



0

5

10

15

20

32 1024 32768
n

Measurement
log n + log ln n + 1

log n

Fig. 2. Number of random polling steps to get all PEs busy: Hypothesized upper

bound, lower bound and measured averages with standard deviation.

where

�

T is the measured average, � is the measured standard deviation and

A(tj�) is the cumulative distribution function of the Student t-distribution with

� degrees of freedom. Within the computational precision of Maple, this proba-

bility is zero.

4.3 Shellsort

Shellsort [20] is a classical sorting algorithm which is considered a good algorithm

for almost sorted inputs in particular, if an in-place routine is desired or small

to medium sized inputs are considered. Given an increasing integer sequence of

o�sets h

i

with h

0

= 1, the following pseudo-code describes Shellsort.

for each o�set h

k

in decreasing order do

for j := h

k

to n step h

k

do

x := data[j]

i := j � h

k

while i � 0 ^ x <data[i] do

data[i+ h

k

] := data[i]

i := i� h

k

od

data[i+ h

k

] := x



Interestingly, Shellsort still poses several open problems. For example, let T (n)

denote the average number of key comparisons performed by Shellsort for n

inputs. It is unknown wether there is an o�set sequence which yields a sorting

algorithm with T (n) = O(n logn) or even one with T (n) = o(n log

2

n) [19, 7]. It

is known that any algorithm with T (n) = O(n logn) must use �(logn) o�sets

[7]. Previous experiments with many carefully constructed o�set sequences led

to the conjecture that no sequence yields T (n) close to O(n logn) [22].

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

4 16 64 256 1024 4096 214 216 218 220 222

#c
om

pa
ris

on
s/

lo
g(

n!
)

n

Fig. 3. Competitive ratio of the average number of key comparisons of random o�set

Shellsort compared to the information theoretic lower bound log(n!). We used h

i

:=

bh

i�1

� f

i

+ 1c where f

i

is a random factor from the interval [0; 4]. Averages are based

on 1000 repetitions for n � 2

13

and 100 repetitions for larger inputs.

Led by the successful use of randomness for sorting networks [10, Sect. 3.5.4]

where no comparably good deterministic alternatives are known, we asked our-

selves whether random o�sets might work well for Shellsort. For our experiments

we have used o�sets which are the product of random numbers. The situation

now is more di�cult than in Sect. 4.2 where the theory gave us a very accu-

rate hypothesis. Now we have little information about the dependence of the

performance on n. Still, we should put the little things we do know into the

measurements. First, by counting comparisons we can avoid the pitfalls of mea-

suring execution time directly. Furthermore, we can divide these counts by the

lower bound log(n!) � n logn�n= ln(2) for comparison based sorting algorithms.



The di�cult part is to �nd an adequate model for the resulting quotient plotted

in Fig. 3. According to the conjecture in [22] the quotient should follow a power

law. In a semilogarithmic plot this should be an exponentially growing curve.

So this conjecture is not a good model at least for realistic n (also remember

that Shellsort is usually not used for large inputs). A sorting time of O(n log

a

n)

for any constant a > 1 would result in a curve converging to a straight line in

Fig. 3. The curve gets 
atter and 
atter and its inclination might even converge

to zero.

We might conjecture that T (n) = O

�

n log

1+o(1)

n

�

. But we must be careful

here. Because assertions like \T (n) = O(f(n))" or \the inclination of g(n) con-

verges to zero" are not experimentally falsi�able. One thing we could do however

is to hypothesize that 2

T (n)= log(n!)

is a concave function. This hypothesis is fal-

si�able and together with the measurements it implies

3

T (n) = O

�

n log

1+�

n

�

for quite small values of � which we can further decrease by doing measurements

for larger n.

4.4 Sharpening a Theory: Randomized Balanced Allocation

Consider the following load balancing algorithm known as random allocation: m

jobs are independently assigned to n processing elements (PEs) by choosing a

target PE uniformly at random. Using Cherno� bounds, it can be seen that the

maximum number of jobs assigned to any PE is

l

max

= m=n+O

�

p

(m=n) logn+ logn

�

with high probability (whp). For m = n,

l

max

= �(log(n)= log logn)

whp can be proven.

Now consider the slightly more adaptive approach called balanced random

allocation. Jobs are considered one after the other. Two random possible target

PEs are chosen for each job and the job is allocated on the PE with lower load.

Azar et al. [1] have shown that

l

max

= O(m=n) + (1 + o(1)) log lnn

whp for m = n. Interestingly, this bound shows that balanced random allocation

is exponentially better than plain random allocation. However, for large m their

methods of analysis yield even weaker bounds than that for plain random alloca-

tion. Only very recently Berenbrink et al. [2] have shown (using quite nontrivial

arguments) that

l

max

= m=n+ (1 + o(1)) log lnn :

3

We mean logical implication here, i.e., if the hypothesis is false nothing is said about

the truth of the implied assertion.



0

0.5

1

1.5

2

2.5

3

16 64 256 1024 4096 214 216 218 220 222223

m
ax

 L
oa

d 
- 

m
/n

m

n=65536
n=256
n=16

n=4

Fig. 4. Excess load for randomized balanced allocation as a function of n for di�erent n.

The experiments have been repeated at least su�ciently often to reduce the standard

error �=

p

repetitions [16] below one percent of the average excess load. In order to

minimize artifacts of the random number generator, we have used a generator with

good reputation and very long period (2

19937

� 1) [11]. In addition, we have repeated

some experiments with the Unix generator srand48 leading to almost identical results.

Fig. 4 shows that a simple experiment at least predicts that l

max

� m=n

cannot depend much on m. Other researchers (e.g. [8]) made some experiments

but without trying to induce hypotheses on the asymptotic behavior of balanced

allocation.

Our experiments were done before the theoretical solution. Otherwise, we

could have picked one of the other open problems in the area of balls into bins

games. For example, V�ocking [21] recently proved that an asymmetric placement

rule for breaking ties can signi�cantly reduce l

max

for m = n but nobody seems

to know how to generalize this result for general m.

5 Discussion

Assume that using the scienti�c method we have found an experimentally well

supported hypothesis about the running time of an important, di�cult to an-

alyze algorithm. How should this result be interpreted? It may be viewed as

a conjecture for guiding further theoretical research for a mathematical proof.



If this proof is not found, a well tested hypothesis may also serve as a surro-

gate. For example, in algorithmics the hypotheses \a good implementation of the

simplex method runs in polynomial time" or \NP-complete problems are hard

to solve in the worst case" play an important role. The success of the scienti�c

method in the natural sciences | even where deductive results would be possible

in principle | is a further hint that such hypotheses may play an increasingly

important role in algorithmics. For example, Cohen-Tannoudji et al. [4] (after

1095 pages of deductive results) state that \in all �elds of physics, there are

very few problems which can be treated completely analytically." Even a simple

two-body system like the hydrogen atom cannot be handled analytically without

making simplifying assumptions (like handling the proton classically). For the

same reason, experiments are of utmost importance in chemistry although there

is little doubt that well known laws like the Schr�odinger equation in principle

could explain most of chemistry.

References

1. Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. In 26th

ACM Symposium on the Theory of Computing, pages 593{602, 1994.

2. P. Berenbrink, A. Czumaj, A. Steger, and B. V�ocking. Balanced allocations: The

heavily loaded case. In 32th Annual ACM Symposium on Theory of Computing,

2000.

3. R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. In Foundations of Computer Science, pages 356{368, Santa Fe, 1994.

4. C. Cohen-Tannoudji, B. Diu, and F. Lalo�e. Quantum Mechanics, volume 2. John

Wiley & Sons, Inc., 1977.

5. A. Goldberg and B. Moret. Combinatorial algorithms test sets (cats). In 10th

ACM-SIAM Symposium on Discrete Algorithms, 1999.

6. J. Hooker. Needed : An empirical science of algorithms. Operations Res., 42(2):201{

212, 1994.

7. T. Jiang, M. Li, and P. Vit�anyi. Average-case complexity of shellsort. In ICALP,

number 1644 in LNCS, pages 453{462, 1999.

8. J. Korst. Random duplicate assignment: An alternative to striping in video servers.

In ACM Multimedia, pages 219{226, Seattle, 1997.

9. V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Com-

puting. Design and Analysis of Algorithms. Benjamin/Cummings, 1994.

10. T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan Kauf-

mann, 1992.

11. M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACMTMCS: ACM Trans-

actions on Modeling and Computer Simulation, 8:3{30, 1998. http://www.math.

keio.ac.jp/~matumoto/emt.html.

12. C. C. McGeoch, D. Precup, and P. R. Cohen. How to �nd big-oh in your data

set (and how not to). In Advances in Intelligent Data Analysis, number 1280 in

LNCS, pages 41{52, 1997.

13. P. H. M�uller. Lexikon der Stochastik. Akademie Verlag, 5th edition, 1991.

14. R. Niedermeier, K. Reinhard, and P. Sanders. Towards optimal locality in mesh-

indexings. In B. S. Chlebus and L. Czaja, editors, Fundamentals of Computation

Theory, number 1279 in LNCS, pages 364{375, Krakow, 1997.



15. K. R. Popper. Logik der Forschung. Springer, 1934. English Translation: The Logic

of Scienti�c Discovery , Hutchinson, 1959.

16. W. H. Press, S. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C. Cambridge University Press, 2. edition, 1992.

17. P. Sanders. Lastverteilungsalgorithmen f�ur parallele Tiefensuche. Number 463 in

Fortschrittsberichte, Reihe 10. VDI Verlag, 1997.

18. P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In

11th ACM-SIAM Symposium on Discrete Algorithms, pages 849{858, 2000.

19. R. Sedgewick. Analysis of shellsort and related algorithms. LNCS, 1136:1{11, 1996.

20. D. L. Shell. A high-speed sorting procedure. Communications of the ACM, 2(7):30{

33, July 1958.

21. B. V�ocking. How asymmetry helps load balancing. In 40th FOCS, pages 131{140,

1999.

22. M. A. Weiss. Empirical study of the expected running time of shellsort. The

Computer Journal, 34(1):88{91, 1991.


