
A Parallelization of Dijkstra's Shortest Path

Algorithm
c© Springer-Verlag, LNCS 1450, MFCS'98

A. Crauser, K. Mehlhorn, U. Meyer, P. Sanders

Max-Planck-Institut f�ur Informatik,

Im Stadtwald, 66123 Saarbr�ucken, Germany.

E-mail: {crauser,mehlhorn,umeyer,sanders}@mpi-sb.mpg.de

WWW: http://www.mpi-sb.mpg.de/{~crauser,~mehlhorn,~umeyer,~sanders}

Abstract. The single source shortest path (SSSP) problem lacks par-

allel solutions which are fast and simultaneously work-e�cient. We pro-

pose simple criteria which divide Dijkstra's sequential SSSP algorithm

into a number of phases, such that the operations within a phase can

be done in parallel. We give a PRAM algorithm based on these crite-

ria and analyze its performance on random digraphs with random edge

weights uniformly distributed in [0; 1]. We use the G(n; d=n) model: the

graph consists of n nodes and each edge is chosen with probability d=n.

Our PRAM algorithm needs O(n

1=3

log n) time and O(n log n+dn) work

with high probability (whp). We also give extensions to external memory

computation. Simulations show the applicability of our approach even on

non-random graphs.

1 Introduction

Computing shortest paths is an important combinatorial optimization problem

with numerous applications. Let G = (V;E) be a directed graph, jEj = m,

jV j = n, let s be a distinguished vertex of the graph, and c be a function

assigning a non-negative real-valued weight to each edge of G. The single source

shortest path problem (SSSP) is that of computing, for each vertex v reachable

from s, the weight dist(v) of a minimum-weight path from s to v; the weight of

a path is the sum of the weights of its edges.

The theoretically most e�cient sequential algorithm on digraphs with non-

negative edge weights is Dijkstra's algorithm [8]. Using Fibonacci heaps its run-

ning time is O(n logn + m)

1

. Dijkstra's algorithm maintains a partition of V

into settled, queued and unreached nodes and for each node v a tentative dis-

tance tent(v); tent(v) is always the weight of some path from s to v and hence an

upper bound on dist(v). For unreached nodes, tent(v) =1. Initially, s is queued,

tent(s) = 0, and all other nodes are unreached. In each iteration, the queued

node v with smallest tentative distance is selected and declared settled and all

edges (v; w) are relaxed, i.e., tent(w) is set to minftent(w); tent(v) + c(v; w)g.

1

There is also an O(n+m) time algorithm for undirected graphs [20], but it requires

the RAM model instead of the comparison model which is used in this work.



If w was unreached, it is now queued. It is well known that tent(v) = dist(v),

when v is selected from the queue.

The queue may contain more than one node v with tent(v) = dist(v). All

such nodes could be removed simultaneously, the problem is to identify them. In

Sect. 2 we give simple su�cient criteria for a queued node v to satisfy tent(v) =

dist(v). We remove all nodes satisfying the criteria simultaneously.

Although there exist worst-case inputs needing �(n) phases, our approach

yields considerable parallelism on random directed graphs: We use the random

graph model G(n; d=n), i.e., there are n nodes and each theoretically possible

edge is included into the graph with probability d=n. Furthermore, we assume

random edge weights uniformly distributed in [0; 1]: In Sect. 3 we show that the

number of phases is O(

p

n) using a simple criterion, and O(n

1=3

) for a more

re�ned criterion with high probability (whp)

2

.

Sect. 4 presents an adaption of the phase driven approach to the CRCW

PRAM model which allows p processors (PUs) concurrent read/write access to

a shared memory in unit cost (e.g. [13]). We propose an algorithm for random

graphs with random edge weights that runs in O(n

1=3

logn) time whp. The work,

i.e., the product of its running time and the number of processors, is bounded

by O(n logn+ dn) whp.

In Sect. 5 we adapt the basic idea to external memory computation (I/O

model [22]) where one assumes large data structures to reside on D disks. In

each I/O operation, D blocks from distinct disks, each of size B, can be accessed

in parallel. We derive an algorithm which needs O(

n

D

+

dn

DB

log

S=B

dn

DB

) I/Os on

random graphs whp and can use up to D = O(minfn

2=3

= logn;

S

B

g) independent

disks. S denotes the size of the internal memory.

In Sect. 6 we report on simulations concerning the number of phases needed

for both random graphs and real world data. Finally, Sect. 7 summarizes the

results and sketches some open problems and future improvements.

Previous Work

PRAM algorithms:There is no parallel O(n logn+m) work PRAM algorithm

with sublinear running time for general digraphs with non-negative edge weights.

The best O(n logn+m) work solution [9] has running time O(n logn). All known

algorithms with polylogarithmic execution time are work-ine�cient. (O(log

2

n)

time and O(n

3

(log logn= logn)

1=3

) work for the algorithm in [11].) An O(n) time

algorithm requiring O((n+m) logn) work was presented in [3].

For special classes of graphs, like planar digraphs [21] or graphs with separa-

tor decomposition [6], more e�cient algorithms are known. Randomization was

used in order to �nd approximate solutions [5]. Random graphs with unit weight

edges are considered in [4]. The solution is restricted to dense graphs (d = �(n))

or edge probability d = �(log

k

n=n) (k > 1). In the latter case O(n log

k+1

n)

work is needed. Properties of shortest paths in complete graphs (d = n) with

2

Throughout this paper \whp" stands for \with high probability" in the sense that

the probability for some event is at least 1� n

��

for a constant � > 0.

2



random edge weights are investigated in [10, 12]. In contrast to all previous work

on random graphs, we are most interested in the case of small, even constant d.

External Memory: The best result on SSSP was published in [16]. This algo-

rithm requires O(n+

m

DB

log

2

m

B

) I/Os. The solution is only suitable for small n

because it needs �(n) I/Os.

2 Running Dijkstra's Algorithm in Phases

We give several criteria for dividing the execution of Dijkstra's algorithm into

phases. In the �rst variant (OUT-version) we compute a threshold de�ned via the

weights of the outgoing edges: let L = minftent(u) + c(u; z) : u is queued and

(u; z) 2 Eg and remove all nodes v from the queue which satisfy tent(v) �

L. Note that when v is removed from the queue then dist(v) = tent(v). The

threshold for the OUT-criterion can either be computed via a second priority

queue for o(v) = tent(v) + minfc(v; u) : (v; u) 2 Eg or even on the 
y while

removing nodes.

The second variant, the IN-version, is de�ned via the incoming edges: let

M = min ftent(u) : u is queuedg and i(v) = tent(v) � minfc(u; v) : (u; v) 2

Eg for any queued vertex v. Then v can be safely removed from the queue if

i(v) �M . Removable nodes of the IN-type can be found e�ciently by using an

additional priority queue for i(�).

Finally, the INOUT-version applies both criteria in conjunction.

3 The Number of Phases for Random Graphs

In this section we �rst investigate the number of delete-phases for the OUT-

variant of Dijkstra's algorithm on random graphs. Then we sketch how to extend

the analysis to the INOUT-approach. We start with mapping the OUT-approach

to the analysis of the reachability problem as provided in [14] and [1, Sect. 10.5]

and give lower bounds on the probability that many nodes can be removed from

the queue during a phase.

Theorem 1. OUT-approach. Given a random graph from G(n; d=n) with edge

labels uniformly distributed in [0; 1], the SSSP problem can be solved using r =

O(

p

n) delete-phases with high probability.

We review some facts of the reachability problem using the notation of [1].

The following procedure determines all nodes reachable from a given node s

in a random graph G from G(n; d=n). Nodes will be neutral, active, or dead.

Initially, s is active and all other nodes are neutral, let time t = 0, and Y

0

= 1 the

number of active nodes. In every time unit we select an arbitrary active node v

and check all theoretically possible edges (v; w), w neutral, for membership in G.

If (v; w) 2 E, w is made active, otherwise it stays neutral. After having treated

all neutral w in that way, we declare v dead, and let Y

t

equal the new number

of active nodes. The process terminates when there are no active nodes.

3



The connection with the OUT-variant of Dijkstra's algorithm is easy: The

distance labels determine the order in which queued vertices are considered and

declared dead, and time is partitioned into intervals (=phases): If a phase of the

OUT-variant removes k nodes this means that the time t increases by k.

Let Z

t

be the number of nodes w that are reached for the �rst time at time t.

Then Y

0

= 1, Y

t

= Y

t�1

+ Z

t

� 1 and Z

t

� B [n� (t� 1)� Y

t�1

; d=n] where

B [n; q] denotes the binomial distribution for n trials and success probability q.

Let T be the least t for which Y

t

= 0. Then T is the number of nodes that are

reachable from s. The recursive de�nition of Y

t

is continued for all t, 0 � t � n.

We have Y

t

� B [n� 1; 1� (1� d=n)

t

] + 1� t.

It is shown in [1] that the number of nodes reachable from s is either very

small (less than O(log n)) or concentrates around T

0

= �

0

n, where 0 < �

0

< 1,

and �

0

= 1� e

�d�

0

. Only the case T � T

0

requires analysis; if T = O(log n) the

number of phases is certainly small. Cherno� bounds yield:

Lemma 1. Except for small t (t �

p

n) and large t (t � T

0

� n

1=2+�

) Y

t

is

(1� o(1=n

2

))E [Y

t

] with high probability.

The yield of a phase in the OUT-variant is the number of nodes that are

removed in a phase. We call a phase starting at time t pro�table if its yield is


(

p

Y

t

=d) and highly pro�table if its yield is 
(

p

(Y

t=2

� t=2)t=n) and show:

Lemma 2. A phase is pro�table with probability at least 1=8. A phase starting

at time t with

n lnd

d

� t � �

0

n� n=d is highly pro�table with probability at least

1=8.

Theorem 1 follows fairly easily from lemmas 1 and 2: We call a phase with

starting time t early extreme if t �

p

n, early intermediate if

p

n < t � (n ln d)=d,

early central if (n ln d)=d < t � n=2, late central if n=2 < t � �

0

n � n=d,

late intermediate if �

0

n � n=d < t � �

0

n � n

1=2+�

, and late extreme if �

0

n �

n

1=2+�

< t, and show that there are only O(

p

n) phases of each kind with high

probability. Consider, for example, the late intermediate phases. A pro�table

late intermediate phase starting at time t has yield 
(

p

Y

t

=d) = 
(

p

E [Y

t

] =d)

= 
(

p

(�

0

n� t)=d), where the �rst equality holds with high probability by

Lemma 1. Let t

0

:= �

0

n� t. The number of pro�table phases with 2

i

� t

0

< 2

i+1

is therefore O(

p

2

i

d) and the number of pro�table phases with �

0

n�n=d � t =

�

0

n � t

0

is therefore

P

i�log(n=d)

O(

p

2

i

d) = O(

p

n). Since a phase is pro�table

with probability at least 1=8, the number of phases is also O(

p

n) with high

probability. The number of early extreme phases is O(

p

n) trivially. For the

number of late extreme phases we argue as follows. We �rst show that T �

�

0

n + n

1=2+�

with high probability and then consider the �rst time t

1

, t

1

�

�

0

n�n

1=2+�

, with Y

t

1

� n

1=4

. Lemma 1 implies that the number of late extreme

phases starting before t

1

is O(

p

n). If the number of phases starting after t

1

is

p

n

or more, then Z

t

1

+Z

t

1

+1

+ � � �+Z

t

1

+

p

n

�

p

n�n

1=4

�

p

n=2. The probability

of this event is bounded by P

�

B[n

1=2

(n� (n� n

1=2+�

)); d=n] �

p

n=2

�

, which

is exponentially small.

4



The idea for the proof of Lemma 2 is as follows. Let v

1

; v

2

; : : : ; v

q

, q = Y

t

,

be the queued nodes in order of increasing tentative distances, and let L

0

be

the value of L in the previous phase. The distance labels tent(v

i

) are random

variables in [L

0

; L

0

+ 1]. We show that their values are independent and their

distributions are biased towards smaller values (since tent(v

i

) = minfdist(v) +

c(v; v

i

); v settled and (v; v

i

) 2 Eg, dist(v) � L

0

, c(v; v

i

) uniform in [0; 1]. The

value of tent(v

r

) is therefore less than r=q with constant probability for arbitrary

r, 1 � r � q. The number of edges out of v

1

; : : : ; v

r

is r(d=n)n = rd on the

average and not much more with constant probability. The shortest of these

edges has length about

1

rd

. We remove v

1

; : : : ; v

r

from the queue if tent(v

r

) is

smaller than the length of the shortest edge out of v

1

; : : : ; v

r

. This is the case

(with constant probability) if r=q �

1

rd

or r �

p

q=d.

For the phases starting at time t with (n ln d)=d � t � �

0

n � n=d we re-

�ne the argument as follows. We call a node queued at time t old if it was

already queued before time t=2 and show that the number of old queued nodes

at time t is at least Y

t=2

� t=2. Each old queued node has an expected indegree

from settled nodes of at least

t

2

d

n

. We use this fact to deduce that tent(v

r

) is

less than r=(

td

2n

(Y

t=2

�t=2)) with constant probability and then proceed as above.

INOUT Approach. If both IN- and OUT-criterion are applied together, the

tentative distance labels of queued nodes may spread over a range as large as

[L

0

; L

0

+ 2), while the edge weights are only in [0; 1]. In order to reuse the analysis

of the OUT-part we analyze a slightly slower version which alternates the two

criteria in the following way:

I-Step: Let q be the current queue size. Apply the IN-criterion to the g(q) nodes

with smallest tentative distances where g is a function we are free to choose

3

.

Let L be the largest distance of any removed node. Switch to O-Step.

O-Step: Repeatedly apply the OUT-criterion until no tentative distance is

smaller than L. Then switch back to I-Step.

The function g() is chosen in such a way that there is both a constant prob-

ability for a large yield in an I-Step and the expected number of subsequent

O-Steps is constant. The function g() is chosen dependent of the current phase

type. For example, during late intermediate phases we take g(q) = cq

2=3

=d

1=3

for

some constant c. A super-phase consisting of an I-Step and series of O-Steps is

now pro�table if at most a constant number of O-Steps is needed and if its total

yield is 
(Y

2=3

t

=d

1=3

), highly pro�table if its yield is 
((Y

t=2

� t=2)

2=3

=(n=t)

1=3

).

Then one has to show again that a super-phase is (highly) pro�table with con-

stant probability.

Theorem 2. INOUT-approach. Given a random graph from G(n; d=n) with

edge labels uniformly distributed in [0; 1], the SSSP problem can be solved using

r = O(n

1=3

) delete-phases with high probability.

3

Note that the implementation does not need to know this function since it uses the

faster combined criterion.

5



4 Parallelization

We now show how the sequential OUT-variant of Sect. 2 can be e�ciently imple-

mented on an arbitrary-write CRCW PRAM for random graphs from G(n; d=n)

and random edge weights. The actual number of edges is m = �(dn) whp.

The algorithm keeps a global array tent(�) for all tentative distance values.

Each processor P

i

, 0 � i < p is responsible for two sequential priority queues: Q

i

and Q

�

i

. Each pair (Q

i

; Q

�

i

) only deals with a subset of nodes, the distribution

is made randomly and stored in a global array ind(). Furthermore, each PU

maintains a bu�er array for incoming requests.

The queues Q

i

handle tentative node distances for the nodes they are re-

sponsible for, the key of a node v 2 Q

�

i

is given by tent(v) + �

o

(v) where

�

o

(v) := min fc(v; w) : (v; w) 2 Eg; �

o

(v) is precomputed once and for all upon

initialization. The Q

�

i

queues are used to e�ciently derive the criterion of the

OUT-version indicating whether a node can be deleted in a phase. The queues

are implemented as relaxed heaps [9] because they provide worst-case running

times: findMin, insert and decreaseKey are performed in O(1) time and

delete/deleteMin in O(log q) time where q denotes the local queue size.

Let r be the number of delete-phases which are needed, e.g. for the OUT-

variant r = O(

p

n) whp. For the analysis we �x the number of processors as

p = maxf

n

r log n

;

dn

r log

2

n

g; so from now on a time bound T implies a work bound

pT .

The algorithm works similar to Dijkstra's algorithm: The queues start with

only s in Q

ind(s)

and Q

�

ind(s)

and all other local queues empty. This and the

initialization of other arrays and bu�ers (ind(), outgoing edges, . . . ) can be done

in time O((n+m)=p) = O(r log

2

n) whp, even if the input uses an adjacency-list

representation.

While any queue is nonempty the algorithm performs a phase consisting

of �ve steps. These steps are now further explicated together with the most

interesting part of their analysis, namely for the case that at most n=r nodes are

deleted in this phase.

Step 1 �nds the global minimum L of all elements in all Q

�

i

and can clearly

be performed in O(log p) � O(logn) time.

In Step 2 each PU i removes the nodes with tent(v) � L from Q

i

and Q

�

i

.

Let

�

R denote the union of all these sets of deleted nodes. Our index distribution

ensures that no PU has to deal with more than O(log p + j

�

Rj=p) deleteMins

whp. A single deleteMin or delete operation takes O(log n) time, thus due to

j

�

Rj � n=r and p = maxf

n

r logn

;

dn

r log

2

n

g Step 2 can be performed in O(log

2

n)

time whp.

In Step 3 all PUs cooperate to generate a set Req := f(w; tent(v)+c((v; w))) :

v 2

�

R and (v; w) 2 Eg of requests. By compacting

�

R and using pre�x sums

to schedule the PUs this task can be perfectly load balanced. Since jReqj =

O

�

dj

�

Rj+ logn

�

whp for j

�

Rj � n=r, this step can be performed in time O(m=(rp)

+ logn) = O(log

2

n) whp.

6



Step 4 permutes the requests such that (w; x) is put into a bu�er array

B

ind(w)

. Altogether there are at most O(dj

�

Rj) requests whp that are spread

over p bu�ers, thus, because of the random node distribution, each bu�er gets

O(log n + dj

�

Rj=p) = O(log

2

n) requests whp (Cherno� bounds, j

�

Rj � n=r, p =

maxf

n

r logn

;

dn

r log

2

n

g). The requests are placed by \randomized dart throwing"

[18]. If each processor is responsible for the placement of a group of O(log

2

n)

requests (which may go to di�erent bu�ers) Step 4 takesO(log

2

n) time whp. The

dart throwing progress is regularly monitored. In the unlikely case of stagnation

(bu�ers are chosen too small), the bu�er sizes are adapted.

Finally, in Step 5 PU i scans bu�er i and for each request (w; x) with x <

tent(w) it updates tent(w) to x and calls decreaseKey(Q

i

; w; x), decreaseKey(

Q

�

i

; w; x + �

o

(w)) (respectively insert for new nodes). Each operation can be

executed in O(1) time, so for j

�

Rj � n=r Step 5 needs time O(log

2

n) whp.

Phases with j

�

Rj > n=r show whp at least as balanced queue access patterns

as those phases deleting less elements, thus time and work of a phase increase

at most linearly. Let k

i

denote the number of nodes removed in phase i. Then

P

i�r

k

i

� n. The total time over all phases is T = O(

P

i�r

dk

i

r=ne log

2

n) =

O(r log

2

n+ (nr=n) log

2

n) = O(r log

2

n) whp.

For d > r log

2

n more than n PUs can be used by dropping explicit queues:

n global bits denote whether an element is \queued" or not and p=n PUs take

care of each bu�er area in order to cope with the increased number of requests.

Alternatively, one can apply an initial �ltering step because all but the c logn

smallest edges per node, c some constant, can be ignored whp without changing

the shortest paths [10, 12].

The INOUT-version is supported by p additional priority queues. Initial-

ization of �

i

(v) := min fc(w; v) : (w; v) 2 Eg involves collecting the weights of

edges that are potentially distributed over 
(d) adjacency-lists. For random

graphs, the number of incoming edges of k = 
(logn) randomly selected nodes

is O(dk) whp. Thus, we can use the randomized dart throwing to perform the

initialization using O(dn) work whp.

Theorem 3. If the number of delete-phases is bounded by r then the SSSP can

be solved in O(r log

2

n) time and O(n logn +m) work whp. using maxf

n

r logn

,

m

r log

2

n

g processors on a CRCW PRAM.

The running time can be improved by a factor of O(log n) if we choose an

alternative implementation for the queues based on the parallel priority queue

data structure from [19] which supports insert and deleteMin for O(p) ele-

ments in time O(log n) using p PUs whp. In [7] we show how to augment this

data structure so that decreaseKey and delete are also supported.

A queue is represented by three relaxed heaps: A main heap Q

1

, a bu�er Q

0

for newly inserted elements plus the O(logn) smallest ones and Q

d

for elements

whose key drops below a bound L

0

due to a decreaseKey. Deleted elements

in Q

1

are only marked as deleted. More generally, delete and deleteMin are

most of the time only performed on Q

0

and Q

d

and only every O(logn) phases

7



a function cleanUp is called which guarantees that Q

0

and Q

d

do not grow too

large. For an analysis we refer to [19, 7].

Corollary 1. SSSP on random graphs with random edge weights uniformly dis-

tributed in [0; 1] can be solved on a CRCW PRAM in O(n

1=3

logn) time and

O(n logn+m) work whp.

The approach is relatively easy to adapt to distributed memory machines.

The ind-array can be replaced by a hash-function and randomized dart throwing

by routing. For random graphs, the PU scheduling for generating requests is

unnecessary, if the number of PUs is decreased by a logarithmic factor.

The algorithm can also be adapted to a O(n

1=3+�

) time and O(n logn+m)

work EREW PRAM for an arbitrary small constant � > 0. Concurrent write

accesses only occur during the randomized dart throwing. It can be replaced

by 1=� reordering phases (essentially radix sorting), such that phase i groups

all request for a subset of p

1��i

queue pairs. Processors are rescheduled after

each phase. After the last phase all requests to a certain queue pair are grouped

together and can be handled sequentially.

5 Adaption to External Memory

The best previous external memory SSSP algorithm is due to [16]. It requires at

least n I/Os and hence is unsuitable for large n. For our improved algorithm we

use D to denote the number of disks and B to denote the block size. Let r be

the number of delete-phases and assume for simplicity that each phase removes

n=r elements from the queue.

Furthermore, we assume that D logD � n=r and that the internal memory,

S, is large enough to hold one bit per node. It is indicated in [7] how to proceed

if this reasonable assumption does not hold. We partition the adjacency-lists

into blocks of size B and distribute the blocks randomly over the disks. All

requests to adjacency-lists of a single phase are �rst collected in D bu�ers, in

large phases they are possibly written to disk temporarily. At the end of a phase

the requests are performed in parallel. If D logD � n=r, the n=r adjacency-lists

to be considered in a phase will distribute almost evenly over the disks whp, and

hence the time spent in reading adjacency-lists is O(n=D +m=(DB)) whp. We

use a priority queue without decreaseKey operation (e.g. bu�er trees [2]) and

insert a node as often as it has incoming edges (each edge may give a di�erent

tentative distance). When a node is removed for the �rst time its bit is set. Later

values for that node are ignored.

The total I/O complexity for this approach is given by O(

n

D

+

m

DB

log

S=B

m

B

)

I/Os whp. The number of disks is restricted by D = O(minf

n

r logn

;

S

B

g).

We note that it is useful to slightly modify the representation of the graph

(provide each edge (v; w) with �

o

(w), the minimum weight of any edge out of

w). This allows us to compute the L-value while deleting elements from the

queue without the auxiliary queue Q

�

. This online computing is possible because

the nodes are deleted with increasing distances and the L-value initialized with

8



findMin() + 1 can only decrease. The preprocessing to adapt the graph takes

O(

n+m

DB

log

S=B

m

B

) I/Os.

Theorem 4. SSSP with r delete-phases can be solved in external memory using

O(

n

D

+

m

DB

log

S=B

m

B

) I/Os whp if the number of disks is D = O(minf

n

r logn

;

S

B

g)

and S is large enough to hold one bit per node.

6 Simulations

Simulations of the algorithm have greatly helped to identify the theoretical

bounds to be proven. Furthermore, they give information about the involved

constant factors.

For the OUT-variant on random graphs with random edge weights we found

an average value of 2:5

p

n phases. The re�ned INOUT-variant needs about

6:0n

1=3

phases on the average. A modi�cation of the INOUT-approach which

switches between the criteria as described in Sect. 2 takes about 8:5n

1=3

phases.

We also ran tests on planar graphs taken from [15, GB PLANE] where the

nodes have coordinates uniformly distributed in a two-dimensional square and

edge weights denote the Euclidean distance between respective nodes. The OUT-

version �nished in about 1:2n

2=3

phases; taking random edge weights instead,

about 1:7n

2=3

phases su�ced on the average. The performance of the INOUT-

version is less stable on these graphs; it seems to give only a constant factor

improvement over the simpler OUT-variant.

Motivated from the promising results on planar graphs we tested our ap-

proach on real-world data: starting with a road-map of a town (n = 10; 000) the

tested graphs successively grew up to a large road-map of Southern Germany

(n = 157; 457). While repeatedly doubling the number of nodes, the average

number of phases (for di�erent starting points) only increased by a factor of

about 1:63 � 2

0:7

; for n = 157; 457 the simulation needed 6; 647 phases.

7 Conclusions

We have shown how to subdivide Dijkstra's algorithm into delete phases and

gave a simple CRCW PRAM algorithm for SSSP on random graphs with random

edge weights which has sublinear running time and performs O(n logn+m) work

whp. Although the bounds only hold with high probability for random graphs,

the approach shows good behavior on practically important real-world graph

instances.

Future work can tackle the design and performance of more re�ned criteria

for safe node deletions, in particular concerning non-random inputs.

Another promising approach is to relax the requirement of tent(v) = dist(v)

for deleted nodes. In [7, 17] we also analyze an algorithm which allows these two

values to di�er by an amount of �. While this approach yields more parallelism

for random graphs, the safe criteria do not need tuning parameters and can

better adapt to inhomogeneous distributions of edge weights over the graph.

9



Acknowledgements

We would like to thank Volker Priebe for fruitful discussions and suggestions.

References

1. N. Alon, J. H. Spencer, and P. Erd}os. The Probabilistic Method. Wiley, 1992.

2. L. Arge. E�cient external-memory data structures and applications. PhD thesis,

University of Aarhus, BRICS-DS-96-3, 1996.

3. G. S. Brodal, J. L. Tr�a�, and C. D. Zaroliagis. A parallel priority queue with

constant time operation. In 11th IPPS, pages 689{693. IEEE, 1997.

4. A. Clementi, L. Ku�cera, and J. D. P. Rolim. A randomized parallel search strat-

egy. In A. Ferreira and J. D. P. Rolim, editors, Parallel Algorithms for Irregular

Problems: State of the Art, pages 213{227. Kluwer, 1994.

5. E. Cohen. Polylog-time and near-linear work approximation scheme for undirected

shortest paths. In 26th STOC, pages 16{26. ACM, 1994.

6. E. Cohen. E�cient parallel shortest-paths in digraphs with a separator decompo-

sition. Journal of Algorithms, 21(2):331{357, 1996.

7. A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. Parallelizing Dijkstra's short-

est path algorithm. Technical report, MPI-Informatik, 1998. in preparation.

8. E. Dijkstra. A note on two problems in connexion with graphs. Num. Math.,

1:269{271, 1959.

9. J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan. Relaxed heaps: An

alternative to Fibonacci heaps with applications to parallel computation. Commu-

nications of the ACM, 31(11):1343{1354, 1988.

10. A. Frieze and G. Grimmett. The shortest-path problem for graphs with random

arc-lengths. Discrete Appl. Math., 10:57{77, 1985.

11. Y. Han, V. Pan, and J. Reif. E�cient parallel algorithms for computing all pairs

shortest paths in directed graphs. In 4th SPAA, pages 353{362. ACM, 1992.

12. R. Hassin and E. Zemel. On shortest paths in graphs with random weights. Math.

Oper. Res., 10(4):557{564, 1985.

13. J. J�aj�a. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

14. R. M. Karp. The transitive closure of a random digraph. Rand. Struct. Alg., 1,

1990.

15. D. E. Knuth. The Stanford GraphBase : a platform for combinatorial computing.

Addison-Wesley, New York, NY, 1993.

16. V. Kumar and E. J. Schwabe. Improved algorithms and data structures for solving

graph problems in external memory. In 8th SPDP, pages 169{177. IEEE, 1996.

17. U. Meyer and P. Sanders. �-stepping: A parallel shortest path algorithm. In 6th

ESA, number 1461 in LNCS, pages 393{404. Springer, 1998.

18. G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In 26th

Symposium on Foundations of Computer Science, pages 478{489. IEEE, 1985.

19. P. Sanders. Randomized priority queues for fast parallel access. Journal Parallel

and Distributed Computing, 49:86{97, 1998.

20. M. Thorup. Undirected single source shortest paths in linear time. In 38th Annual

Symposium on Foundations of Computer Science, pages 12{21. IEEE, 1997.

21. J. L. Tr�a� and C. D. Zaroliagis. A simple parallel algorithm for the single-source

shortest path problem on planar digraphs. In Irregular' 96, volume 1117 of LNCS,

pages 183{194. Springer, 1996.

22. J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level

memories. Technical Report CS-90-21, Brown University, 1990.

10


