
Karlsruher Institut für Technologie Lehrstuhl Algorithm Engineering
Fakultät für Informatik Prof. Dr. Peter Sanders

Master’s thesis

Relaxed Priority Queues with Dynamic Quality

Description

Priority queues are a fundamental data structure used in many algorithms, such
as Dijkstra’s algorithm or task scheduling. To utilize the parallel nature of modern
hardware, these algorithms need to be parallelized. However, parallel priority queues
are often a bottleneck due to inherent access conflicts. This problem can be mitigated
by relaxing the priority queue semantics to allow out-of-order removals. Using a
relaxed priority queue within a concurrent algorithm typically leads to additional work
before finding the solution, but the improved scalability often leads to a lower execution
time.
The MultiQueue1 is the state-of-the-art relaxed priority queue. It uses multiple internal
priority queues where the number of queues is proportional to the number of threads.
Insertions distribute the elements among these queues randomly. Removals select
two queues randomly and remove the element with the highest priority among them.
The quality (degree of relaxation) of the MultiQueue scales with the number of in-
ternal queues and the number of sampled queues during removals, which both are
fixed at runtime. This is problematic for applications where the degree of available
parallelism changes dynamically, for example when traversing the graph on the right.
A relaxed priority queue that can adapt its quality can dynamically balance between
high scalability and high quality as needed.

Goal of the Thesis

The goal of this thesis is to develop and implement a variant of the MultiQueue that
dynamically adjusts its quality based on the available parallelism. The C++ implemen-
tation of the MultiQueue2 can be used as a starting point. The simplest approach for
the dynamic adjustment is the number of considered queues in the removal operation,
but more advanced strategies should also be considered.
The data structure should be evaluated on a variety of benchmarks, including stress
tests and real-world applications. A theoretical analysis of the runtime and quality
complexity is also part of the thesis. We suggest building the implementation on top
of the existing C++ MultiQueue2, but it can also be done in Rust if desired.

Requirements
• Solid foundation in (concurrent) algorithms and data structures
• Experience in C++ or Rust
• Experience in parallel programming is a plus

1 https://arxiv.org/abs/2107.01350
2 https://github.com/marvinwilliams/multiqueue

Contact: Marvin Williams (williams@kit.edu) and Kåre von Geijer (kare.von.geijer@chalmers.se)
Informatikgebäude am Fasanengarten, Raum 206

https://arxiv.org/abs/2107.01350
https://github.com/marvinwilliams/multiqueue
williams@kit.edu
kare.von.geijer@chalmers.se

