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Graph Partitioning

Given a graph G = (V , E , c,ω), partition V into k disjoint blocks such that:

blocks have roughly the same weight: c(Vi ) ≤ (1 + ε)d c(V )
k e

while minimizing the edge cut:
∑

i 6=j ω(Ei j )
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Graph Partitioning for Parallel Computing

Distributed graph across PEs
minimize communication between PEs

Available parallelism increases steadily

Established GPs tools are not designed to handle large k

[HoreKa, KIT]
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Graph Partitioning for Parallel Computing

Distributed graph across PEs
minimize communication between PEs

Available parallelism increases steadily

Established GPs tools are not designed to handle large k

[HoreKa, KIT]

our contribution: improve state-of-the-art there

Graph partitioning is NP-complete
⇒ we focus on heuristics
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Graph Partitioning Tools: our Contribution
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Multilevel Graph Partitioning

output
partition

input
graph

IP

coarsening refinement

local improvementcontract

”small” graph ≈ 2C nodes

How do we get from 2 to k blocks?
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MGP: Recursive Bipartitioning

log(k )

input
graph

bipartition

extract blocks

. . . repeat . . .

output
partition

+ large k not a problem

- ≈ O((n/p) log(k )) on p PEs

- no k -way local improvement

- no global view on k -way partition
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MGP: Direct k -way

output
partition

input
graph

k -way IP

coarsening refinement

k -way local improvementcontract

”small” graph ≈ kC nodes

+ linear time algorithm

+ k -way local improvement

- collapses for kC ≈ n
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PE 2

uncontraction

≥ 2C work per PE
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KaMinPar: Shared-memory Deep MGP

using established building-blocks for graph partitioning

Coarsening: size-constrained label propagation

Initial bipartitioning: BFS + greedy graph growing + 2-way FM

Uncoarsening: size-constrained label propagation + balancer

[Raghavan et al. 2007]
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using established building-blocks for graph partitioning

Coarsening: size-constrained label propagation

Initial bipartitioning: BFS + greedy graph growing + 2-way FM

Uncoarsening: size-constrained label propagation + balancer
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. . . . . .. . . . . .

[Raghavan et al. 2007]
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Experiments – Benchmark Setup

Shared-memory parallel

Scaling: up to 64 cores of 1 AMD EPYC 7702 @ 2 GHz, 1 TB RAM

Comparison: 10 cores of 1 of 2 Intel Xeon Gold 6230 @ 2.1 GHz, 192 GB RAM

Benchmark set: 21 large graphs
100M ≤ m ≤ 1.8G

k ∈ {211, 214, 217, 220}

Comparing KaMinPar with:
Mt-KaHiP
Mt-Metis-{K, RB}
PuLP
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Experiments – Results

84 instances on 10 cores

Algorithm # timeout # crash # imbalanced # feasible rel. time rel. cut

KaMinPar 0% 0% 0% 100% 1.00 1.00

Mt-Metis-K 23% 12% 61% 5% 11.91 0.99
Mt-Metis-RB 0% 30% 65% 5% 5.61 1.03
Mt-KaHiP 37% 8% 13% 42% 38.64 1.00
PuLP 90% 0% 0% 10% 73.52 1.25
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Mt-KaHiP 37% 8% 13% 42% 38.64 1.00
PuLP 90% 0% 0% 10% 73.52 1.25

Time limit = 1 h

Running time < 6 min
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orders of magnitude faster
vs direkt k -way
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Experiments – Benchmark Setup

Sequential (paper only)

Shared-memory parallel

System: 10 cores of 1 of 2 Intel Xeon Gold 6230 @ 2.1 GHz, 96 GB RAM

Benchmark set: 197 graphs (1 k ≤ m ≤ 1.8 G)

k ∈ {2, 4, 8, 16, 32, 64}

Comparing KaMinPar with:
Mt-KaHiP
Mt-Metis
PuLP

KaHiP-fsocial
Metis

12



Daniel Seemaier – Deep Multilevel Graph Partitioning Institute of Theoretical Informatics, Algorithmics II

Experiments – Benchmark Setup

Sequential (paper only)

Shared-memory parallel

System: 10 cores of 1 of 2 Intel Xeon Gold 6230 @ 2.1 GHz, 96 GB RAM

Benchmark set: 197 graphs (1 k ≤ m ≤ 1.8 G)

k ∈ {2, 4, 8, 16, 32, 64}

Comparing KaMinPar with:
Mt-KaHiP
Mt-Metis
PuLP

KaHiP-fsocial
Metis

”normal” values of k

12



Daniel Seemaier – Deep Multilevel Graph Partitioning Institute of Theoretical Informatics, Algorithmics II

Experiments – Edge Cut

13



Daniel Seemaier – Deep Multilevel Graph Partitioning Institute of Theoretical Informatics, Algorithmics II

Experiments – Edge Cut

best on 60%

13



Daniel Seemaier – Deep Multilevel Graph Partitioning Institute of Theoretical Informatics, Algorithmics II

Experiments – Edge Cut

best on 60%

within 1.1 on 95%

13



Daniel Seemaier – Deep Multilevel Graph Partitioning Institute of Theoretical Informatics, Algorithmics II

Experiments – Edge Cut

Mt-KaHiP

KaMinPar Mt-Metis

PuLP

13



Daniel Seemaier – Deep Multilevel Graph Partitioning Institute of Theoretical Informatics, Algorithmics II

Experiments – Edge Cut

Mt-KaHiP

KaMinPar Mt-Metis

PuLP

implements FM

13



Daniel Seemaier – Deep Multilevel Graph Partitioning Institute of Theoretical Informatics, Algorithmics II

Experiments – Edge Cut

Imbalance > 3%

Mt-KaHiP

KaMinPar Mt-Metis

PuLP

30%

13



Daniel Seemaier – Deep Multilevel Graph Partitioning Institute of Theoretical Informatics, Algorithmics II

Experiments – Edge Cut

Imbalance > 3%

Mt-KaHiP

KaMinPar Mt-Metis

PuLP

30%

13



Daniel Seemaier – Deep Multilevel Graph Partitioning Institute of Theoretical Informatics, Algorithmics II

Experiments – Running Time

Algorithm T T [m ≥ 106] T [m ≥ 108] rel. cut # infeasible

KaMinPar 10 0.39 s 0.85 s 9.36 s 1.00 0

Mt-Metis 10 0.48 s 1.49 s 30.36 s 1.00 349
Mt-KaHiP 10 1.33 s 3.84 s 55.76 s 0.94 6
PuLP 10 1.11 s 5.70 s 95.93 s 2.39 72

Metis 1.00 s 4.15 s 97.44 s 1.05 2
KaHiP-fsocial 2.93 s 11.05 s 200.67 s 1.03 8

# instances 1,150 832 196
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Conclusion

Deep Multilevel Graph Partitioning:
Integrate coarsening deep into initial partitioning

KaMinPar: deep MGP implementation
Order of magnitude faster for large k than competing tools
Comparable to competing tools for small k

Future: limits of MGP, k = O(n) – parallel FM – distributed DMGP

Supplementary data available online:
Full experimental results: algo2.iti.kit.edu/seemaier/deep_mgp/
Source code: github.com/KaHIP/KaMinPar
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