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Graph Partitioning

Given a graph G = (V, E, ¢, w), partition V into k disjoint blocks such that:

B blocks have roughly the same weight: ¢(V;) < (1 +¢)[ 2]
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® while minimizing the edge cut: 3_,_, w(Ey)
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Given a graph G = (V, E, ¢, w), partition V into k disjoint blocks such that:

node weights /‘ ‘\ edge weights
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Graph Partitioning for Parallel Computing AT

Karlsruhe Institute of Technology

@ Distributed graph across PEs
minimize communication between PEs

@ Available parallelism increases steadily

@ Established GPs tools are not designed to handle large k
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@ Distributed graph across PEs
minimize communication between PEs

@ Available parallelism increases steadily

@ Established GPs tools are not designed to handle large k
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our contribution: improve state-of-the-art there
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Graph partitioning is NP-complete
— we focus on heuristics
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How do we get from 2 to k blocks?
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MGP: Recursive Bipartitioning QAT
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+ large k not a problem
= =~ O((n/p)log(k)) on p PEs

~ no k-way local improvement

~ no global view on k-way partition
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A

+ linear time algorithm

+ k-way local improvement

= collapses for kKC ~ n
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@ our contribution: integrate coarsening into initial partitioning
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@ our contribution: integrate coarsening into initial partitioning
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+ kC = nnot a problem

+ O((n/p) max(1,log(kC/n)) + log® n) on p PEs

+ k-way local improvement
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@ using established building-blocks for graph partitioning
® Coarsening: size-constrained label propagation
® Initial bipartitioning: BFS + greedy graph growing + 2-way FM

® Uncoarsening: size-constrained label propagation + balancer
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Experiments — Benchmark Setup &‘(IT
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@ Scaling: up to 64 cores of 1 AMD EPYC 7702 @ 2 GHz, 1 TB RAM
@ Comparison: 10 cores of 1 of 2 Intel Xeon Gold 6230 @ 2.1 GHz, 192 GB RAM

@ Benchmark set: 21 large graphs
®100M < m<1.8G

B kc {211,214,217,220}

@ Comparing KaMinPar with:

® Mt-KaHiP
® Mt-Metis-{K, RB} Shared-memory parallel

@ PulLP
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Experiments — Results ﬂ(".

64 256 1OI24
Single-Threaded Running Time |s|

Threads == 4 === 10 == (4
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Experiments — Results

AT
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Algorithm # timeout # crash # imbalanced | # feasible | rel. time rel. cut
KaMinPar 0% 0% 0% 100% 1.00 1.00
Mt-Metis-K 23% 12% 61% 5% 11.91 0.99
Mt-Metis-RB 0% 30% 65% 5% 5.61 1.03
Mt-KaHiP 37% 8% 13% 42% 38.64 1.00
PuLP 90% 0% 0% 10% 73.52 1.25

84 instances on 10 cores
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Experiments — Benchmark Setup
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@ System: 10 cores of 1 of 2 Intel Xeon Gold 6230 @ 2.1 GHz, 96 GB RAM

@ Benchmark set: 197 graphs (1 k<m<1.8G)
W kec{24,8,16,32,64}

@ Comparing KaMinPar with:
| Mit-KaHiP
& Mt-Metis Shared-memory parallel
@ PulLP

@ KaHiP-fsocial
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Experiments — Running Time

AT

llllllllllllllllllllllllllllll

Algorithm T T[m>10°1 T[m > 10%] | rel. cut #i
KaMinPar 10 ||0.39 s 0.85s 9.36 s 1.00
Mt-Metis 10 0.48 s 1.49 s 30.36 s 1.00
Mt-KaHIP 10 ||1.33 s 3.84 s 55.76 s 0.94
PuLP 10 1.11 s 5.70 s 95.93 s 2.39
Metis 1.00 s 415 s 97.44 s 1.05
KaHiP-fsocial [|2.93 s 11.05s 200.67 s 1.03

# Instances 1,150 832 196

Daniel Seemaier — Deep Multilevel Graph Partitioning

Institute of Theoretical Informatics, Algorithmics I
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Conclusion A\‘(IT

Karlsruhe Institute of Technology

@ Deep Multilevel Graph Partitioning:
® Integrate coarsening deep into initial partitioning

@ KaMinPar: deep MGP implementation
® Order of magnitude faster for large k than competing tools
® Comparable to competing tools for small k

® Future: limits of MGP, k = O(n) — parallel FM — distributed DMGP

@ Supplementary data available online:
® Full experimental results: algo2.iti.kit.edu/seemaier/deep_mgp/
® Source code: github.com/KaHIP/KaMinPar

Daniel Seemaier — Deep Multilevel Graph Partitioning Institute of Theoretical Informatics, Algorithmics I
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® ’Standard” balance constraint: ¢(V;) < (1 + &)[ 4]

® Problem: NP-complete for general node weights
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® Our approach: relax to ¢(V;) < max((1 + )22, 42 4 max, ¢(v))

® the good: trivial to satisfy

® the bad: uncontraction changes max, c(v)

® put: violation bounded by max, c(v)
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Maintaining the Balance Constraint &‘(IT

Karlsruhe Institute of Technology

@ "Standard” balance constraint: ¢(V;) < (1 +¢) (T

® Problem: NP-complete for general node weights

® Our approach: relax to ¢(V;) < max((1 + ¢)< k k ) + max, c(v))
X

® the good: trivial to satisfy

® the bad: uncontraction changes max, c(v)
® put: violation bounded by max, c(v)
move max, c(v) weight
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