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Hash Tables – Definitions

find
insert

erase

All preferably in O(1)

set S ⊆ U = Keys× Values

each Key is unique in S

Operations

n = |S| elements in m cells
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Hash Tables – Mapping

〈key, value〉

h(key)

hash function
h(·) mapping

Position depends on the key

Independent of the time of insertion
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Hash Tables – Chaining = Balls into Bins

Worst case find is in O(n)

Probabilistic Bounds
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Hash Tables – Chaining = Balls into Bins

Worst case find is in O(n)

Probabilistic Bounds

Hashing with Chaining = Balls into Bins

?
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Excursion – Probability Theory

sample space Ω random hash functions / mapping
Keys 7→ {0..m − 1}

events ε ⊂ Ω keys k1 and k2 have a collision
εk1,k2 = {h ∈ Ω : h(k1) = h(k2)}

probability px of x ∈ Ω uniform distribution
∀h ∈ Ω : ph = 1

m|Keys|

probability of an event
P[ε] =

∑
x∈ε px

P[εk1,k2 ] = 1/m

random variable
X : Ω→ R

#elements hashed to 0
X0 = |{x ∈ S : h(x) = 0}|

expectation
E [X ] =

∑
y∈Ω py X (y )

expected #elements in one cell
E [X0] = n

m

For Example:

* assuming a uniform
hash function

*

*
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Hash Tables – Chaining (probabilistic) Bound

?

E [X0] = n
m

E [X + Y ] = E [X ] + E [Y ]

Linearity of the Expectation

this is always true independent of correlations between X and Y

Consider one {0, 1} random variable for each element Xe

Xe =
{

1 h(e) = 0
0 otherwise

E [X0] = E
[∑

e∈S Xe
]

=
∑

e∈S E [Xe]

=
∑

e∈S P [Xe = 1] = n
m
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Hash Tables – Other Bounds

Multi Hashing

Linear Probing

for each collision use a new hash function

t [h1], t [h2], . . . have p = δ chance to be empty

E [#probesinsert] = E [#probesfind x /∈S ] = 1
δ

E [#probesfind x∈S ] abhängig vom Einfügezeitpunkt

in case of a collision use the next empty cell

probability of finding a cell depends on its predecessor

E [#probesinsert] = E [#probesfind x /∈S ] = O( 1
δ2 )

E [#probesfind x∈S ] = O( 1
δ

)

δ = m−n
m

* needs stronger assumption than
uniform hash function,
e.g. fully random hash function

*

*
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Hash Tables – More Hashing Issues

High probability and worst case guarantees

more requirements on the hash functions

Hashing as a means of load balancing in parallel systems,
e.g., storage servers

Different disk sizes and speeds
Adding disks / replacing failed disks without much copying
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Space Efficient Hashing

densely filled table

lots of collisions

needs good collision handling

static size (post-initialization)

fixed number of elements

n

εn

+
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Space Efficient Hashing – Cuckoo Hashing

if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

?

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

2 alternative buckets per element
h1(k ), h2(k )

if all cells are full, move existing elements

breadth-first-search

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

h1(k )

h2(k )

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

2 alternative buckets per element
h1(k ), h2(k )

if all cells are full, move existing elements

breadth-first-search

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

h1(k )

h2(k )

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

2 alternative buckets per element
h1(k ), h2(k )

if all cells are full, move existing elements

breadth-first-search

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

h1(k )

h2(k )

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:

h1(k )

h2(k )

constant lookups independent of fill ratio

element→ const. number possible cells

d alternative buckets per element
h1(k ), ..., hd (k )

breadth-first-search

h3(k )

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:

h1(k )

h2(k )

constant lookups independent of fill ratio

element→ const. number possible cells

d alternative buckets per element
h1(k ), ..., hd (k )

breadth-first-search

h3(k )

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

d alternative buckets per element
h1(k ), ..., hd (k )

buckets of B cells

breadth-first-search

h1(k )

h2(k )

h3(k )

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

d alternative buckets per element
h1(k ), ..., hd (k )

buckets of B cells

breadth-first-search

h1(k )

h2(k )

h3(k )

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

d alternative buckets per element
h1(k ), ..., hd (k )

buckets of B cells

breadth-first-search

h1(k )

h2(k )

h3(k )

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Parameters

0.85 0.90 0.95 1.00

0
25

0
8/3
8/2
4/3
4/2

enforced min load δmax

35
0

15
0

50

tim
e
×
δ

m
ax

[n
s]

10



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Final Size Unknown

conservative estimate

strict bound might not be reasonable

less space efficient

n

εn

n′

εn′

n ≤ n′
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Space Efficient Hashing – Final Size Unknown

conservative estimate

optimistic estimate

might overfill

needs growing strategy

n

εn

n′

εn′

n ≈ n′

slow

n′

εn′

needs growing
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Space Efficient Hashing – Final Size Unknown

conservative estimate

number of elements changes over time

optimistic estimate

cannot be initialized with max size
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Space Efficient Hashing – Resizing

growing has to be in small steps

basic approaches

additional table full migration inplace+reorder

+

reorder

most common
in libraries
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Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k ) = h(k ) · size

maxHash + 1

very fast migration due to cache efficiency
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Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k ) = h(k ) · size

maxHash + 1

very fast migration due to cache efficiency

inplace variant going from right to left
not portable
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Contribution – Dynamic Space Efficient Cuckoo Table

use subtables of unequal size (use powers of 2)

use displacements to equalize load imbalance

doubling one subtable⇔ small overall factor

hi (k )⇒ hi t (k ) table and hip(k ) position in table

h2t (k ) h1t (k )
h2p(k ) h1p(k )
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Result – Insertion into Growing Table
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Result – Word Count Benchmark
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Result – Load Bound
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we are in cooperation to prove bounds
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Conclusion

lack of published work on dynamic hash tables

cuckoo displacement offers more untapped potential

only dynamic tables offer true space efficiency

even simple techniques are largely unpublished

code available:https://github.com/TooBiased/DySECT

DySECT
addressing uses bit operations
no overallocation constant lookup
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