

Hashing

Lecture · 11. June 2019 Tobias Maier and Peter Sanders

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

THE OXFORD ENGLISH DICTIONARY	THE OXFORD E N G L I S H DICTIONARY	THE OXFORD E N G L I S H DICTIONARY	THE OXFORD ENGLISH DICTIONARY	THE OXFORD E N G L I S H DICTIONARY	THE OXFORD E N G L I S H DICTIONARY	THE OXFORD E N G L I S H DICTIONARY	THE OXFORD E N G L I S H DICTIONARY	Updated Revised KNUTH The	THE OXFORD E N G L I S H DICTIONARY	THE OXFORD ENGLISH DICTIONARY	THE OXFORD E N G L I S H DICTIONARY	THE OXFORD B N G L I S H DICTIONARY	THE OXFORD ENGLISH DICTIONARY
voli A-B	vol.11 C	vol.111 D-E	vol.iv F-G	^{vol.v} H-K	vol.vi L-M	vol.vn N-Poy	vol.viii Poy-Ry	Art of Computer Sorting and Sec	volix S-Soldo	vol.x Sale-Sz	vol.xr T-U	vol.xii V-Z bibliography	SUPPLEMENT
	973-99 1975-99 1975-99							Programming uching					R 423

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Hash Tables – Definitions

• set $S \subseteq U = Keys \times Values$

 \bullet each Key is unique in S

 \blacktriangleright *n* = |*S*| elements in *m* cells

All preferably in O(1)

Hash Tables – Mapping

- Position depends on the key
- Independent of the time of insertion

Hash Tables – Chaining = Balls into Bins

Worst case find is in O(n)

Probabilistic Bounds

Hash Tables – Chaining = Balls into Bins

Excursion – Probability Theory

For Example:

- random hash functions / mapping $Keys \mapsto \{0..m 1\}$
- keys k_1 and k_2 have a collision $\varepsilon_{k_1,k_2} = \{h \in \Omega : h(k_1) = h(k_2)\}$
- uniform distribution $\forall h \in \Omega : p_h = \frac{1}{m^{|Keys|}}$
- $\blacksquare \mathbb{P}[\varepsilon_{k_1,k_2}] = 1/m^*$
- #elements hashed to 0 $X_0 = |\{x \in S : h(x) = 0\}|$
- expected #elements in one cell $E[X_0] = \frac{n}{m}^*$ * assuming a uniform hash function

• sample space Ω

events $\varepsilon \subset \Omega$

- probability p_x of $x \in \Omega$
- probability of an event $\mathbb{P}[\varepsilon] = \sum_{x \in \varepsilon} p_x$
- random variable $X: \Omega \to \mathbb{R}$
- expectation $E[X] = \sum_{y \in \Omega} p_y X(y)$

Excursion – Probability Theory

For Example:

- random hash functions / mapping $Keys \mapsto \{0..m 1\}$
- keys k_1 and k_2 have a collision $\varepsilon_{k_1,k_2} = \{h \in \Omega : h(k_1) = h(k_2)\}$
- uniform distribution $\forall h \in \Omega : p_h = \frac{1}{m^{|Keys|}}$
- $\blacksquare \mathbb{P}[\varepsilon_{k_1,k_2}] = 1/m^*$
- #elements hashed to 0 $X_0 = |\{x \in S : h(x) = 0\}|$
- expected #elements in one cell $E[X_0] = \frac{n}{m}^*$ * assuming a uniform hash function

• sample space Ω

events $\varepsilon \subset \Omega$

- probability p_x of $x \in \Omega$
- probability of an event $\mathbb{P}[\varepsilon] = \sum_{x \in \varepsilon} p_x$
- random variable $X: \Omega \to \mathbb{R}$
- expectation $E[X] = \sum_{y \in \Omega} p_y X(y)$

Hash Tables – Chaining (probabilistic) Bound

Linearity of the Expectation

E[X + Y] = E[X] + E[Y]

this is always true independent of correlations between X and Y

Consider one $\{0, 1\}$ random variable for each element X_e

$$X_{e} = \begin{cases} 1 & h(e) = 0 \\ 0 & otherwise \end{cases}$$

$$E[X_{0}] = E\left[\sum_{e \in S} X_{e}\right] = \sum_{e \in S} E[X_{e}]$$

$$= \sum_{e \in S} \mathbb{P}[X_{e} = 1] = \frac{n}{m}$$

Hash Tables – Other Bounds

Multi Hashing

for each collision use a new hash function

- $t[h_1], t[h_2], \ldots$ have $p = \delta$ chance to be empty
- ► $E[\#probes_{insert}] = E[\#probes_{find x \notin S}] = \frac{1}{\delta}$ $E[\#probes_{find x \in S}]$ abhängig vom Einfügezeitpunkt

Linear Probing

in case of a collision use the next empty cell

probability of finding a cell depends on its predecessor

•
$$E[\#probes_{insert}] = E[\#probes_{find \ x \notin S}] = O(\frac{1}{\delta^2})^*$$

 $E[\#probes_{find \ x \in S}] = O(\frac{1}{\delta})^*$ * needs stron

 needs stronger assumption than uniform hash function,
 e.g. fully random hash function

Hash Tables – More Hashing Issues

High probability and worst case guarantees

more requirements on the hash functions

- Hashing as a means of load balancing in parallel systems, e.g., storage servers
 - Different disk sizes and speeds
 - Adding disks / replacing failed disks without much copying

Space Efficient Hashing

densely filled table

- Iots of collisions
- needs good collision handling
- static size (post-initialization)
- fixed number of elements

constant lookups independent of fill ratio

• element \rightarrow const. number possible cells

if all cells are full, move existing elements

- constant lookups independent of fill ratio
- element \rightarrow const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
 - 2 alternative buckets per element $h_1(k), h_2(k)$

- element \rightarrow const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
 - 2 alternative buckets per element $h_1(k), h_2(k)$

d-ary Bucket Cuckoo Hashing combination of different results, by: [Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9

- element \rightarrow const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
 - 2 alternative buckets per element $h_1(k), h_2(k)$

- constant lookups independent of fill ratio
- element \rightarrow const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
 - *d* alternative buckets per element $h_1(k), ..., h_d(k)$

- element \rightarrow const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
 - *d* alternative buckets per element $h_1(k), ..., h_d(k)$

- element \rightarrow const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
 - *d* alternative buckets per element $h_1(k), ..., h_d(k)$
 - buckets of B cells

- element \rightarrow const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
 - *d* alternative buckets per element $h_1(k), ..., h_d(k)$
 - buckets of B cells

- element \rightarrow const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
 - *d* alternative buckets per element $h_1(k), ..., h_d(k)$
 - buckets of B cells

Space Efficient Hashing – Cuckoo Parameters

- conservative estimate
- $n \leq n'$
- strict bound might not be reasonable
- less space efficient

Space Efficient Hashing – Final Size Unknown

- optimistic estimate $n \approx n'$
 - might overfill
 - needs growing strategy

Space Efficient Hashing – Final Size Unknown

- conservative estimate
- optimistic estimate
- number of elements changes over time
 - cannot be initialized with max size

Space Efficient Hashing – Resizing

growing has to be in small steps

basic approaches

additional table

full migration

most common in libraries

inplace+reorder

Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

- conventional wisdom: modulo table size
- faster: use hash value as scaling factor $idx(k) = h(k) \cdot \frac{size}{maxHash + 1}$
- very fast migration due to cache efficiency

Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: module table size

• faster: use hash value as scaling factor $idx(k) = h(k) \cdot \frac{size}{maxHash + 1}$

very fast migration due to cache efficiency

Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

- conventional wisdom: module table size
- faster: use hash value as scaling factor $idx(k) = h(k) \cdot \frac{size}{maxHash + 1}$
- very fast migration due to cache efficiency

use subtables of unequal size (use powers of 2)

- $h_i(k) \Rightarrow h_{it}(k)$ table and $h_{ip}(k)$ position in table
- doubling one subtable \Leftrightarrow small overall factor

use subtables of unequal size (use powers of 2)

- $h_i(k) \Rightarrow h_{it}(k)$ table and $h_{ip}(k)$ position in table
- doubling one subtable \Leftrightarrow small overall factor

use subtables of unequal size (use powers of 2)

- $h_i(k) \Rightarrow h_{it}(k)$ table and $h_{ip}(k)$ position in table
- doubling one subtable \Leftrightarrow small overall factor

Result – Insertion into Growing Table

Result – Word Count Benchmark

Result – Load Bound

Conclusion

only dynamic tables offer true space efficiency

- lack of published work on dynamic hash tables
 - even simple techniques are largely unpublished
- DySECT
 no overallocation
 constant lookup
 - addressing uses bit operations
- cuckoo displacement offers more untapped potential
- code available:https://github.com/TooBiased/DySECT

