
Hashing

Lecture · 11. June 2019
Tobias Maier and Peter Sanders

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

www.kit.edu

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Hash Tables – Definitions

find
insert

erase

All preferably in O(1)

set S ⊆ U = Keys× Values

each Key is unique in S

Operations

n = |S| elements in m cells

1

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Hash Tables – Mapping

〈key, value〉

h(key)

hash function
h(·) mapping

Position depends on the key

Independent of the time of insertion

2

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Hash Tables – Chaining = Balls into Bins

Worst case find is in O(n)

Probabilistic Bounds

3

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Hash Tables – Chaining = Balls into Bins

Worst case find is in O(n)

Probabilistic Bounds

Hashing with Chaining = Balls into Bins

?

3

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Excursion – Probability Theory

sample space Ω random hash functions / mapping
Keys 7→ {0..m − 1}

events ε ⊂ Ω keys k1 and k2 have a collision
εk1,k2 = {h ∈ Ω : h(k1) = h(k2)}

probability px of x ∈ Ω uniform distribution
∀h ∈ Ω : ph = 1

m|Keys|

probability of an event
P[ε] =

∑
x∈ε px

P[εk1,k2] = 1/m

random variable
X : Ω→ R

#elements hashed to 0
X0 = |{x ∈ S : h(x) = 0}|

expectation
E [X] =

∑
y∈Ω py X (y)

expected #elements in one cell
E [X0] = n

m

For Example:

* assuming a uniform
hash function

*

*

4

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Excursion – Probability Theory

sample space Ω random hash functions / mapping
Keys 7→ {0..m − 1}

events ε ⊂ Ω keys k1 and k2 have a collision
εk1,k2 = {h ∈ Ω : h(k1) = h(k2)}

probability px of x ∈ Ω uniform distribution
∀h ∈ Ω : ph = 1

m|Keys|

probability of an event
P[ε] =

∑
x∈ε px

P[εk1,k2] = 1/m

random variable
X : Ω→ R

#elements hashed to 0
X0 = |{x ∈ S : h(x) = 0}|

expectation
E [X] =

∑
y∈Ω py X (y)

expected #elements in one cell
E [X0] = n

m

For Example:

* assuming a uniform
hash function

*

*

4

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Hash Tables – Chaining (probabilistic) Bound

?

E [X0] = n
m

E [X + Y] = E [X] + E [Y]

Linearity of the Expectation

this is always true independent of correlations between X and Y

Consider one {0, 1} random variable for each element Xe

Xe =
{

1 h(e) = 0
0 otherwise

E [X0] = E
[∑

e∈S Xe
]

=
∑

e∈S E [Xe]

=
∑

e∈S P [Xe = 1] = n
m

5

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Hash Tables – Other Bounds

Multi Hashing

Linear Probing

for each collision use a new hash function

t [h1], t [h2], . . . have p = δ chance to be empty

E [#probesinsert] = E [#probesfind x /∈S] = 1
δ

E [#probesfind x∈S] abhängig vom Einfügezeitpunkt

in case of a collision use the next empty cell

probability of finding a cell depends on its predecessor

E [#probesinsert] = E [#probesfind x /∈S] = O(1
δ2)

E [#probesfind x∈S] = O(1
δ

)

δ = m−n
m

* needs stronger assumption than
uniform hash function,
e.g. fully random hash function

*

*

6

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Hash Tables – More Hashing Issues

High probability and worst case guarantees

more requirements on the hash functions

Hashing as a means of load balancing in parallel systems,
e.g., storage servers

Different disk sizes and speeds
Adding disks / replacing failed disks without much copying

7

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing

densely filled table

lots of collisions

needs good collision handling

static size (post-initialization)

fixed number of elements

n

εn

+

8

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

?

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

2 alternative buckets per element
h1(k), h2(k)

if all cells are full, move existing elements

breadth-first-search

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

h1(k)

h2(k)

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

2 alternative buckets per element
h1(k), h2(k)

if all cells are full, move existing elements

breadth-first-search

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

h1(k)

h2(k)

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

2 alternative buckets per element
h1(k), h2(k)

if all cells are full, move existing elements

breadth-first-search

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

h1(k)

h2(k)

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:

h1(k)

h2(k)

constant lookups independent of fill ratio

element→ const. number possible cells

d alternative buckets per element
h1(k), ..., hd (k)

breadth-first-search

h3(k)

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:

h1(k)

h2(k)

constant lookups independent of fill ratio

element→ const. number possible cells

d alternative buckets per element
h1(k), ..., hd (k)

breadth-first-search

h3(k)

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

d alternative buckets per element
h1(k), ..., hd (k)

buckets of B cells

breadth-first-search

h1(k)

h2(k)

h3(k)

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

d alternative buckets per element
h1(k), ..., hd (k)

buckets of B cells

breadth-first-search

h1(k)

h2(k)

h3(k)

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Hashing

if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:

constant lookups independent of fill ratio

element→ const. number possible cells

d alternative buckets per element
h1(k), ..., hd (k)

buckets of B cells

breadth-first-search

h1(k)

h2(k)

h3(k)

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

9

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Cuckoo Parameters

0.85 0.90 0.95 1.00

0
25

0
8/3
8/2
4/3
4/2

enforced min load δmax

35
0

15
0

50

tim
e
×
δ

m
ax

[n
s]

10

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Final Size Unknown

conservative estimate

strict bound might not be reasonable

less space efficient

n

εn

n′

εn′

n ≤ n′

11

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Final Size Unknown

conservative estimate

optimistic estimate

might overfill

needs growing strategy

n

εn

n′

εn′

n ≈ n′

slow

n′

εn′

needs growing

11

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Final Size Unknown

conservative estimate

number of elements changes over time

optimistic estimate

cannot be initialized with max size

11

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Space Efficient Hashing – Resizing

growing has to be in small steps

basic approaches

additional table full migration inplace+reorder

+

reorder

most common
in libraries

12

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k) = h(k) · size

maxHash + 1

very fast migration due to cache efficiency

13

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k) = h(k) · size

maxHash + 1

very fast migration due to cache efficiency

13

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k) = h(k) · size

maxHash + 1

very fast migration due to cache efficiency

inplace variant going from right to left
not portable

13

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Contribution – Dynamic Space Efficient Cuckoo Table

use subtables of unequal size (use powers of 2)

use displacements to equalize load imbalance

doubling one subtable⇔ small overall factor

hi (k)⇒ hi t (k) table and hip(k) position in table

h2t (k) h1t (k)
h2p(k) h1p(k)

14

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Contribution – Dynamic Space Efficient Cuckoo Table

use subtables of unequal size (use powers of 2)

use displacements to equalize load imbalance

doubling one subtable⇔ small overall factor

hi (k)⇒ hi t (k) table and hip(k) position in table

h2t (k) h1t (k)
h2p(k) h1p(k)

14

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Contribution – Dynamic Space Efficient Cuckoo Table

use subtables of unequal size (use powers of 2)

use displacements to equalize load imbalance

doubling one subtable⇔ small overall factor

hi (k)⇒ hi t (k) table and hip(k) position in table

h2t (k) h1t (k)
h2p(k) h1p(k)

14

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result – Insertion into Growing Table

enforced min load δ
0.85 0.90 0.95 1.0

tim
e

pe
ro

p
·(

1−
δ
)

0
50

15
0

25
0[n
s]

1
1−δ “expected time” per insertion

B =8, H =3DySECT
Cuckoo
Lin Prob
Robin Hood

B =8, H =3

15

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result – Word Count Benchmark

enforced min load δ
0.85 0.90 0.95 1.0

tim
e

pe
ro

p

0
20

0
40

0
60

0
80

0

not normalized

[n
s] DySECT

Cuckoo
Lin Prob
Robin Hood

B =8, H =3
B =8, H =3

CommonCrawl (avg. 12×)

16

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result – Load Bound

0.9

216

0.99

0.999
1

218 222 224

0.927

0.967
0.978

0.989

0.997
0.997
0.998
0.9998

number of cells

hi
gh

es
ta

ch
ie

ve
d

lo
ad

220

B =8, H =3
B =8, H =2
B =4, H =3
B =4, H =2

we are in cooperation to prove bounds

17

Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Conclusion

lack of published work on dynamic hash tables

cuckoo displacement offers more untapped potential

only dynamic tables offer true space efficiency

even simple techniques are largely unpublished

code available:https://github.com/TooBiased/DySECT

DySECT
addressing uses bit operations
no overallocation constant lookup

18

