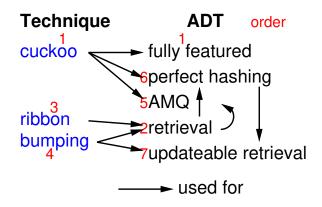


Space Efficient Hash Tables



www.kit.edu

Overview



Cuckoo Hashing

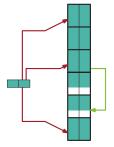
GFDL 1.2 Chris Romeiks

H-ary Bucket Cuckoo Hashing

based on

Pagh Rodler 01, Fotakis Pagh S Spirakis 03, Dietzfelbinger Weidling 05

- H hash functions address H buckets
- Buckets can store B elements each
- find: check these $H \times B$ possible locations
- delete: find, then overwrite with \perp
- insert: can move elements around (BFS or random walk)



H-ary Bucket Cuckoo Hashing

- + Highly space efficient even for H = 2, B = 4
- + Worst case constant find, delete
- + Empirically $\approx 1/\epsilon$ average insertion time when not too close to capacity limit
- reallocate when full

Capacity Limits $\hat{\alpha}$:

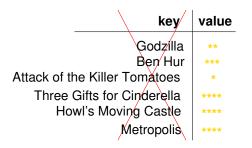
$H \setminus B$	1	2	3	4	5	6	7	8
2	.5	.897	.959	.980	.989	.994	.996	.998
3	.918	.988	.997	.9992				
4	.977	.998	.998	.99997				

Open Problem on Cuckoo Hashing

Conjecture:

Cuckoo hashing achieves expected insertion time $O(1/\epsilon)$ when the load factor is below $\hat{\alpha}(H, B) - \epsilon$.

Retrieval



Retrieval / Static Function Evaluation

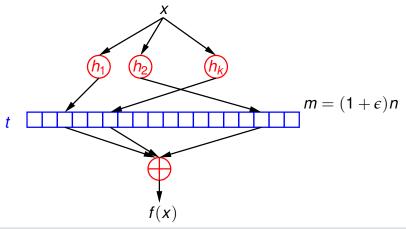
For $S = \{s_1, \dots, s_n\}$ allow evaluating $f : S \rightarrow \{0, 1\}^r$ where $S = \{s_1, \dots, s_n\}$. $\begin{array}{c|c} & \mathbf{key} & \mathbf{value} \\ & Godzilla & ** \\ & Ben Hur \\ & Attack of the Killer Tomatoes & * \\ & Three Gifts for Cinderella \\ & Howl's Moving Castle \\ & Metropolis & **** \end{array}$

Space near $r \cdot n$ bits?

Retrieval by Linear Algebra

A key x is mapped to k hash functions with range \mathbb{Z}_m and the computed output is

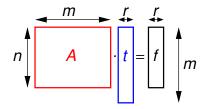
 $f(x) \coloneqq t[\mathbf{h}_1(x)] \oplus \cdots \oplus t[\mathbf{h}_k(x)]$



Finding t

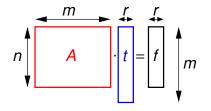
٠

Solve a system of linear equations over F_2 with kn nonzeroes determined by the hash values.



Brute Force

٠



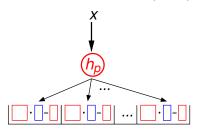
- n = n
- A is a random matrix
- + A has full rank with constant probability (store a succeeding hash seed)
- Cubic construction time
- Linear query time

Sharding – A Standard Trick

Assume r = O(1).

- Partitioning hash function h_p maps elements to shards of size $\Theta(\log n)$
- Constant time row operations using word parallelism
- $\frac{n}{\log n} \times \frac{\log^3 n}{\log n} = n \log n$ construction time
- Constant query time

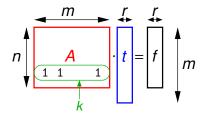
For $r = O(\log n)$, word size *w*: Query time $O\left(\frac{r \log n}{w}\right)$



Sparse Matrices

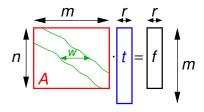
Most well known: $k \in 3..7$ random nonzeroes per row.

- + Linear time construction heuristics for sufficiently large m (typical value m = 1.21 n)
- Bad locality for query and construction



Ribbon – Sparse Matrices with Locality

Random bit pattern in a randomly placed window of width w



[Dietzfelbinger Weidling 19]:

For $m = (1 + \epsilon)n$ it works for some $w = \Omega\left(\frac{\log n}{\epsilon}\right)$.

- + High locality
- + Row operations can use word parallelism
- w large and dependent on n
 Sharding helps a bit.

Ribbon Solving

Function ribbonSolve(A, f, **var** $x = 0^m$) : bring A into row-echelon form (REM) backsubstitution

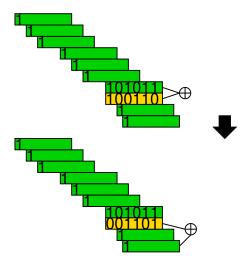
Ribbon Solving


```
Function ribbonSolve(A, f, var x = 0^m):
  placed = (0, ..., 0) : Array 1..m of \{0, 1\}^{w}
  rhs = (0^{r}, ..., 0^{r}) : Array 1..m of \{0, 1\}^{r}
  for i := 1 to n do
                                             -- bring A into row-echelon form
        loop
              if a_i = 0^m then
                   if rhs_i = 0 then next iteration of for-loop
                   else return "failed after i - 1 rows"
             i:= min {\ell : a_{i\ell} = 1 }
             if placed_i = 0 then exit loop
              (a_i, f_i) \oplus = (placed_i, rhs_i)
        (placed_i, rhs_i) := (a_i, f_i)
  for i := m to 1 do

 – backsubtitution

        if placed<sub>i</sub> \neq 0 then x_i := (x \cdot \text{placed}_i) \oplus \text{rhs}_i
```

Ribbon Solving



Ribbon Solving – Analysis

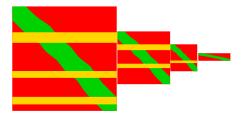
Assume max(r, w) = O(wordSize)

- Constant time per row operation
- O(w) row operations per row (e.g., left-to-right processing)
- O(*rn*) time for backsubstitution

Overall O(n(w + r)) time using bit parallelism.

Problem of basic Ribbon: Even if a single row insertion fails. the entire construction was in vain.

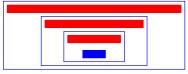
Idea: bump offending rows from the system and handle them separately.



Generic Bumped Retrieval (BuRe)

Class BuRe(E : set of Element) primary : ImperfectRetrieval fallback : Retrieval build primary from E and let b indicate the bumped elements build fallback from b

Function retrieve(e) if primary.isBumped(e) then return fallback.retrieve(e) else return primary.retrieve(e)

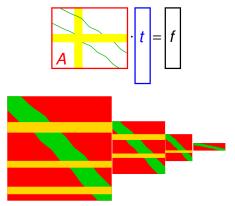


Originally used for filtered retrieval (FiRe) – simple, fast, updateable retrieval with \approx 4 bits overhead per element.

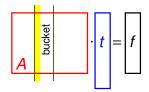
[Müller, Sanders, Schulze, Zhou; Retrieval and Perfect Hashing Using Fingerprinting, SEA 2014]

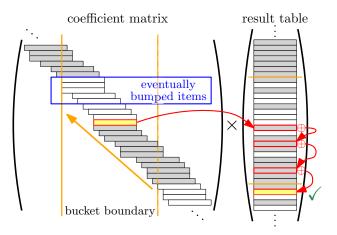
Central Observation:

Rather than identifying specific bumped rows, we can bump ranges of rows based on the position $h_0(x)$ of their window.

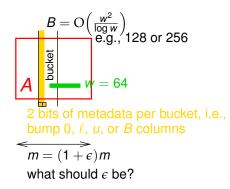


- Partition columns into buckets of size B
- Allow some starting range of each bucket to be bumped
- Element x is mapped to bucket h₀(x) x is bumped if h₀(x) is in the bumped range.
- Insert one bucket at a time from left to right
- Within a bucket, insert from right to left
- Bump remaining bucket when insertion fails (possibly more)

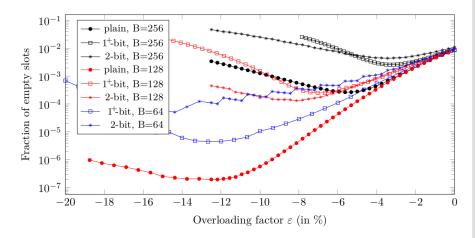




BuRR – Design Choices

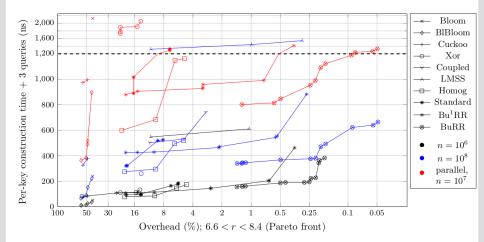


BuRR – Choice of ϵ (*w* = 64)



 \Rightarrow overloading almost eliminates empty cells

Space–Performance Tradeoffs



BuRR – Details and Variants

- Interleaved storage of table allows bit parallelism essentially one population count instruction per retrieved bit.
- Use appropriate $\epsilon > 0$ for ultimate fallback
- Master Hash Codes: $e \to \widetilde{\text{MHC}} \stackrel{\text{fast hash function}}{\to}$ further "random" data e.g., use $h(x) = a \cdot x + b$, with $a \mod 4 = 1$ and odd b.
- 1+ bit metadata: bump 0 or t columns plus exception table

64bit

- Sparse bit patterns: e.g. use 8 out of 64 bits per row. Faster for small r
- Bu¹RR: Each element is stored in 1 out of 2 layers.
- Parallelization: "implicit" sharding bump segment of w columns
- Variable bitlength encoding: For prefix-free codes like Huffman this reduces to 1-bit retrieval. Query can be made very fast using specialized interleaving techniques.

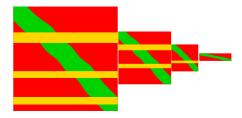
BuRR Analysis – Basic Ideas

- Ribbon solving is analogous to a variant of linear probing hashing
- Bumping mostly eliminates overloading
- $B = O\left(\frac{w^2}{\log w}\right)$

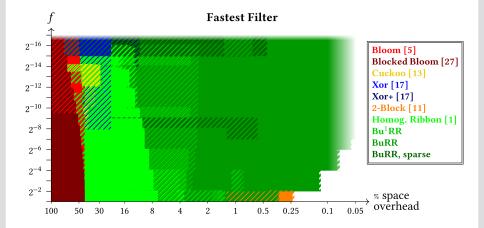
- larger buckets can have intra-bucket overloading
- Relative space overhead $B = O\left(\frac{\log w}{rw^2}\right)$

BuRR/Retrieval – Open Problems

- Efficient use of bit-manipulation and SIMD instructions
- Parallelization without sharding
- Fast retrieval of numbers mod p for p not a power of two.
 (Algebraically this is easy but how to use word parallelism?)
- Dynamization (S available but small update on compressed data structure) for more space efficient variants than FiRe.



Approximate Membership Query Data Structure/Filter (AMQ) aka "Bloom" Filter



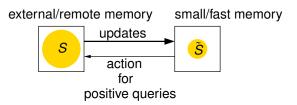
Karlsruhe Institute of Technology

AMQs

Maintain approximation \tilde{S} of a set $S = \{s_1, ..., s_n\}$. Query contains $(x) \in \{0, 1\}$ Case $x \in S$, result 1: true positive query Case $x \notin S$, result 0: true negative query Case $x \notin S$, result 1: false positive query false positive rate f

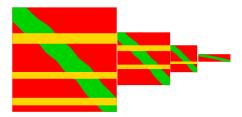
Lower space bound for \tilde{S} : 2^{-f}

Typical Application of AMQs



Static Retrieval Based AMQs

With BuRR, space log(1/f) + o(1) bits per entry.

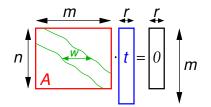


Homogeneous Ribbon Filter

Solve a homogenous system of equations.

 \Rightarrow always solvable.

Take a random solution.

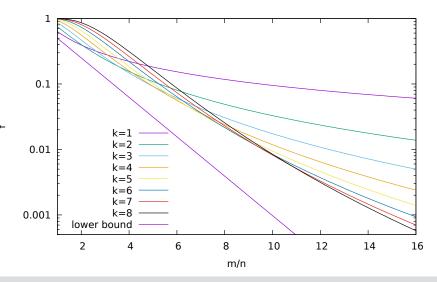


Bloom Filters – Simple Dynamic AMQs

Consider bit vector *b*[1..*an*] and hash functions h_1, \ldots, h_k with range 1...an. Inserting x: set $b[h_1(x)], \ldots, b[h_k(x)]$. contains(x) = $b[h_1(x)] \wedge \cdots \wedge b[h_k(x)]$. m = ancontains(x)

What about deletion?

Bloom Filters $f \ge 2^{-0.69a}$

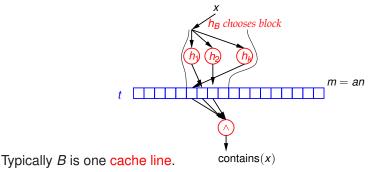


Blocked Bloom Filters

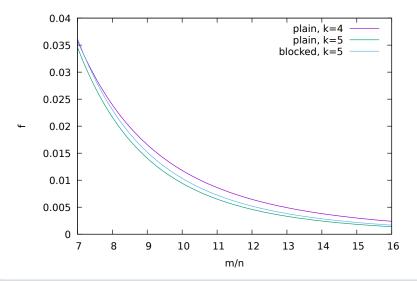
Consider bit vector b[1..an], a block selection function h_B with range 0..m/B, and hash functions $h_1, ..., h_k$ with range 1..B.

Inserting x: set $b[Bh_B(x) + h_1(x)], \ldots, b[Bh_B(x) + h_k(x)].$

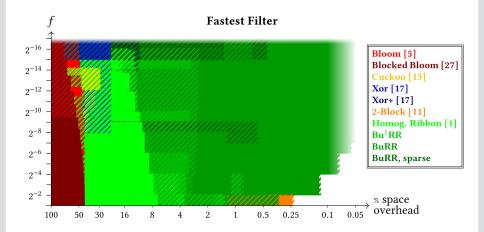
contains $(x) = b[Bh_B(x) + h_1(x)] \wedge \cdots \wedge b[Bh_B(x) + h_k(x)].$



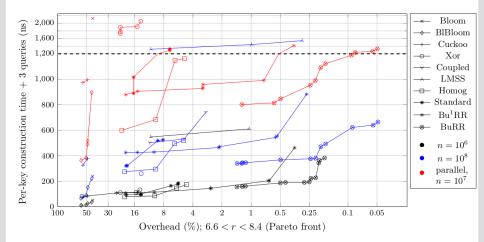
Blocked Bloom Filters *f*



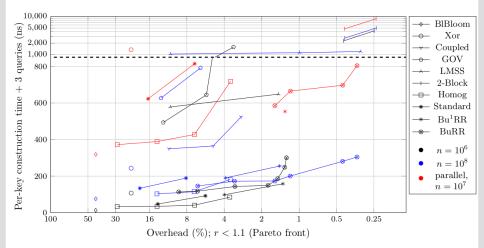
Tradeoff Speed, Space, f



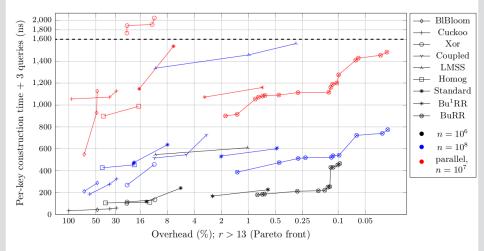
Tradeoff Speed, Space, f



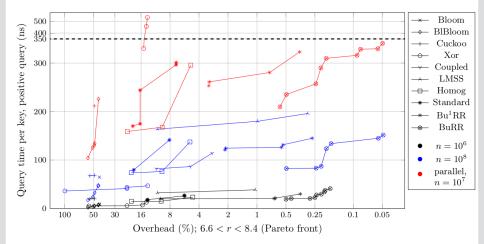
Tradeoff for small r



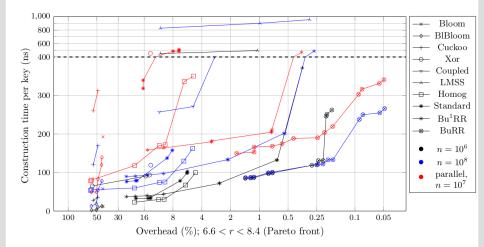
Tradeoff for large *r*



Tradeoff Query Time – Space (r = 8)



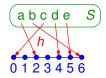
Tradeoff Constr. T. – Space (r = 8)



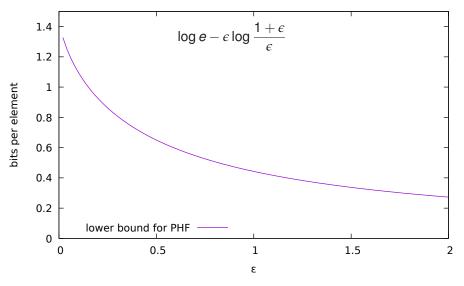
Perfect Hash Functions (PHF)

Given a set $S = \{s_1, \ldots, s_n\}$, find a function $h: S \rightarrow \mathbb{Z}_m$.

Minimal Perfect Hash Functions (MPHF): m = n.



Space Lower Bound $m = (1 + \epsilon)n$



Brute Force PHFs

Consider a sequence h_1, h_2, \ldots of random hash functions.

for i := 1 to ∞ do if $|h_i(S)| = |S|$ then break loop store i -- variable bitlength encoding

$$p := \mathbf{P}[\text{success}] = \frac{n!\binom{m}{n}}{m^n}$$

i has geometric distribution with parameter *p* Its entropy is about $\log 1/p$. Let $m = (1 + \epsilon)n$

$$\log \frac{1}{p} \approx n \log \frac{m}{m} - n \log \frac{n}{e} - n \log \frac{m}{n} - (m - n) \log \frac{m}{m - n}$$
$$= n \left(\log e - \epsilon \log \frac{1 + \epsilon}{\epsilon} \right)$$

use $n! \sim n \ln \frac{n}{e}$, $\log \binom{m}{n} \sim n \log \frac{m}{n} + (m - n) \log \frac{m}{n-k}$ when $m = \Theta(n)$

PHFs via Cuckoo-Hashing and Retrieval

Insert *S* into an *m*-cell cuckoo-hash-table using 2^r hash functions. Store the choice of hash function for each $x \in S$ in an *r*-bit retrieval data structure *f*.

$$h(x) \coloneqq h_{f(x)}(x)$$

With BuRR:

r	<i>m</i>	bits per el.	lower bound
1	$\approx 2n$	\approx 1	0.443
2	≈ 1.024 <i>n</i>	pprox 2	1.313

