
0 Peter Sanders, et al.

ITI AG Sanders Mincer picture: Rainer Zenz (Wikipedia), Licence CC-by-SA 2.5.

Space Efficient Hash Tables

KIT – The Research University in the Helmholtz Association www.kit.edu

Overview

1 Peter Sanders, et al.

1 1

2

3

4

5

6

7

order

used for

fully featured

perfect hashing

AMQ
ribbon
bumping

retrieval

Technique

cuckoo

ADT

updateable retrieval

Cuckoo Hashing

2 Peter Sanders, et al.

GFDL 1.2 Chris Romeiks

H-ary Bucket Cuckoo Hashing

3 Peter Sanders, et al.

based on
Pagh Rodler 01, Fotakis Pagh S Spirakis 03,
Dietzfelbinger Weidling 05

H hash functions address H buckets
Buckets can store B elements each
find: check these H × B possible locations
delete: find, then overwrite with ⊥
insert: can move elements around
(BFS or random walk)

H-ary Bucket Cuckoo Hashing

4 Peter Sanders, et al.

+ Highly space efficient even for H = 2, B = 4
+ Worst case constant find, delete
+ Empirically ≈ 1/ε average insertion time when

not too close to capacity limit
− reallocate when full

Capacity Limits α̂:
H\B 1 2 3 4 5 6 7 8

2 .5 .897 .959 .980 .989 .994 .996 .998
3 .918 .988 .997 .9992
4 .977 .998 .998 .99997

Open Problem on Cuckoo Hashing

5 Peter Sanders, et al.

Conjecture:
Cuckoo hashing achieves
expected insertion time O(1/ε)
when the load factor is below
α̂(H,B)− ε.

Retrieval

6 Peter Sanders, et al.

key value

Godzilla
Ben Hur

Three Gifts for Cinderella
Howl’s Moving Castle

Metropolis

Attack of the Killer Tomatoes *

**

Retrieval / Static Function Evaluation

7 Peter Sanders, et al.

For S = {s1, . . . , sn}
allow evaluating f : S → {0,1}r where S = {s1, . . . , sn}.

key value

Godzilla
Ben Hur

Three Gifts for Cinderella
Howl’s Moving Castle

Metropolis

Attack of the Killer Tomatoes *

**

Space near r · n bits?

Retrieval by Linear Algebra

8 Peter Sanders, et al.

A key x is mapped to k hash functions with range Zm and the computed
output is

f (x):= t [h1(x)]⊕ · · · ⊕t [hk (x)]

h1 h2 hk

m = (1 + ε)n

x

f (x)

t

Finding t

9 Peter Sanders, et al.

Solve a system of linear equations over F2 with kn nonzeroes determined
by the hash values.

.

r r

mn

m

A t f. =

Brute Force

10 Peter Sanders, et al.

.

r r

mn

m

A t f. =

m = n
A is a random matrix

+ A has full rank with constant probability
(store a succeeding hash seed)

− Cubic construction time
− Linear query time

Sharding – A Standard Trick

11 Peter Sanders, et al.

Assume r = O(1).
Partitioning hash function hp maps elements to shards of size Θ(log n)
Constant time row operations using word parallelism

n
log n ×

log3 n
log n = n log n construction time

Constant query time
For r = O(log n), word size w : Query time O

(
r log n

w

)

. = . = . =

x

hp

...

...

Sparse Matrices

12 Peter Sanders, et al.

Most well known: k ∈ 3..7 random nonzeroes per row.
+ Linear time construction heuristics for sufficiently large m

(typical value m = 1.21n)
− Bad locality for query and construction

.

r r

mn

m

A t f. =
1 1 1

k

Ribbon –
Sparse Matrices with Locality

13 Peter Sanders, et al.

Random bit pattern in a randomly placed window of width w

r r

mn

m

t f. =
A

w

[Dietzfelbinger Weidling 19]:
For m = (1 + ε)n it works for some w = Ω

(
log n

ε

)
.

+ High locality
+ Row operations can use word parallelism
− w large and dependent on n

Sharding helps a bit.

Ribbon Solving

14 Peter Sanders, et al.

Function ribbonSolve(A, f , var x = 0m) :
bring A into row-echelon form (REM)
backsubstitution

row i
0

w

Ribbon Solving

15 Peter Sanders, et al.

Function ribbonSolve(A, f , var x = 0m) :
placed = 〈0, . . . ,0〉 : Array 1..m of {0,1}w

rhs = 〈0r , . . . ,0r 〉 : Array 1..m of {0,1}r

for i := 1 to n do –– bring A into row-echelon form
loop

if ai = 0m then
if rhsj = 0 then next iteration of for-loop
else return “failed after i − 1 rows”

j := min {` : ai` = 1}
if placedj = 0 then exit loop
(ai , fi)⊕= (placedj , rhsj)

(placedj , rhsj):= (ai , fi)
for j := m to 1 do –– backsubtitution

if placedj 6= 0 then xj := (x · placedj)⊕ rhsj

Ribbon Solving

16 Peter Sanders, et al.

1
1

1
1

1
1

1
1

101011
001101

1
1

1
1

1
1

101011
100110

1
1

Ribbon Solving – Analysis

17 Peter Sanders, et al.

Assume max(r ,w) = O(wordSize)
Constant time per row operation
O(w) row operations per row (e.g., left-to-right processing)
O(rn) time for backsubstitution

Overall O(n(w + r)) time using bit parallelism.

Bumped Ribbon Retrieval (BuRR)

18 Peter Sanders, et al.

Problem of basic Ribbon: Even if a single row insertion fails.
the entire construction was in vain.
Idea: bump offending rows from the system and handle them separately.

Generic Bumped Retrieval (BuRe)

19 Peter Sanders, et al.

Class BuRe(E : set of Element)
primary : ImperfectRetrieval
fallback : Retrieval
build primary from E and

let b indicate the bumped elements
build fallback from b

Function retrieve(e)
if primary.isBumped(e) then

return fallback.retrieve(e)
else return primary.retrieve(e)

Originally used for filtered retrieval (FiRe) – simple, fast, updateable
retrieval with ≈ 4 bits overhead per element.
[Müller, Sanders, Schulze, Zhou; Retrieval and Perfect Hashing Using Fingerprinting, SEA 2014]

Bumped Ribbon Retrieval (BuRR)

20 Peter Sanders, et al.

Central Observation:
Rather than identifying specific bumped rows, we can bump ranges of
rows based on the position h0(x) of their window.

t f. =
A

Bumped Ribbon Retrieval (BuRR)

21 Peter Sanders, et al.

Partition columns into buckets of size B
Allow some starting range of each bucket to be bumped
Element x is mapped to bucket h0(x) –
x is bumped if h0(x) is in the bumped range.
Insert one bucket at a time from left to right
Within a bucket, insert from right to left
Bump remaining bucket when insertion fails
(possibly more)

t f. =
A

bu
ck

et

Bumped Ribbon Retrieval (BuRR)

22 Peter Sanders, et al.

×

bucket boundary . . .

...

...

. . .

coefficient matrix result table

eventually
bumped items

�

⊕

⊕

⊕

BuRR – Design Choices

23 Peter Sanders, et al.

w = 64bu
ck

et

B = O
(

w2

log w

)
e.g., 128 or 256

A
2 bits of metadata per bucket, i.e.,
bump 0, `, u, or B columns

m = (1 + ε)m
what should ε be?

BuRR – Choice of ε (w = 64)

24 Peter Sanders, et al.

⇒ overloading almost eliminates empty cells

Space–Performance Tradeoffs

25 Peter Sanders, et al.

BuRR – Details and Variants

26 Peter Sanders, et al.

Interleaved storage of table allows bit parallelism – essentially one
population count instruction per retrieved bit.
Use appropriate ε > 0 for ultimate fallback

Master Hash Codes: e→
64bit︷ ︸︸ ︷

MHC fast hash function→ further “random” data
e.g., use h(x) = a · x + b, with a mod 4 = 1 and odd b.
1+ bit metadata: bump 0 or t columns plus exception table
Sparse bit patterns: e.g. use 8 out of 64 bits per row. Faster for small r
Bu1RR: Each element is stored in 1 out of 2 layers.
Parallelization: “implicit” sharding – bump segment of w columns
Variable bitlength encoding: For prefix-free codes like Huffman this
reduces to 1-bit retrieval. Query can be made very fast using
specialized interleaving techniques.

BuRR Analysis – Basic Ideas

27 Peter Sanders, et al.

Ribbon solving
is analogous to
a variant of
linear probing hashing
Bumping mostly
eliminates overloading

B = O
(

w2

log w

)
– larger buckets can have intra-bucket overloading

Relative space overhead B = O
(

log w
rw2

)

BuRR/Retrieval – Open Problems

28 Peter Sanders, et al.

Efficient use of bit-manipulation and SIMD instructions
Parallelization without sharding
Fast retrieval of numbers mod p for p not a power of two.
(Algebraically this is easy but how to use word parallelism?)
Dynamization (S available but small update on compressed data
structure) for more space efficient variants than FiRe.

Approximate Membership Query
Data Structure/Filter (AMQ)
aka “Bloom” Filter

29 Peter Sanders, et al.

AMQs

30 Peter Sanders, et al.

Maintain approximation S̃ of a set S = {s1, . . . , sn}.
Query contains(x) ∈ {0,1}
Case x ∈ S, result 1: true positive query
Case x 6∈ S, result 0: true negative query
Case x 6∈ S, result 1: false positive query
false positive rate f

Lower space bound for S̃: 2−f

Typical Application of AMQs

31 Peter Sanders, et al.

external/remote memory small/fast memory

action
for

positive queries

updates
S S̃

Static Retrieval Based AMQs

32 Peter Sanders, et al.

With BuRR, space log(1/f) + o(1) bits per entry.

Homogeneous Ribbon Filter

33 Peter Sanders, et al.

Solve a homogenous system of equations.
⇒ always solvable.
Take a random solution.

r r

mn

m

t 0. =
A

w

Bloom Filters – Simple Dynamic AMQs

34 Peter Sanders, et al.

Consider bit vector b[1..an] and
hash functions h1, . . . , hk with range 1..an.

Inserting x : set b[h1(x)], . . . , b[hk (x)].

contains(x) = b[h1(x)] ∧ · · · ∧ b[hk (x)].

h1 h2 hk

m = an

x

contains(x)

t

What about deletion?

Bloom Filters f ≥ 2−0.69a

35 Peter Sanders, et al.

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16

f

m/n

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

lower bound

Blocked Bloom Filters

36 Peter Sanders, et al.

Consider bit vector b[1..an],
a block selection function hB with range 0..m/B, and
hash functions h1, . . . , hk with range 1..B.

Inserting x : set b[BhB(x) + h1(x)], . . . , b[BhB(x) + hk (x)].

contains(x) = b[BhB(x) + h1(x)] ∧ · · · ∧ b[BhB(x) + hk (x)].

m = an

contains(x)

t

h1 h2 hk

hB chooses block
x

Typically B is one cache line.

Blocked Bloom Filters f

37 Peter Sanders, et al.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 7 8 9 10 11 12 13 14 15 16

f

m/n

plain, k=4
plain, k=5

blocked, k=5

Tradeoff Speed, Space, f

38 Peter Sanders, et al.

Tradeoff Speed, Space, f

39 Peter Sanders, et al.

Tradeoff for small r

40 Peter Sanders, et al.

Tradeoff for large r

41 Peter Sanders, et al.

Tradeoff Query Time – Space (r = 8)

42 Peter Sanders, et al.

Tradeoff Constr. T. – Space (r = 8)

43 Peter Sanders, et al.

Perfect Hash Functions (PHF)

44 Peter Sanders, et al.

Given a set S = {s1, . . . , sn},
find a function h : S→Zm.

Minimal Perfect Hash Functions (MPHF): m = n.

h

Sa b c d e

0 1 2 3 4 5 6

Space Lower Bound m = (1 + ε)n

45 Peter Sanders, et al.

log e− ε log
1 + ε

ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2

b
it

s
p

e
r

e
le

m
e
n
t

ε

lower bound for PHF

Brute Force PHFs

46 Peter Sanders, et al.

Consider a sequence h1, h2, . . . of random hash functions.

for i := 1 to ∞ do if |hi (S)| = |S| then break loop
store i –– variable bitlength encoding

p:= P [success] =
n!(m

n)

mn

i has geometric distribution with parameter p
Its entropy is about log 1/p. Let m = (1 + ε)n

log
1
p
≈ n log m− n log

n
e
− n log

m
n
− (m− n) log

m
m− n

= n
(

log e− ε log
1 + ε

ε

)

use n! ∼ n ln n
e , log (m

n) ∼ n log m
n + (m− n) log m

n−k when m = Θ(n)

PHFs via
Cuckoo-Hashing and Retrieval

47 Peter Sanders, et al.

Insert S into an m-cell cuckoo-hash-table using 2r hash functions.
Store the choice of hash function for each x ∈ S in an
r -bit retrieval data structure f .

h(x):= hf (x)(x)

With BuRR:
r m bits per el. lower bound
1 ≈ 2n ≈ 1 0.443
2 ≈ 1.024n ≈ 2 1.313

Sb ea c d

h1
h2

0 1 2 3 4 5 6

