
Draf
t

Algorithm Engineering

Peter Sanders

July 22, 2021

Draf
tChapter 8

Hashing and Hash Tables

As children we all had to learn that keeping our things in an orderly fashion helps
us to find them. Somewhat surprisingly, the contrary can be also true – storing an
object at a seemingly random position makes it more easy to find. This apparent
contradiction is solved by the principle of a hash function – if an easy to evaluate
function yields the position of the object then it is easy to find. In that situation,
it helps if the functions behaves like a random function since this guarantees that
only few different objects want to go to the same place.

In this chapter we have a detailed look at this approach. We begin in sec-
tion 8.1 with a look on hash functions – how they are computed, their basic prop-
erties,. . . There we also summarize different applications. The remainder of the
chapter concentrates on hashing as a technique for storing different variants of
dictionaries, i.e., data structures that allow retrieval of elements based on keys.
Section 8.2 first takes a high level view and introduces different operations possi-
ble on hash tables / dictionaries. The section also gives a small sample of the vast
number of application.

In Sections 8.3–8.5, we then look at three concrete approaches to implement
general purpose hash tables. Hashing with chaining (section 8.3) is perhaps the
most simple one but it incurs overheads for pointers to table entries. Higher per-
formance is often possible by storing all elements directly in the table. Section 8.4
discusses linear probing – the most simple approach in that direction together with
a number of variants and optimizations. Cuckoo hashing (section 8.5) then con-
siders a more sophisticated approach that allows very high space efficiency while
guaranteeing worst case constant access time.

Section 8.6 discusses how to adaptively grow and shrink hash tables effi-

117

Draf
t118 CHAPTER 8. HASHING AND HASH TABLES

ciently. The three sections 8.7–8.9 then consider machine model aspects of hash
tables, namely memory hierarchies (section 8.7), concurrent access to hash tables
(section 8.8), and distributed-memory hash tables (section 8.9).

General purpose hash tables can be considered space efficient when they con-
sume little more space than needed to represent the stored objects. The cuckoo-
hash tables from section 8.5 come very close to this goal. However, if we reduce
the functionality of the data structure, we can do much better – approaching a
few bits per object regardless of the actual object sizes. Sections 8.10–8.12 dis-
cuss such data structures. In each case, recent work has progressed to support
fast and practically useful data structures that approach information theoretical
lower bounds. Retrieval data structures (section 8.10) allow function evaluation
on a static set of elements without having to store the elements themselves. The
best of these data structures basically only require the space for storing the func-
tion values. AMQs (section 8.11) support approximate membership queries (aka
Bloom filters) on sets of elements using ≈ log1/φ bits where φ is the probability
to get a false-positive answer. Perfect hash functions (section 8.12) assign unique
names to elements of a set without any collisions – and require just a few bits per
element.

8.1 Hash Functions

A hash function h maps a key set K to an integer range Zm = 0..m−1. Often, m
is a power of two, i.e., h generates a number of logm bits. Ideally, one would like
h to be random, i.e., h is drawn uniformly at random from the set of all possible
mappings from keys to Zm. This is possible only in exceptional cases (e.g., see
[89], Section 11.5) since we usually cannot afford to store and initialze a lookup
table of size |K|. Nevertheless, we will often assume that h behaves like a random
function in order to simplify then analysis. This often works well in practice if
some care is taken about the choice of h but there are notable exceptions [312].

Hence, an interesting area of research is the tradeoff between the cost of evalu-
ating/constructing/storing a hash function and how well it approximates a random
function. We are facing some gaps between theory and practice here. The hash
functions most frequently used in practice [?] are fast but little is known about
their theoretical performance. However, there are some empirical studies [?] that
perform a long sequence of statistical tests whether the data produced by a hash
function behaves like random data.

In algorithm theory, we can often show the performance of randomized algo-

Draf
t8.1. HASH FUNCTIONS 119

rithms using a hash function if certain properties are fulfilled. For example, a hash
function is universal if the probability that two keys collide is 1/m. This already
suffices to guarantee good expected performance for hash tables with chaining
[276, Section 4.2]. More generally, a hash function h has the k-way independence
property if the hash values of any k different keys behave like independent random
variables. For hash tables with linear probing, we need k = 5 [?].

Open Problem 33 (Provable properties for practical hash functions) Can we
prove properties like universality etc. for some popular and fast practical hash
functions? Or can we directly prove performance guaranties when used within
a particular application like a hash table? If not, can we modify the functions
so that they have provable performance without making them significantly more
expensive?

Algorithm engineering has already proposed a number of hash functions that
bring theory and practice close together – at least for short keys. In particular
tabulation hashing [334, 255, 1] and its variants is quite fast and has strong per-
formance guarantees. In tabulation hashing, the bits of the key are split into pieces
and h is the xor of different tabulated random hash functions applied to the pieces.
If the required lookup tables fit in cache, this is quite fast. We can also some-
times get away with not hashing one piece of size logm [276, Exercise 4.16]. By
chaining two tabulation hash function, we can even emulate a truly random hash
function [255]. When using long keys, one can first map them to a short key using
universal hashing and then use tabulation hashing [255].

In the remainder of this section we first have a closer look at a particular family
of hash functions in section 8.1.1. These linear congruential functions are fast,
easy to analyze, and can be used also for purposes beyond plain hashing. Then
we look at additional aspects of hashing. Section 8.1.2 explains how to map bits
to arbitrary ranges of values while section 8.1.3 discusses how to regurgitate a
limited number of bits to several hash function values in a pseudorandom way.
Section 8.1.4 introduces rolling hash functions that can be efficiently computed
on related subranges of sequences. We summarize algorithmic applications of
hash functions beyond hash tables in section 8.1.5 while section 8.1.6 considers
hash functions used in cryptography. After briefly discussing the relation of hash
functions and pseudorandom number generators in section 8.1.7 we conclude this
section with an excursion to pseudorandom permutations in section 8.1.8.

Draf
t138 CHAPTER 8. HASHING AND HASH TABLES

8.4.4 Using Signatures

Finding an element in a hash table may involve many unsuccessful key compar-
isons. This can be accelerated if we do not compare the full key but only a sig-
nature, i.e., a short hash value of the key (e.g. 8 bits). This value should be
independent of the position where the element is actually stored. Unsuccessful
search then only has to compare signatures. Successful search most of the time
only has to look at the single found signature match. This is particularly useful
when keys are large or of variable size (e.g., strings). Then one would possibly not
even store the keys within the table but only store the signature and a pointer to
the element. In that case using signatures can also be considerably more cache ef-
ficient than more conventional approaches. Comparisons with signatures can also
be accelerated using SIMD instructions. For example, the folly-library supports
such an approach [60].

8.5 Cuckoo Hashing

The hash tables discussed so far get very slow (or do not work at all) when
their space consumption approaches the space needed to just store the elements.
Furthermore, search times are constant only in expectation. Cuckoo hashing
[242, 116, 98, 199] is a simple and elegant variant of closed hashing that solves
both problems at once. The idea is that elements may be stored at H different
blocks of size B.4 Typically H ∈ 2..4 and B ∈ {1,2,4,8}. Overall, there are m/B
blocks. The H allowed blocks for each element are specified by H hash functions
h1,. . . ,hH with range Zm/B. The double hashing trick from Section 8.4.2 can be
used to obtain all hash function values from two hash functions [220].

With these definitions, find, update, and delete are straightforward and work
in worst case constant time. Just try all HB possible slots. This requires H hash
function evaluations and (if B is below the cache line size) B cache faults.

The price we pay is that insertions become more expensive. Conceptually,
insertion algorithms operate on a directed graph G whose nodes are the buck-
ets and where an element e stored in bucket v = hi(e) induces the H − 1 edges{
(v,h j(e) : j 6= i

}
. Inserting a new element x amounts to finding a path u→ ···→

v in G such that u ∈ {h1(x), . . . ,hH(x)} and such that v contains an empty slot.

4There are also numerous variants – with one subtable for each hi, with overlapping buckets
[324], etc.

Draf
t8.5. CUCKOO HASHING 139

Such a path allows one to put element x into bucket u. Edges on the path indicate
which element has to be moved to which alternative bucket.

For basic cuckoo hashing [242] with H = 2 and B = 1, this path is unique (if
it exists at all). Otherwise, we have the choice between a variety of graph search
algorithms. However, two approaches are particularly attractive:

Random walk insertion. Starting at some bucket where x can be mapped, check
whether the current bucket has a free slot. If so, a path has been found. Otherwise,
pick a random element in the current bucket and move it to a random alternative
bucket. This algorithm is not guaranteed to find a path if one exists but it will
do so with high probability. Its main advantage is that it can be implemented in
an online fashion using only a constant amount of temporary space for indicating
the current element and the current bucket. The algorithm will run into an infinite
loop if no path from the initially chosen bucket to a bucket with a free slot exists.
One therefore stops the search when a bound on the maximum number of allowed
steps is exceeded. In that case, the table is rehashed, i.e., rebuilt using a fresh hash
function.

BFS insertion. The algorithm performs a breadt-first search (BFS) in the graph
starting at the possible buckets for element x. The search is stopped when a free
slot is found, when no new nodes have can be found, or when a bound on the
maximum number of nodes to be explored is exceeded.5 This algorithm has two
advantages over random walk insertion. First, at least in principle, this algorithm
can deterministically decide whether a feasible path exists. Second, the paths
found have minimal length and hence, the necessary updates on the data structure
are minimized. Its main disadvantage is the additional space for maintaining the
search frontier. However, with an appropriate limit on the size of the search space,
this data structure is small and fits in the cache.

Maximum load factors. For each choice of H and B, there is a constant threshold
α̂(H,B) such that for any constant load factor α < α̂(H,B) a feasible assignment
of elements to slots can be found with high probability, whereas for α > α̂(H,B)
no feasible assignment exists with high probability. For the basic case H = 2 and
B = 1 this is the same threshold as the well known threshold on the sudden emer-
gence of a giant component in a random graph [242, 116]. For larger values of
H and B, these threshold approach 1 surprisingly fast [273, 116, 98, 94, 122, 118,
117].6 Table 8.1 gives threshold values for important combinations of parameters.

5The implementation in [199] does not check for nodes that have already been visited. Since

Draf
t140 CHAPTER 8. HASHING AND HASH TABLES

Table 8.1: Threshold values α̂(H,B) for cuckoo hashing [65, 324]
H\B 1 2 3 4 5 6 7 8

2 .5 .897 .959 .980 .989 .994 .996 .998
3 .918 .988 .997 .9992
4 .977 .998 .998 .99997

Open Problem 41 (Insertion cost of cuckoo hashing) Cuckoo hashing is known
to have constant expected insertion time. There is also intensive work on high
probability bounds which are (poly)loagarithmic [218]. However, characterizing
the expected insertion time as a function of the load factor remains perhaps the
biggest open problem in analyzing cuckoo hashing. Experiments suggest the fol-
lowing conjecture:

Conjecture 3 BFS insertion or random walk insertion achieve expected insertion
time O(1/ε) when the load factor is below α̂(H,B)− ε .

Proving this bound would be intriguing since it would actually match the insertion
time bound of random rehashing, i.e., the more complicated insertion procedure
needed for cuckoo hashing is asymptotically no disadvantage.

Assuming the above conjecture implies that constructing a cuckoo hash table
using incremental insertion has only logarithmic dependence on the distance to
the threshold:

Corollary 4 Building a cuckoo hash table with load factor below α̂(H,B)−ε by
incremental insertion is possible in time O(n log1/ε).

Proof: Let εi = α̂− i/m denote the distance to the threshold when inserting the
i-th of n = (α̂ − ε)m elements. If conjecture 3 is true, we can then bound the
asymptotic time for inserting n elements by

n

∑
i=0

1
α̂− i

m

≈
∫ n

0

1
α̂− i

m

di = n ln
(

α̂− n
m

)
−n ln(α̂)≤ n ln

1
ε

.

such nodes are rare anyway, this speeds up the search.
6Even larger thresholds can be achieved for overlapping buckets [324]. However, this implies

more complex insertion operations and is not readily compatible with fixed cache lines.

Draf
t162 CHAPTER 8. HASHING AND HASH TABLES

key value

Godzilla
Ben Hur

Three Gifts for Cinderella
Howl’s Moving Castle

Metropolis

Attack of the Killer Tomatoes *

**

Figure 8.2: A retrieval data structure for movie ratings.

fingerprintscontent

block

bit

fallback

Figure 8.3: FiRe data structure with r = 32, B = 14, k = 64, and L = 2. Note that
one block fits into a 64-byte cache line.

8.10 Retrieval Data Structures

A basic and frequently needed functionality of a hash table is to access a value
based on a key. We will now see that this can be supported without actually
storing the keys. If the keys are long, while the associated information is short,
this can drastically reduce the required space. Figure 8.2 illustrates this with a
simple example – if you have a database rating movies with 1–4 stars, you just
need 2 bits to store the ratings even if the movies have long names. The price we
pay is that this only works if we use keys actually present in the table. Trying to
access the value associated with a nonexistent key will give an arbitrary result.

These retrieval data structures are typically static, i.e., they are constructed for
a fixed set of keys given as input. We can distinguish two important subvariants
– those allowing dynamic update of the associated information and immutable (or
fully static) ones that don’t.

More formally, an r-bit retrieval data structure allows evaluating a function

Draf
t8.10. RETRIEVAL DATA STRUCTURES 163

f : K → {0,1}r on a set S = {s1, . . . ,sn} ⊆ K. In the following, we present sev-
eral techniques for supporting retrieval together with examples that usually use
a combination of several techniques. Section 8.10.1 begins with the simple ap-
proach to first break down the problem into many small subproblems. Another
simple technique is to filter out collisions of a hash function (section 8.10.2). We
can also use hash functions that do not produce collisions in the first place, i.e.,
delegate the problem of retrieval to that of constructing a perfect hash function
(see section 8.10.3 and section 8.12). Finally, section 8.10.4 reduces the retrieval
problem to computing a linear combination of several table entries (usually xoring
bits). Constructing the data structure then amounts to solving a system of linear
equations.

Applications. Static retrieval data structures have a wide range of applications.
For example, by storing a random signature for each key, we get an approxi-
mate membership query data structure (AMQ or Bloom filter replacement) with
information-theoretically optimal false positive probability 2−r; see section 8.11.4.
This is useful in applications involving memory hierarchies or distributed comput-
ing [58]. The cases r = 1 and r = 2 can be used to represent perfect hash functions;
see section 8.10.3. In turn, this can be used to obtain updateable retrieval data
structures where the function value can be changed. To exemplify the deep chain
of involved applications, consider the case where updateable retrieval supports
semi-external DFS, which is needed for cycle detection in large graphs, which is
important for model checking, which in turn can be used for various purposes in
hardware and software verification [101].

Retrieval data structures can also be used to directly store compact names of
objects, e.g., in column-oriented databases [226]. This takes more space than
perfect hashing but allows to encode the ordering of the keys into the names.

In several of these applications, retrieval data structures occupy a considerable
fraction of RAM in large server farms. Even small reductions (say 10 %) in their
space consumption thus translate into sizable cost savings. Whether or not these
space savings should be pursued at the price of increased access costs depends
on the number of queries per second. The lower the access frequency, the more
worthwhile it is to occasionally spend increased access costs for a permanently
lowered memory budget. Sophisticated implementations use multiple variants of
compressed data structures at once based on known access frequencies of different
parts of the database [224]. Thus, the entire set of Pareto-optimal variants with
respect to the space–access cost tradeoff is relevant for applications.

We remark that once we can do 1-bit retrieval with low overhead, we can use

Draf
t164 CHAPTER 8. HASHING AND HASH TABLES

that to store data with prefix-free variable-bit-length encoding (e.g. Huffman or
Golomb codes). We can store the k-th bit of element x as data to be retrieved for
the input tuple (x,k). This can be further improved by storing R 1-bit retrieval
data structures where R is the largest number of bits needed for representing an
input [156, 37, 128]. By interleaving these data structures, one can make queries
almost as fast as the case of fixed r.

8.10.1 Using Partitioning

A trick that works for many hashing based problems is to first partition the ele-
ments into m′ buckets using a primary hash function hp with range Zm′ . This has
several advantages. We only need to allocate temporary space for constructing
the retrieval data structure on a per bucket manner. We can parallelize over the
buckets, and we can use external memory construction. This also makes it prac-
tical to use construction algorithms that use superlinear time – the superlinearity
will only be in terms of the bucket size and not in terms of the overall input size.
The downside is that there is a space overhead per bucket so that the overall space
consumption grows with the number of buckets.

Porat [248] exploits the partitioning approach to its extremes. He first parti-
tions the input into blocks of O

(
log2 n

)
expected size. Then each block is parti-

tioned once more into subblocks of size O(
√

logn). This problem size is so small
that the random matrix approach from Section 8.10.4.2 can be used in constant
time using table lookup. With a few additional tricks, preprocessing time is O(n)
and query time is O(1) using bit parallelism. The space overhead is asymptoti-
cally dominated by storing a constant number of bits per subbucket for selecting
the hash functions to be used there. This is O(n/

√
logn) = o(n).

Belazzougui and Venturini [37] use slightly larger buckets of size
O((1+ log log(n)/r) log log(n)/ logn). Using carefully designed random lookup
tables they show that linear construction time, constant lookup time, and overhead
O
(
(log logn)2/ logn

)
is possible. This even applies to result sets with arbitrary

distributions.

8.10.2 Filtering out Collisions

A very simple and useful technique for designing retrieval data structures is to
use a method that does not work perfectly and to repair it by bumbing colliding
elements to a fallback data structure. This approach can also be cascaded to multi-
ple levels. We first exemplify this approach using a very simple and fast variant in

Draf
t8.10. RETRIEVAL DATA STRUCTURES 165

Class FiReBucket(E : Array of Element, var bumped : Sequence of Element)
fingerPrint = 0k : BitArray[0..k−1] // fingerprints
t : Array [0..B−1] of {0,1}r // content
static count = 0|E| : Array [0..k−1] of 0..|E| // # of occ. of each fingerprint
for i :=1 to |E| do count[h f (E[i])]++ // 1st scan: count occurrences
for (i = 1, j = 1; i≤ |E|; i++) // 2nd scan: place each element

if count[h f (E[i])] = 1 then // store noncolliding element
t[j++] := f (E[i]) // store function value
f ingerPrint[fPos[i]] :=1 // remember fingerprint
if j > |E| then move E[i+1..|E|] to bumped; return // bucket full

else bumped.pushBack(E[i]) // bump colliding element to next layer

Function retrievable(e) return fingerPrint[h f (e)] = 1
Function retrieve(e) return t[fingerPrint.rank(h f (e))]

Figure 8.4: Pseudocode for a bucket of the FiRe data structure. Note that the
array count can be reused between calls of the constructor but deallocated after all
buckets are constructed. Double evaluation of h f can be avoided by caching the
values computed in the first scan of E.

section 8.10.2.1. We generalize this in section 8.10.2.2 presenting a highly generic
approach that is amenable to highly space efficient variants.

8.10.2.1 Filtered Retrieval (FiRe)

In the FiRe approach [226], elements are mapped to buckets with B slots for r-bit
values. They are also mapped to fingerprints from Zk. Preprocessing for a bucket
selects up to B elements that have unique fingerprint among the elements mapped
to that bucket and stores their associated value in the slots of the bucket. Fig-
ure 8.3 shows an example of the data structure. Figure 8.4 gives pseudocode for
constructing and querying buckets. This pseudocode is intentionally formulated
in a fairly low-level fashion in order to underline how fast and simple the con-
struction is. In practice, the dominating cost will be for sorting the elements into
buckets. Both sorting and bucket construction can be parallelized well. Evaluation
of hash functions can be vectorized.

The bumped elements are delegated to the next layer of the data structure using

Draf
t166 CHAPTER 8. HASHING AND HASH TABLES

layer : Array [1..L] of Array of FiReBucket
fallback : RetrievalDataStructure // for elements bumped from level L
Function FiRe::retrieve(e : Element) : {0,1}r

for i :=1 to L do // try one layer after the other
bucket:=layer[i].b[hi

b(e)] // hi
b(e) adresses buckets in layer i

if bucket.retrievable(e) then return bucket.retrieve(e)
return fallback.retrieve(e)

Figure 8.5: Pseudocode for retrieval from a FiRe data structure

fresh hash functions. Assuming that we keep the fraction of bumped elements
constant, subsequent layers shrink geometrically. In order to ensure worst case
constant access time, one can stop the cascade after a fixed number L of layers.
The remaining bumbed elements are then stored using some other retrieval data
structure. Since this affects only a tiny fraction of the origninal input and since
only few queries can affect it, the choice for this fallback layer is uncritical – it
need not be particulaly fast nor easy to construct.

Perhaps the main complication in the FiRe data structure is the considerable
number of parameters: B, k, L, and the number b of buckets allocated to a layer.
One approach is to first decide on the size of a bucket, e.g., a cache line size
like C = 512 bits. Assuming an uncompressed representation of the fingerprints,
this imposes the constraint k +Br ≤ C. Hence, when we choose k, we can in-
fer B = b(C− k)/rc. We want to choose b = αn/B for a tuning parameter α .
The number X of elements mapped to a particular fingerprint is approximately
Poisson distributed with parameter λ = n/kb = B/kα . Thus, the probability
p1 = prob(X = 1) = λe−λ gives the probability that a particular fingerprint is
noncolliding. In total, the expected number of noncolliding elements in a bucket
is

B1 = k · p1 = kλe−λ =
B
α

e−
B

αk .

B1 is maximized for α∗(k) = B/k and then takes the value k/e. Since, for reasons
of space efficiency, we want to have B1 ≥ B, we should therefore usually choose
k ≥ eB. This implies that B≤C/(r+ e).

For fixed k, α = α∗ maximizes space efficiency since a larger expected num-
ber of noncolliding elements also means that less buckets are underloaded and
hence waste space. Choosing a larger value for α will reduce the number of

Draf
t8.10. RETRIEVAL DATA STRUCTURES 167

bumped elements and thus reduces the expected number of accessed layers dur-
ing queries – a classical space–time tradeoff.

To assess the actual space overhead, we also need to know the expected num-
ber of empty cells. The number of noncolliding elements in a bucket approxi-
mately has the Binomial distribution B(k, p1). Hence, the expected number of
empty cells is approximately

B0 =
B−1

∑
i=0

(B− i)
(

k
i

)
pi

1(1− p1)
k−i.

Therefore, the space overhead per element is about

s = (rB0 + k)/(B−B0).

The expected number of noncolliding elements bumped from a bucket is

B> =
k

∑
i=B+1

(i−B)
(

k
i

)
pi

1(1− p1)
k−i.

The probability for an element to be colliding is

pcoll :=1−
(

1− 1
bk

)n−1

≈ 1− e−B/αk.

Thus, the expected number of colliding elements is about npcoll and the expected
number of colliding elements per bucket is pcollB/α . Overall, the expected num-
ber of bumped elements per bucket is Bbump = B>+ pcollB/α .

Together with the colliding elements, the expected number of bumped ele-
ments per bucket is Bbump = B>+(1− p0− p1)k where p0 = e−B/αk is the proba-
bility that a particular fingerprint is not observed at all. Then, bBbump is the overall
expected number of bumped elements and pbump = bBbump/n = αBbump/B is the
expected fraction of bumped elements. This results in

`= 1/(1− pbump)

expected layer accesses (for L = ∞).
Figure 8.6 plots the resulting space-time tradeoff for 512-bit cache lines. The

chosen values for α start at α∗ = B/k since smaller values are dominated. We
see that choosing α > α∗ steeply improves `. Choosing k such that k ≈ eB is
indeed the most space efficient choice. However, from a performance point of

Draf
t168 CHAPTER 8. HASHING AND HASH TABLES

 1

 1.5

 2

 2.5

 3

l
fo

r
r=

8
,

B
=

6
4

-k
/r

k=136, α in 0.35..0.47
k=144, α in 0.48..0.64
k=160, α in 0.61..0.82
k=192, α in 0.76..

 1

 1.5

 2

 2.5

 3

l
fo

r
r=

1
6

,
B

=
3

2
-k

/r

k=80, α in 0.34..0.44
k=96, α in 0.44..0.68
k=112, α in 0.66..0.85
k=128, α in 0.87..1.02
k=160, α in 0.97..

 1

 1.5

 2

 2.5

 3

 4 6 8 10 12 14

l
fo

r
r=

3
2

,
B

=
1

6
-k

/r

space overhead (bits/element)

k=64, α in 0.22..0.84
k=96, α in 0.79..

Figure 8.6: Space versus time (expected number of layer accesses `) for different
parametrizations of the FiRe data structure assuming 512 bit cache lines. The
α-ranges given in the key indicate values where this values of k yields a Pareto-
optimal configuration.

Draf
t8.10. RETRIEVAL DATA STRUCTURES 169

Class BuRe(E : Set of Element)
primary : ImperfectRetrieval // stores most data
fallback : Retrieval // for elements bumped from primary
build primary from E and let b indicate the bumped elements
build fallback from b

Function retrieve(e)
if primary.isBumped(e) then return fallback.retrieve(e)
else return primary.retrieve(e)

Figure 8.7: Bumped retrieval

view, this choice is only good for rather large r (r = 32 in the plots). For smaller
r, the considerable number of bumped elements implies around ` ≈ 3 required
layer accesses in expectation. To get ` close to one, configurations with larger k
are better.

In general, FiRe is fast and simple and yields high relative space efficiency for
large r. However, for small r (≤ 4), the space overhead easily becomes larger than
the “payload” of stored data. There are more space efficient methods with slower
construction and retrieval.

Open Problem 48 (Engineering Filtered Retrieval (FiRe)) It might be worth
studying different implementation tradeoffs for FiRe. In which situtations are
they competitive with other methods even for small r? In that case k is large and
the cost of rank operations becomes an issue. Can they be accelerated using SIMD
instructions? Should we rather use buckets smaller than a cache line? How can
sparse fingerprint vectors be compressed? Perhaps using Elias–Fano encoding as
in section 8.11.3.2? (Initial calculations indicate that Elias–Fano encoding as in
section 8.11.3.2 does not provide siginificant compression for the relatively high
densitiy bit vectors under consideration.)

8.10.2.2 Generic Bumped Retrieval (BuRe)

Let us now complement the very specific FiRe data structure with a highly generic
approach BuRe that perhaps better illuminates the basic idea behind the filtering-
out approach. Figure 8.7 gives pseudocode for this approach that is parameterized
with two data types we are free to choose: A primary retrieval data structure that

Draf
t170 CHAPTER 8. HASHING AND HASH TABLES

is supposed to contain most elements, and should be both fast and space effi-
cient. To facilitate this, it is allowed to bump some elements, i.e., when primary
is constructed, it can return a (hopefully small) set of elements b that cannot be
retrieved from primary. These elements are then placed into a fallback retrieval
data structure. At query time, a function isBumped decides whether the data can
be retrieved from primary or from fallback. Since bumped retrieval itself imple-
ments a reliable retrieval data structure, we can recurse, i.e., fallback can have
data type BuRe itself etc. This recursion can be continued until no more elements
are bumped or until the there are so few bumped elements that a more expensive
reliable retrieval data structure can be used as the ultimate fallback.

In section 8.10.4.2 we apply the BuRe approach to immutable retrieval, and
obtain a practical approach that can get the space requirement arbitrily close to the
information theoretical limit. This also yields an near-optimal AMQ data structure

8.10.3 Using Perfect Hashing

In section 8.12 we will see ways to build injective hash functions h : S→ Zm that
need constant time to evaluate and O(|S|) bits of space – typically around 2 bits
per element. This reduces (updateable) retrieval to plain array access. We simply
store the value f (x) in an array a at position h(x) In comparison to FiRe, this
allows considerably smaller space overhead, in particular for small r. The price
is in increased construction time and query time. In particular, evaluating f (x)
implies first accessing the data structure representing the hash function h and then
accessing the array a.

8.10.4 Solving Systems of Linear Equations

We now turn to a particularly space efficient yet immutable family of retrieval data
structures that allows to eliminate space overheads almost entirely. The idea is to
use a table t of m entries with r bits each. A key x is mapped to k hash functions
with range Zm and the computed output is

f (x) := t[h1(x)]⊕·· ·⊕ t[hk(x)]

where “⊕” is (usually) the bit-wise xor operation. There is a complex tradeoff
between the necessary size of t (i.e., space overhead), how difficult it is to find the
entries of t (i.e., construction time), and how expensive function evaluations are
(how large is k? how many cache lines are touched?).

Draf
t8.10. RETRIEVAL DATA STRUCTURES 171

In general, finding the entries during construction can be modelled as solving
a set of linear equations over the field F2 = {0,1} with r right-hand sides. We
are solving a system At = b. A is an n×m 0/1-matrix where the ones in row i
are at positions h(si), t is an m× r matrix representing the table to be computed,
and F is an n× r matrix specifying the values to be retrieved. Solving this system
is possible if A has full rank n, i.e., if all rows are linearly independent. Brute
force solution of At = F is too slow for most applications so that we look for fast
solutions.

8.10.4.1 Hypergraph Peeling

In some cases, the equation At = F can be solved in linear time by a simple greedy
algorithm. Suppose there is a column j of A that only has a single nonzero entry
ai j = hz(si) = 1. Then we can temporarily remove column i and row j from the
equation, solve the remaining system, reinsert row i and column j, and then set

t[j] :=
⊕

y∈1..k\{z}
t[hy(si)].

This process is called hypergraph peeling based on viewing the constraint matrix
as a hypergraph H = (V = 1..m,E = {e1, . . . ,en}) with ei =

{
j : ai j = 1

}
. It turns

out that for many randomized constructions of the constraint matrix A, the peeling
process manages to solve the full system with constant probability. A natural
choice are k = 3 random hash functions and m > 1.23n columns [54]. Walzer
[325] showed that by choosing coupled h1(x), . . . , hk(x) from a limited, randomly
choosen window, even better space efficiency can be achieved using peeling. For
example, space overheads 0.11, 0.05, and 0.03 are possible for k = 3, k = 4, and
k = 7, respectively at n= 107. Evidence is given that the window size should scale
like n2/3 for optimal space efficiency.

Figure 8.8 gives pseudocode for the peeling process. The algorithm represents
the nonzeroes of each column as the xor of the row indices of these nonzeroes.
Thus, when the number of nonzeroes reaches one, the index of that nonzero can
be retrieved from this entry. This saves time and space compared to a more ex-
plicit representation of a dynamically changing hypergraph. In particular, space
consumption is O(m) independent of the number of used hash functions k.

Draf
t172 CHAPTER 8. HASHING AND HASH TABLES

Procedure peel((x0, f0), . . . ,(xn−1, fn−1), var t : ({0,1}r)m, h1, . . . , hk)
loop

choose fresh hash functions h1, . . . , kk
t :=0m // output retrieval data structure
I :=0m // xor of rows incident to each column
C :=0m // # of rows incident to each column
for i :=0 to n−1 do

for ` :=1 to k do j :=h`(xi); I[j]⊕= i; C[j]++
Q = { j : C[j] = 1} : Stack of Zm // peelable columns
s = 〈〉 : Stack of Zn×Zm // peeled columns
repeat n times // peel one column

if Q = 〈〉 then next iteration of outer loop // construction failed
j :=Q.pop // peel column j
i := I[j] // the only remaining row incident to column j
s.push((i, j))
for ` :=1 to k do

j′ :=h`(xi); I[j′]⊕= i; C[j′]--
if C[j′] = 1 then Q.push(j′) // new peelable column

foreach (i, j) ∈ s do // pop one entry at a time
t[j] := fi⊕

⊕k
`=1 t[h`(xi)] // assign entry j

return // success

Figure 8.8: Using hypergraph peeling to build a retrieval data structure t such that
∀i :⊕1≤`≤kt[h`(xi)] = fi.

Draf
t8.10. RETRIEVAL DATA STRUCTURES 173

8.10.4.2 Fast Solvers for the Equation Systems

Solving the systems of equations directly is potentially more space efficient than
the peeling approach from section 8.10.4.1. For example, a random square matrix
has full rank with constant probability. Thus, it suffices to store a constant num-
ber of bits (in expectation) to encode which attempt at finding a full rank matrix
suceeded in order to achieve an otherwise perfectly space efficient retrieval data
structure requiring only rn bits of space to store r bits for n input elements. There
is a number of approaches to make equation solving more practical:

Partitioning: Using the partitioning trick from section 8.10.1 can drastically re-
duce the size of the equation systems to be solved at the expense of more
overhead for a data structure navigating to the individual buckets and per
bucket data to encode which attempts worked there.

Sparse, structured systems: With the right solvers, solving the system of equa-
tions can be accelerated by choosing systems with few nonzeros, perhaps
having a structure that additionally simplifies the solution.

Word parallelism: Recall that the constraint matrix just has single bit entries.
Thus key operations like row operations can be accelerated by a factor w
on a machine with word size w. Similarly, if the number of bits r is not too
large, also the retrieval operation can be accelerated if it addresses multiple
close-by positions in the table t.

For example, we can use a partitioning hash function hp to map elements to
buckets of size Θ(log p) with high probability (at least that works for random hp).
For a bucket b with nb elements mapped to it, we can then set up an nb×nb system
of linear equations Ax = F . Using word parallelism, each of these O(n/ logn)
systems can be solved in time O

(
log3 n/w

)
= O

(
log2 n

)
, i.e., overall construction

costs are O(n logn). The involved constant factors may be quite favorable since
the operations on each matrix are highly cache efficient. Retrieving f (x) amounts
to xoring a selection of O(logn) consecutive r-bit entries of a table which can
be done in time O(r logn/w) = O(r). Also retrieval is cache efficient when the
buckets fit into cache lines.

8.10.4.3 Ribbon Retrieval

The linear algebra approach can be further improved by using matrices that are
more sparse and more structured. A very effective approach was introduced by

Draf
t174 CHAPTER 8. HASHING AND HASH TABLES

Dietzfelbinger and Walzer [97] and can be viewed as an extreme form of the cou-
pled scheme from section 8.10.4.1 [325]. Each element is mapped to a random
window of width L = Ω(log(n)/ε) among m = (1 + ε)n columns of the con-
straint matrix. Within this window, nonzeroes are choosen using fair coin tosses.
During construction, one can then reorder the rows of the matrix to obtain a con-
straint matrix with a narrow band of nonzeroes around the diagonal. Die leads
to a retrieval data structure with construction time O

(
n logn/(wε2)

)
and query

time O(log(n)/(wε)). For large n and small ε too slow for practical use. One
but one can mitigate this problem by using the partitioning approach discussed
above. Using buckets of size polylogarithmic in n, one gets construction time
O
(
n log logn/(wε2)

)
and query time O(log logn/(wε)). The experiments below

indicate that this makes the approach practical for space overhead around 10 %.
In the following we will further develop this approach into a methods allowing

space overhead below 1 % [?].

Ribbon Solving. We first introduce the faster and more flexible Ribbon12 ap-
proach to solve the linear system. This approach incrementally builds a matrix
in row-echelon form that allows solving the original system by backsubstitution.
Figure 8.9 gives pseudocode. The arrays placed and rhs represent the incremen-
tally built row-echelon form. The main for-loop inserts row i into the row-echelon
matrix. This form requires that the first nonzero of row i must be the only nonzero
in column j. The process to achieve that is similar to insertion into a linear probing
hash table. Let j denote the first nonzero in row i. If column j is still unoccupied,
row i is assigned to column j. Otherwise, a row operation with the row placed at
column j cancels the nonzero at ai j. This process is repeated until a place for row
i is found or ai contains only zeroes which indicates that ai is linearly dependent
of rows that are already placed.

Bumped Ribbon Retrieval. We now describe a simple and efficient retrieval data
structure that combines the ribbon retrieval approach from the previous section
with the idea of bumbed retrieval from section 8.10.2.2, [226].

A problem with ribbon retrieval is that we must provide enough space and
ribbon width so that no linear dependencies arise in the solution process. This
problem can be mitigated by using many buckets with individually chosen hash
functions for each bucket. However, this introduces additional complications and
introduces per-bucket space overheads. Overall, it becomes difficult to achieve
both high space efficiency and high performance within this difficult tradeoff.

12Rapid Incremental Boolean Banding ON the fly

Draf
t8.10. RETRIEVAL DATA STRUCTURES 175

Function ribbonSolve(A, F , var x = 0m) :
placed = 〈0, . . . ,0〉 : Array 1..m of {0,1}w // REM row starting at column j
rhs = 〈0r, . . . ,0r〉 : Array 1..m of {0,1}r // corresponding right-hand sides
for i :=1 to n do // Place row ai.

loop // placement loop
if ai = 0m then // linear dependence found

if rhs j = 0 then next iteration of for-loop // redundant equation
else return “failed after i−1 rows” // here, BuRR will bump

j :=min{` : ai` = 1} // first nonzero in row i
if placed j = 0 then exit loop // position available
(ai, fi)⊕=(placed j,rhs j) // row operation cancels first nonzero in R

(placed j,rhs j) :=(ai, fi) // assign row i to column j
for j :=m downto 1 do // backsubstitution

if placed j 6= 0 then x j :=(x ·placed j)⊕ rhs j

Figure 8.9: Solving a banded n×m system Ax = F using the ribbon solving ap-
proach. Let ai denote row i of the 0/1-matrix A which can be represented as an off-
set j0 and an w bit integer indicating possible nonzeroes at positions j0.. j0+w−1.
Operator ’·’ is the scalar product here that indicates the r-bit xors of those entries
of x with nonzeroes indicated by placed j. Failures can also be avoided by back-
tracking a number of recently inserted rows.

Draf
t176 CHAPTER 8. HASHING AND HASH TABLES

The approach we use now avoids hard partitioning into buckets13 and allows
for both high performance and high space efficiency by eliminating linear depen-
dencies by bumping some elements to the next layer of the data structure. The
main design task is now to design a bumping scheme that, on the one hand avoids
unnecessarily bumping a large number of elements (rows), and, on the other hand
does not need too much space to represent the bumping information.

A crucial observation enabling efficient bumping is that most linear dependen-
cies in ribbon retrieval arise from overloaded ranges of columns. In other words,
for sufficiently large L, the particular L-bit pattern chosen for a row matters much
less than where this pattern is located. We can view the bumping problem as the
problem of eliminating overloaded ranges. Moreover, small overloaded ranges
are unlikely. Ranges smaller than L are impossible. The number of rows hav-
ing all their nonzeroes within a range of width R ≥ L is approximately Poisson
distributed with parameter

λ = n
R−L+1

m−L
≈ R−L+1

1+ ε
.

From this, one can infer, that overloaded ranges of size o(L2) are rare.
This motivates our general approach to bumping. We divide the columns into

“virtual” buckets of size B = O
(
L2/ logL

)
. We now say that a row is allocated to

a bucket if its range of nonzeroes starts within that bucket. We store metadata for
each bucket that allows us to bump some rows allocated to that bucket.

There is a large design space for how exactly to perform bumping. We de-
scribe one simple and useful approach. We first sort the rows i by the bucket
containing their starting position j(i). Within each bucket b, we place the rows
backwards by decreasing starting position. Let jb ∈ 0..B denote the rightmost
column within the bucket for which placement fails (jb = 0 if insertion does not
fail). Then we bump14 all rows allocated to b which start at a column j ≤ jb. We
store jb as metadata. At query time, if we try to retrieve an element e whose row
is allocated to column j of the matrix, we check whether j ≤ jb to test whether e
is bumped.

We can further compress jb by rounding it up to one of a small number of
thresholds. Both experiments and analysis [?] indicate that even the three pos-

13(Quite large) buckets (or shards) are useful for parallelization or external construction though.
14Note that all rows that are bumped in a later query should also be bumped by the construction.

For example, if several rows start at the same column and only the last of them triggers a linear
dependency, then all these rows have to be removed from the equation system. This is even more
important with the compression schemes described below that rounds jb upwards.

Draf
t8.11. APPROXIMATE DICTIONARIES (AMQS) 177

sible thresholds 0 (bump nothing), t, and B (bump all) suffice when t is chosen
appropriately. Our actual implementation use two slight generalization: Either we
store 2 bits of metadata per bucket allowing 4 different threshold values. Or we
(mostly) store a single bit deciding between the threshold values 0 and t while
(rarely needed) threshold > t are stored in a hash table of exceptions.

The tuning parameter ε = 1−m/n is also important for space efficiency. In
particular, negative values are a good choice because they have the potential to
radically reduce the fraction of empty slots. For small B, we can make this fraction
arbitrarily small.

Baustelle

8.11 Approximate Dictionaries (AMQs)

We now consider hash tables that support the operations insert and contains. Fur-
thermore, the operation contains is allowed to give false positive answers, i.e., it
may claim that an object is contained in the table although this is not true. Such
a wrong answer will only happen with a certain probability – the false-positive
rate φ . This data structure is known as an approximate membership query data
structure (AMQ). AMQs are also commonly known as Bloom filters which are
one particular implementation of AMQs (see section 8.11.1).
Applications. Many applications can tolerate this kind of error. These fall in two
categories: The most frequent case is that a positive query triggers an expensive
operation that will anyway check whether the response was correct. For example,
the AMQ A may approximate a set of data objects stored on disk (or any storage
medium that is slower than the one used for A). When the user requests an object,
A is queried first. A negative response is definitive and avoids checking the disk.
A positive response triggers a disk access anyway and will reveal whether the
object is actually available. Since the false-positive rate is small, disk access will
happen almost exclusively when necessary. A similar scenario applies when the
objects are stored on multiple computers connected by a network where AMQs
help so avoid communication.

An example that does not involve memory hierarchies or communication
could be a data base relation with a text attribute a. If one wants to support fast
searching for words in a, one can additionally store an AMQ Aa with each of these
texts that approximates the set of words contained in the text. When searching for
a word w in a row r of this relation, one first computes r.Aa.contains(w). If the
result is false, r.a does not contain w. Otherwise, one actually has to search r.a.

Draf
t178 CHAPTER 8. HASHING AND HASH TABLES

Note that in this case, we are likely to have a large number of small AMQs (one
for each row of the relation).15

The second class of applications arises when a false positive reply can be tol-
erated without repairing it. For example, the Medium online publishing platform
uses AMQs to avoid showing search results on articles which the user has already
read [306]. The consequence of a false positive result then means that a small
percentage of potential search results are omitted although they have not yet been
read. Compared to other uncertainties in the search process, this source of errors
can be made diminishingly small.

The false-positive rate φ is connected with the number of bits per object we
are willing to invest. The simple and widely used Bloom filters we discuss in
section 8.11.1 need about log(1/φ)/ ln2 bits of space per object. Blocked Bloom
filters (section 8.11.2) are a more cache-efficient variant. An information theoreti-
cal lower bound for the space consumption is log(1/φ) bits [71]. In section 8.11.3
we approach this bound up to an additive constant by combining data compres-
sion with an extreme variant of Bloom filters (using a single hash function). At
the price of restricting ourselves to static AMQs (no insertions), section 8.11.4
gets aribitrarily close to the lower bound.

In section 8.11.6 we explain parallel AMQs while in section 8.11.7 we outline
various generalizations that support additional functionality like deletion, count-
ing, or size adaptation. Many more variants of AMQs have been considered. For
this we refer to a number of survey papers [58, 308, 129, 195]. Also note that
some applications like networking use hardware implementations.

8.11.1 Bloom Filters

A Bloom filter [48] of size m consists of an m-bit bit array b and uses k hash
functions h1,. . . , hk with range Zm. To insert an element e, the bits b[h1(e)],. . . ,
b[hk(e)] are set. Correspondingly, a contains-query checks the presence of these
bits. A false positive can occur when these checked bits stem from one or several
other inserted objects.

The false-positive rate is approximately [221, pages 107–112]

φ ≈
(

1− e−kn/m
)k

(8.5)

15Even faster text search can be done with appropriate index data structures like inverted indices.
However, the described solution will be useful if the searches involve other criteria that may be more
selective than the text search. For example, one might look for all rows entered in a narrow range
of dates that also contain w.

Draf
t8.11. APPROXIMATE DICTIONARIES (AMQS) 179

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16

f

m/n

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

lower bound

Figure 8.10: Approximate false-positive rate φ according to eq. (8.5) for an m-
bit Bloom filter with n stored elements for k ∈ 1..8 hash functions. The line for
the lower bound gives the value one would obtain for an information-theoretically
optimal data structure.

Draf
t180 CHAPTER 8. HASHING AND HASH TABLES

where n is the number of stored elements. Figure 8.10 plots these values for
different k as a function of m/n, the number of bits available per inserted element.
Optimizing k based on eq. (8.5) yields k =m/n · ln2 (which then has to be rounded
to an integer). The effect of this choice is the intuitive result that a Bloom filter
yields the lowest false-positive rate if about half of its bits are set, i.e., if it is in
a state of maximum information content. An interesting consequence is that a
contains-query with negative outcome has to probe only two bits in expectation.
Insertions and positive queries have cost growing linearly with k. Although we can
obtain multiple hash values cheaply (section 8.1.3), the k memory accesses and
possible cache faults will have a significant cost. Therefore, one often chooses a
smaller value of k in order to improve running time. Note that this often incurs
only a small penalty in the form of increased false-positive rate. For example, at
m/n = 8, the optimal k is 6 (φ ≈ 2.16 %) but k = 5 (φ ≈ 2.17 %) or k = 4 (φ ≈ 2.4
%) are very close. Even k = 3 (φ ≈ 3.1 %) might be a reasonable choice.

8.11.1.1 Union and Size Estimation

Given Bloom filters bA and bB representing two sets A and B respectively, we can
compute the Bloom filter representing the union A∪B as the bit-wise-or bA|bB

of bA and bB. Note that this can be done in time O(m/w) = O(m/ logm) using
the bit-parallelism inherent in our standard machine model with word size w (see
section 2.2.1). The union operation is also easy to parallelize with multiple pro-
cessors.

We can also estimate the size of a set A represented by a Bloom filter bA as
n(bA) =−m

k ln
(
1− a

m

)
where a is the number of set bits in bA [305]. Once more,

this is possible in time O(m/ logm) using bit-parallelism – in this case employing
the population-count instruction available in most microprocessors.16 Although
we cannot compute the Bloom filter of the intersection A∩ B from the Bloom
filters bA and bB, we can estimate the size of A∩B as n(bA)+ n(bB)− n(bA|bB)
[305].

Open Problem 49 (Fast union and size estimation of Bloom filters)
Although the above bit-parallel operations are rather straightforward algorithmi-
cally, it seems that current algorithm libraries do not support them efficiently. In
particular, an implementation using the best available SIMD instructions (such
as VPOPCNT in AVX-512) and multicore parallelism could be useful. Also one

16The population-count operation can also be implemented using lookup tables.

Draf
t8.11. APPROXIMATE DICTIONARIES (AMQS) 181

might want to adapt the the size estimators to the blocked Bloom filters in sec-
tion 8.11.2 or to the space optimal variants in section 8.11.3. A related theoretical
issue might be do derive error margins for these estimators.

8.11.2 Blocked Bloom Filters

A major performance bottleneck of large Bloom filters is that accessing them
incurs up to k cache misses for insertions and positive queries. This can be reduced
to one cache miss by splitting the Bloom filter into its individual cache blocks and
setting all k bits for an element in the same cache block [254]. Thus, inserting an
elements amounts to first choosing a block b based on one hash function (or from
some bits of a larger hash value) and then to set k bits in block b based on further
hash function values. Often, the blocks will be entire cache lines. Currently, for
x86 processors, this implies a block size of B = 512.17

The downside of these blocked Bloom filters is that they have a somewhat
larger false-positive rate than plain Bloom filters. Roughly, the reason is that
fluctuations in the number of elements allocated to a block imply that some blocks
get significantly more 1-bits than others. Increasing k amplifies this effect because
one additional element already means k additional bits in one block. Indeed, for
k = 1, blocked Bloom filters and plain Bloom filters are equivalent.

Our paper [254] derives an approximate value for the false-positive rate as

φ ≈
∞

∑
i=0

(m
n

)i e−
m
n

i!
·
(

1− e−
ki
B

)k
. (8.6)

and experimentally validates that this approximation is close to simulation results.
This equation sums over the number of elements allocated to a bucket. The left
factor in the summand is the likelihood of this event as approximated by the Pois-
son distribution while the right factor is the approximation of the false positive
rate for that bucket as given by eq. (8.5). For fixed k, this infinite sum can be
evaluated into a closed-form expression, e.g., using a computer algebra system.
For example, fig. 8.11 plots this sum for k = 5 and relevant values of m/n. In
comparison to plain Bloom filters with k = 5, the false-positive rate φ is slightly
larger. However, it is smaller than that rate for plain Bloom filters with k = 4.

17One could also consider blocks consisting of two cache lines since hardware prefetching al-
gorithms of many processors imply that the cost of accessing two consecutive blocks can be con-
siderably cheaper than twice the time for fetching one block.

Draf
t182 CHAPTER 8. HASHING AND HASH TABLES

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 7 8 9 10 11 12 13 14 15 16

f

m/n

plain, k=4
plain, k=5

blocked, k=5

Figure 8.11: Approximate false-positive rate φ according to eq. (8.5) (plain) and
eq. (8.6) (blocked with block size B= 512) for an m-bit plain/blocked Bloom filter
with n stored elements for k = 5 hash functions.

Draf
t8.11. APPROXIMATE DICTIONARIES (AMQS) 183

Note that the measure to decrease k below the optimal value is often taken in or-
der to improve performance. We can see that it may be more effective to switch
to blocked Bloom filters instead.

Open Problem 50 (Refining blocked Bloom filters) There are a number of in-
teresting loose ends in blocked Bloom filters. For one, in order to reduce the
cost for computing hash functions, one would like to use the techniques from
section 8.1.3. However, no theoretical guarantees are known for the linear con-
gruential technique and the analysis of the linear combination techniques from
[178] is only valid for B→ ∞.

One can also take up the pattern refinement [254]: Rather than setting k bits
by computing k individual positions, just compute the bitwise or of the block with
a bit pattern retrieved from a lookup table. This might be further improved by
choosing the table entries carefully. Does it help if we ensure that each position
in a block occurs equally frequently in the table? Does it help if we ensure that
never two table entries contain all 1-bits of another table entry (or, when this is
impossible to minimize the number of pairs with this property)? Does it help to
use SIMD-instructions for the implementation?

The paper [254] describes further refinements that are useful when m/n and
k are large. For example, it might then make sense to set k bits overall in k′ < k
different blocks.

8.11.3 Compressed Single-Shot Bloom Filters (sBFs)

The Bloom filters we have seen need a factor about loge≈ 1.44 more space than
the information theoretic lower bound of about log1/φ bits [71]. We can see that
in the growing gap in fig. 8.10. There has been considerable work on closing
this gap (e.g., [71, 217, 240, 254, 277, 108]). Here we outline several variants
of one possible approach and discuss their practicality. Section 8.11.4 discusses
another approach that needs even less space but lacks some features like dynamic
insertions, union, and size-estimation of the intersection.

Somewhat surprisingly, the starting point for several of these approaches can
be viewed as using the least space-efficient variant of Bloom filters that sets only
a single random bit in an m-bit array. Such single-shot Bloom filters (sBFs) have
false positive probability φ = m/n when storing n bits. This paradox can be re-
solved by observing that there are plenty of techniques to compress sparse bit
vectors in an information-theoretically near optimal way. There are

(m
n

)
possible

Draf
t192 CHAPTER 8. HASHING AND HASH TABLES

exactly implement single-shot Bloom filters (sBFs). A simple and fast alternative
is to make the blocks self-sufficient – they store an Elias–Fano Filter that makes
the best use of the available space. Depending on how many elements are allo-
cated to a block, the number of bits used to represent each element is adapted.
In the extreme case, the block degenerates to an uncompressed sBFs with B bits.
Thus the false positive rate varies from block to block. This situation is similar to
the blocked Bloom filter described in section 8.11.2 and overall will deteriorate
the false positive rate. What we gain is simplicity and speed due to saved indi-
rections. Since there is no space overhead for references to overflow blocks and
garbage collection, the overall space efficiency may also be quite good for care-
fully chosen configurations. Implementing and analyzing this approach seems a
worthwile project.

8.11.4 Signature Based AMQs (SAMQs)

Another view at AMQs is to hash objects to short bitstrings, i.e., signatures. A
membership query for key k entails comparing its signature s(k) with a set of can-
didate signatures representing objects in the AMQ data structure. If any of these
signatures match s(k) then key k is reported to be a member of the represented
set. The false positive rate φ depends on the number of candidate signatures and
the length r of the signatures. Ideally there is only a single candidate and we get
φ = 2−r. Quotient filters and Elias–Fano filters can be viewed as SAMQs with
a single candidate. Linear probing filters (see section 8.11.3.1) have a number of
candidates depending on the fill-degree of the table.

Even more interesting SAMQs are not directly related to single-shot Bloom
filters (sBFs).

Cuckoo filters [108, 55] adopt the idea of cuckoo hashing (see section 8.5) to map
signatures to one of H buckets of size B. Cuckoo filters can be filled to a higher
degree than quotient filters. On the other hand, they have increased false positive
rate because HB candidate signatures have to be checked.

Retrieval filters. Space consumption close to the lower bound of n log1/φ bits
can be achieved by storing a function mapping elements to signatures using one
of the retrieval data structures described in section 8.10.

Draf
t198 CHAPTER 8. HASHING AND HASH TABLES

8.12 Perfect Hash Functions (PHFs))

Much of what is discussed in this chapter is about handling collisions between
hash function values. One appealing approach is to look for hash functions that
do not produce collisions at all. We call h : S = {s1, . . . ,sn} → Zm perfect hash
function (PHF) if h is injective. We call it minimal perfect (MPHF) if, in addition,
m = n. This is possible and practical when S is known in advance. Then h can be
specifically designed for S.

In section 8.12.1 we will first establish a lower bound of n
(
loge− ε log ε

1+ε

)
bits to represent a PHF. We will also show that this bound is tight by giving a brute-
force construction algorithm that achieves this bound (using exponential construc-
tion time). For a long time, it has been considered unrealistic to find a practical
algorithm with similar space efficiency. However, a long sequence of both theo-
retical and practical results has changed this view dramatically. Of course there
is still a space-time tradeoff, but generally it can be said that perfect hash func-
tions can be constructed in linear time with moderate constant factors so that they
consume only a few bits per element and can be evaluated in constant time. After
mentioning some applications, we first discuss a technique for converting PHFs to
MPHFs and then outline several concrete approaches to constructing PHFs with
decreasing amount of required space, increasing level of sophistication, and in-
creasing cost for construction and retrieval. Section 8.12.2 modifies the FiRe
approach for retrieval from section 8.10.2.1 to obtain MPHFs. FiPHa is simple
and fast but requires about 4 bits per element to be fast. Section 8.12.3 combines
cuckoo hashing (section 8.5) with a retrieval data structures to obtain PHFs. For
example, one can use a 2-bit retrieval data structure to obtain PHFs with range
Z1.024n. Sections 8.12.4 and 8.12.5 describe methods that approach the informa-
tion theoretic bound on space consumption by breaking the problem of building a
PHF into small subproblems for which a brute-force approach becomes feasible.

Applications. PHFs can be used to assign short, unique names to objects (e.g. to
identify them in a database). They can also be used to address a table of associated
values, see, i.e., they can implement an updateable retrieval data structure (see
section 8.10.3).

Converting PHFs to MPHFs. Suppose h is a PHF with range Zm where
m = (1+ ε)n. Then we can compute a bitvector b[0..m− 1] such that b[i] = 1
if and only if h(e) = i for some element e ∈ S. Then h′(x) = b.rank(h(x)) is an
MPHF. Using the techniques from section 7.4, b can be represented with m+o(m)
bits such that rank works in constant time. For small ε we might employ a com-

Draf
t8.12. PERFECT HASH FUNCTIONS (PHFS)) 199

pressed reprentation of b that reduces the space overhead to O(nε log1/ε) bits.
For example using Elias–Fano coding one would need εn(2+ dlog(1/ε)e) bits.

8.12.1 A Tight Lower Bound

There is a lower bound of

n
(

loge− ε log
ε

1+ ε

)
bits for representing a PHF with a range of size m = (1+ ε)n. This bound holds
as the size u of the universe S is drawn from goes to infinity. We obtained this
bound taking the limit of a bound for general u [36, 210].
A Brute Force Upper Bound. The above lower bound is also an upper bound
and there is a surprisingly simple proof. Consider a sequence h1, h2, . . . of random
hash functions S→ Zm and an algorithm that tries these functions one after the
other, until hi turns out to be perfect. Then it suffices to store i to represent a PHF.
A random hash function has probability

p :=prob(success) =
n!
(m

n

)
mn

to be perfect. Hence, the stored index i has a geometric distribution with parameter
p. The entropy of this distribution is

−p log p− (1− p) log(1− p)
p

= log
1
p
+ loge+O(p)

where the simplification uses the Taylor series of the logarithm function. Now
setting m = (1+ ε)n we can approximate

log
1
p
≈ n logm−n log

n
e
−n log

m
n
− (m−n) log

m
m−n

= n
(

logm− logn+ loge− logm+ logn− ε log
(1+ ε)n

εn

)
= n

(
loge− ε log

1+ ε

ε

)
using m− n = εn and the approximations n! ∼ n ln n

e (eq. (B.1)) and log
(m

n

)
∼

n log m
n +(m−n) log m

n−k when m = Θ(n) (eq. (B.3)). This is not a practical algo-
rithm since, in expectation, it needs an exponential number of trials. However, it
will turn out to be a basis for practical algorithms that apply brute-force techniques
to small subsets of the input.

Draf
t200 CHAPTER 8. HASHING AND HASH TABLES

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 1.5 2 2.5 3 3.5 4

β

space (bits/element)
expected layer accesses

Figure 8.13: Space time tradoff of FiPha ignoring the o(n) term for supporting
fast rank operations.

8.12.2 Filtering out Collisions (FiPHa)

The FiRe approach for retrieval described in section 8.10.2.1 can be adapted to
compute PHFs. We describe a variant FiPHa that computes a MPHF with little
additional overhead (see also [226]). The approach uses a bitvector b with m= βn
bits for some tuning parameter β . Elements are mapped to a random bit in b using
a hash function hb. Bit b[i] is set to one if and only if exactly one element e of S
is mapped to position i, i.e., when e is noncolliding. The perfect hash function h
maps noncolliding elements to b.rank(hb(e)). Colliding elements are bumped to
the next layer of the data structure whose hash function value is offset by the total
number of noncolliding elements.

FiPHa is easier to configure and analyze than FiRe since we do not need to
bother with the number of empty slots. Indeed, β is the only important tuning
parameter. The probability that an element is not colliding with any other elements
is

p1 :=
(

1− 1
βn

)n−1

≈ e−1/β .

Draf
t8.12. PERFECT HASH FUNCTIONS (PHFS)) 201

Thus, the expected number of accessed layers is ` = 1/p1 = e1/β . The expected
space overhead per element is s = β/p1 = βe1/β . This value is minimized for
β = 1. In this case, both ` and s take the value e. Since ` decreases with β , only
values β ≥ 1 make sense. Figure 8.13 plots this tradoff. We see that already for
s around 4, ` approaches one – leading to a good space-time tradoff for many
applications.

Supporting fast rank operations incurs an additional small overhead factor.
We discusss a few cases for cache line sizes of 512 bits: For n≤ 232 we can store
a 32-bit offset within each cache line and obtain an additional space overhead
of 32/(512− 32) ≈ 7 %. By using the two-level approach from section 7.4 we
can store rank information in separate cache lines – a 64-bit global offset and 31
local offsets with 14 bits each within one cache lines addressing blocks of 214 bits
yield a space overehead of 512/214 = 2−5 ≈ 3 %. With somewhat higher space
overhead we can also reduce the required subblock sizes from 512 to 64 or 128 to
speed up the local computations.

8.12.3 Using Retrieval and Cuckoo Hashing

We describe a generic version of a well known approach (e.g., [201, 54, 325] and
then show one way to instantiate it with state-of-the-art components.

Consider H hash function h1, . . . , hH with range Zm. The idea is to select one
of these hash functions i(s) for each element s ∈ S such that h(s) = hi(s)(s) is a
perfect hash function. The indices i(s) can be stored in a logH bit retrieval data
structure (see section 8.10).

Of course, the difficulty is to find i. This problem is closely related to the
problem of building a cuckoo hash table for S with m entries with H hash functions
and block size B = 1; see section 8.5 [116, 177]. Suppose we have built this hash
table. Rather than storing it, we just remember where each element was stored –
when element s is stored at position hi(s) using the cuckoo hash table, we store i
for s in the retrieval data structure. Recall, that such a cuckoo hash table can be
build in linear expected time. In the literature, this has also been discussed as the
equivalent problem of finding an edge orientation in a hypergraph. When using
coupled hash functions, one can also use hypergraph peeling (section 8.10.4.1)
[325].

A particularly useful choice of parameters are H = 4 where it suffices to store
2 bits in the retrieval data structure and it suffices to choose m > 1.024n. Using
the highly space efficient retrieval data structure from ??, we get perfect hash

Draf
t202 CHAPTER 8. HASHING AND HASH TABLES

functions with close to 2 bits per element. Using an additional bit-vector data
structure allows us to convert this to a MPHF using space just over 3 bits per
element. Using compression, e.g., using Elias–Fano coding one gets down to
about 2.2 bits per element.

For H = 2 we can use a 1 bit retrieval data structure to obtain a PHF with m >
2n using close to 1 bit of space per element. Adding a rank-select data structure
of size 2n bit then yields a MPHF using about 3 bits per element.

(author?) [325] describes a variant with H = 3 that integrates a rank-select
data structure – retrieved values 0–2 indicate hash function and value 3 indicates
an empty cell. This yields an MPHF with about 2.18 bits per element. This
approach is also partitularly fast, since a single peeling process computes both the
MPHF and the data structure needed to retrieve it.

8.12.4 Hash, Displace, and Compress (CHD)

There is a very simple information theoretically optimal way to find perfect hash
function – try random functions h1, h2, . . . until a function hk is found that is
perfect and store k. This is extremely slow and impractical but can be viewed as
one high level idea behind the practical method we now present. The trial-and-
error approach can be made practical by building the function piece by piece.

Hash, Displace, and Compress (CHD) [36] first maps a key s ∈ S to a bucket
g(s) ∈ 1..n/λ for some constant λ > 1 using a primary hash function g. Then,
g(s) is used to select a secondary hash function from a sequence φ1, φ2,. . . . The
overall PHF is then h(s) = φσ(g(s))(s) where the function σ needs to be stored in
an array that supports variable bitlength encoding [121].

In order to find σ , the buckets are first sorted by decreasing size and
(dis)placed in that order. For each bucket B in that order, the functions φ1,
φ2,. . . are tried until there are no collisions between the elements of B or of pre-
viously placed buckets. This check can be made in time |B| by keeping an array
T [0..m−1] of flags indicating whether any element is already mapped to that po-
sition. Using appropriate variable-bitlength encoding, the expected number of bits
to encode σ is constant.

Actually, CHD has the potential to approach an information-theoretically op-
timal representation. Space decreases with growing λ but running time increases
exponentially. The concrete configuratations chosen in the experiments need
about half a bit more than information theoretically optimal space.

Draf
t8.13. SUMMARY 203

8.12.5 Splitting plus Brute Force (RecSplit)

8.12.6 Experimental Comparison

8.13 Summary

There is a bewildering variety of results on hash tables which however reflect their
actual importance in applications. There is hardly a nontrivial application of com-
puters that does not need a dictionary data structure somewhere and more often
than not, hash tables are the method of choice to implement them. Of course
this does not mean that every programmer needs to become an expert on hash
tables. It is usually OK to use existing library implementations. However, it is
often not sufficient to just drop in any implementation or even the most frequently
used standard libraries. When hash tables figure prominently in inner loops of a
compute-intensive application or when a profiler indicates that they have signifi-
cant impact on performance. One should have a closer look.

In our experience, linear probing tables (section 8.4) often perform substan-
tially better than those based on chaining. However, it is important to use them
in the right way. Table size m beyond 3 times the input size n is helpful if the
space overhead is affordable. On the other hand, even m close to n can work well
when positive queries and bulk-operations dominate the operation mix. Cuckoo
hashing (section 8.5) is an interesting alternative in space-constrained situations.
Nonstandard implementation features like efficient dynamic growing (section 8.6)
or fast bulk operations can make a difference in some applications.

The situtation is more complicated for advanced models of computation – par-
allel, distributed, or external. Here, using an efficient, well configured library is
often not sufficient to remove performance bottlenecks. Rather, it may be impor-
tant to engineer the application itself to reduce the impact of expensive operations.
For example, approximate dictionaries (section 8.11) may help to avoid external
or remote hash table accesses. Instead of directly using a distributed or concurrent
hash table (sections 8.8 and 8.9), it may be better to work with local tables as long
as possible and to later combine the local results using bulk operations. The highly
compressed but more specialized data structures for retrieval (section 8.10), ap-
proximate dictionaries (section 8.11) and perfect hashing (section 8.12) are a way
to squeeze as much data as possible in some fast/local memory.

The hash functions themselves (section 8.1) are often taken for granted. This
is justified to the extent that good library implementations seem to work well in
a huge spectrum of applications. However, here the gaps between theory and

Draf
t204 CHAPTER 8. HASHING AND HASH TABLES

practice are perhaps most critical since the probabilitstic performance guarantees
available for hash tables all hinge on hash function families that are actually rarely
used in practice. Profiling for some concrete inputs cannot mend the resulting loss
in robustness for the applications since bad inputs may be just around the corner.
Thus, here one has to be careful with profiling driven performance engineering.
Perhaps the right compromise is to use the highest quality hash functions available
that do not severely impact performance – even when faster, low quality hash
functions work well for the inputs tried.

