
The Filter-Kruskal Minimum Spanning Tree Algorithm∗

Vitaly Osipov, Peter Sanders, and Johannes Singler†

Abstract

We present Filter-Kruskal – a simple modification of Kruskal’s algorithm that
avoids sorting edges that are “obviously” not in the MST. For arbitrary graphs
with random edge weights, Filter-Kruskal runs in time O

(

m + n log n log m
n

)

, i.e. in
linear time for not too sparse graphs. Experiments indicate that the algorithm has
very good practical performance over the entire range of edge densities. An equally
simple parallelization seems to be the currently best practical algorithm on multi-core
machines.

1 Introduction

A minimum spanning tree (MST) of a graph G = (V, E) is a minimum total weight subset
of E that forms a spanning tree of G. The MST problem has been intensively studied
in the past since it is a fundamental network design problem with many applications and
because it allows for elegant and multifaceted polynomial time algorithms. In practice (on
sequential machines and in internal memory), two simple algorithms dating back at least
half a century still perform best in most cases [14, 9, 5].

The Jarńık–Prim algorithm [7, 17] grows a tree starting from an arbitrary node. Imple-
mented using efficient priority queues, its running time is O(m + n log n). Even with sim-
pler priority queues, it performs well for random edge weights – time O

(

m + n log n log m

n

)

[15].
Kruskal’s algorithm [11] grows a forest in time O((m + n) log m) by scanning the edges

in order of increasing weight and adding those that join two trees in the current forest. In
practice, Kruskal outperforms Jarńık–Prim for sparse graphs. For denser graphs, Kruskal
suffers from the O(m log m) time needed for sorting all the edges. Therefore it is a natural
idea to avoid sorting heavy edges that cannot contribute to the MST. Moret and Shapiro
[14] do this by building a priority queue of edges in linear time. Then Kruskal’s algorithm
subsequently removes the lightest edge until n−1 tree edges have been found. For random
graphs with random edge weights, the MST edges are expected to be among the O(n log n)
lightest edges. Hence, we get an average execution time of O

(

m + n log2 n
)

. Unfortunately,

∗Partially supported by DFG grant SA 933/3-1.
†Universität Karlsruhe (TH), Germany, {osipov,sanders,singler}@ira.uka.de.

1

the stopping idea fails already if the MST contains a single heavy edge. Note that this can
even happen for random edge weights: Consider a “lollipop graph” consisting of a random
graph and an additional path of length k attached to one of its nodes. The MST needs
all the path edges, about half of which will belong to the heavier half of the edges for
random edge weights. Navarro and Paredes [16] implement the stopping idea more cache
efficiently by integrating Kruskal’s algorithm with quicksort (qKruskal). Apply Kruskal to
small inputs. Otherwise, as in quicksort, partition the edges into a light part and a heavy
part. Recurse on the light part. If the MST is not complete yet, recurse on the heavy part.

Our key idea is to make qKruskal more robust by adding a filtering step that, before
recursing on the heavy part, removes all heavy edges that are within a component of
the current forest. In Section 3 we explain the algorithm Filter-Kruskal in more detail.
The analysis shows that for arbitrary graphs with random edge weights, Filter-Kruskal
runs in expected time O

(

m + n log n log m

n

)

. Note that this is the same performance also
achieved by Jarńık–Prim using binary heaps [15]. The experiments reported in Section 4
confirm that Filter-Kruskal performs very well for both sparse and dense graphs. Moreover,
Filter-Kruskal allows a more coarse-grained and hence more practical parallelization than
Jarńık–Prim.

More Related Work

MSTs can even be found in linear (expected) time [10, 8]. This algorithm can filter out
edges without any sorting using sophisticated data structures that can check whether an
edge e is the heaviest edge on the cycle defined by the minimum spanning forest (MSF)
of an edge sample and e. However, such algorithms are complicated and large constant
factors are involved. To check whether general edge filters are useful at all, [9] invests
Θ(n log n) preprocessing to allow for a better constant factor in filtering. This algorithm
only significantly outperforms Jarńık–Prim for rather dense graphs with weights that force
m decreaseKey operations.

2 Preliminaries

Let G = (V, E) denote an undirected, weighted graph with |V | = 1..n. Let m = |E|. Since
we need Kruskal’s algorithm as a subroutine, we outline it here for self-containedness.
Figure 1 gives pseudocode that should be self-explaining. When Kruskal skips an edge
{u, v} that falls within a single component of T , this is safe because {u, v} closes a cycle in
T and is at least as heavy as all edges in T . In this situation, the cycle property of MSTs
tells us that {u, v} is not needed for an MST. The most sophisticated aspect of the algorithm
is the Union-Find data structure P maintaining a partition of the nodes into components
defined by the MST edges T found so far. P supports an operation union joining two
partitions and an operation find(v) returning the node number of the representative of
the partition of the node v. Indeed, the implementation will exploit that partitions are
represented using parent references defining trees rooted at the representatives and that

2

Procedure kruskal(E, T : Sequence of Edge, P : UnionFind)
sort E by increasing edge weight
foreach {u, v} ∈ E do

if u and v are in different components of P then
add edge {u, v} to T
join the partitions of u and v in P

Procedure filterKruskal(E, T : Sequence of Edge, P : UnionFind)
if m ≤ kruskalThreshold(n, |E|, |T |) then kruskal(E, T, P)
else

pick a pivot p ∈ E
E≤:= 〈e ∈ E : e ≤ p〉
E>:= 〈e ∈ E : e > p〉
filterKruskal(E≤, T, P)
E>:= filter(E>, P)
filterKruskal(E>, T, P)

Function filter(E)
return 〈{u, v} ∈ E : u, v are in different components of P 〉

Figure 1: Pseudocode for Kruskal and Filter-Kruskal. T is a set of MST edges already
known and P is the partition of V induced by T . When used as a standalone method, the
procedures are called with empty T and a trivial partition P . The result is output in T .

the paths leading to the roots are very short in an amortized sense (union-by-rank and
path compression). In particular, if m ≫ n, most path lengths will be one.

3 The Algorithm

Figure 1 gives pseudocode for Filter-Kruskal. Similar to [16], the basic approach is to use
quicksort for sorting the edges and to move the edge scanning part of Kruskal into the
quicksort code. Hence, the algorithm now calls Kruskal on small1 inputs and it calls itself
for the lighter part of the edges. The only new ingredient at this level of abstraction is that
before recursing on the heavier edges E>, they are filtered. Filtering removes those edges
that fall within the same component of the current node partitioning. Note that these
edges are heavier than all edges in T and close a cycle in T . Hence, the cycle property
implies that the filtered edges are not needed for an MST. The advantage of filtering is
that filtered edges need not be sorted.

1As far as asymptotic performance is concerned, any choice of the function kruskalThreshold works as
long as kruskalThreshold(n, |E|, |T |) = O(n).

3

3.1 Analysis of Filter-Kruskal With Random Pivot Selection

We will first show that we can essentially restrict the analysis to counting comparisons
since this quantity is indicative of the total execution time:

Lemma 1 Let C denote the number of (edge weight) comparisons performed by Filter-
Kruskal. Then Filter-Kruskal performs ≤ n − 1 union operations, an expected number of
≤ 2m + C find operations, and O(m + C) work outside union and find operations.

Proof: See Appendix A.

Lemma 2 ([18]) Consider n union operations and M find operations on a union-find
data structure with n elements using path compression and union by rank. Then the total
execution time is O(M + n log∗ n) where log∗ n denotes the iterated logarithm with log∗ n =
0 for n ≤ 1 and log∗ n = 1 + log∗ log n otherwise.

We now analyze Filter-Kruskal for random edge weights which we define to be edge
weights that are all different and whose rank is a random permutation of some original
fixed order of edge weights (wlog, we can assume that the edge weights are the set 1..m).

Theorem 3 Given an arbitrary graph and random edge weights, the expected running time
of Filter-Kruskal is O

(

m + n log(n) log m

n

)

.

Proof: See Appendix A.

We also give an informal argument why the complexity computed above is tight in the
sense that using the sampling lemma from [4] we cannot expect a better result. Suppose, we
had an algorithm that filters every edge with respect to all lighter edges “for free”. Then,
∑

n<i≤m
n/i = Θ

(

n log m

n

)

edges would survive this filtering (in expectation). Sorting those
edges also yields the bound from Theorem 3.

Note that the term n log(n) log m

n
in the execution time of Filter-Kruskal can be sim-

plified to O(n log(n) log log n), i.e., for m = Ω (n log(n) log log(n)) we get linear execution
time. Note that this is up to a factor log n/ log log n better than qKruskal for random
graphs with random edge weights and recall that our result applies to arbitrary graphs
with random edge weights.

Indeed, it seems that for random graphs with random edge weights we get an even
better bound. Figure 3 in the appendix indicates that the number of edge comparisons
executed by Filter-Kruskal for graphs with n log n edges2 is proportional to n log n (at
least the double-logarithmic upper bound from Theorem 3 is too pessimistic). This is
quite strong evidence that the expected running time of Filter-Kruskal is O(m + n log(n)):
First observe that by Lemmas 1 and 2, the comparisons are representative of the asymptotic

2Throughout this paper log x stands for log2 x.

4

execution time. Second, for instances with less than n log n edges, the running time cannot
be larger. Finally, random graph theory tells us that the n log n lightest edges will define
the MST with high probability3. Hence, all the heavier edges will be filtered out anyway.
We believe that a formal proof would not be too difficult by looking even closer at the
structure of random graphs. In particular, since the number of nodes outside the giant
component shrinks geometrically with the average degree, the probability that an edge
survives filtering will also shrink geometrically with its rank divided by n. We believe that
the same bound also applies to many other classes of graphs. Indeed we do not know a
family of graphs for wich Filter-Kruskal with random edge weights would take more than
O(m + n log(n)) expected time.

3.2 Implementation

For m ≫ n log(n) log log n, most of the work is done in O(m) element comparisons per-
formed using quicksort partitioning and the associated find operations in function filter.
Therefore, it makes sense to think about the constant factors involved here and to com-
pare them with the constant factors involved in the Jarńık–Prim algorithm. The number
of comparisons (and associated finds) can be reduced by a constant factor by choosing
pivots more carefully. Therefore, for an input segment of size k, our pivot is the median
of a random sample of size

√
k. For the find operations, observe that most of the find

operations will follow two single parent references to a common representative. This com-
mon case can be made fast as follows: When filtering edge (u, v), we first load the parent
references pu and pv of u and v respectively. When pu = pv, we can immediately discard
(u, v). Otherwise, we complete the find operations for u and v and compare the results as
usual.4 All in all, when most edges are filtered out immediately in this way, the resulting
2m random memory references may dominate the running time for large, not too sparse
graphs – the quicksort partitioning operations work cache efficiently.

Now let us compare this to the best case of the Jarńık–Prim algorithm where for most
edges (u, v), we perform one random memory access to the distance value of v, compare
it with the edge weight and discard (u, v) without accessing the priority queue. Since all
edges are stored in both directions, we also get 2m random memory accesses. Hence, we
can expect Filter-Kruskal and Jarńık–Prim to perform similarly for large, sufficiently dense
instances.

3.3 Parallelization

Most parts of Filter-Kruskal are well suited for parallelization – we can parallelize parti-
tioning, sorting, and filtering. It is interesting to note that the find-operations done for
filtering are logically completely independent although, due to path compression, there
may be simultaneous read and write accesses to the same parent references. However,

3The threshold for connectivity is at n ln(n)/2 edges.
4We use the same trick within Kruskal’s algorithm.

5

no matter how such operations are executed by the hardware, we will get correct results
since we maintain the invariant that parent references eventually lead to the representative.
Only the union-find operations in the Kruskal-call for the base case have to be executed
sequentially. In the best case, these will only be called for a linear number of edges however.

We have implemented a multi-core parallel version of Filter-Kruskal. Sorting and par-
titioning uses a parallel implementation of the C++ standard template library [19]. Par-
titioning is done using the inplace parallel algorithm from [20].

3.4 More Sophisticated Variants

Besides removing edges during filtering that are not needed for an MST, we can also
identify some MST edges for good. Consider the multigraph Gs whose nodes are the
components currently represented in the union-find data structure and whose edges are
Es:= {(find(u), find(v)) : (u, v) ∈ E>} where E> contains the edges which survived filter-
ing. For an edge (u, v) ∈ E>, if find(u) or find(v) have degree one in Gs, then (u, v) is an
MST edge. More generally, all edges outside the two-core5 of Gs correspond to MST edges
and can be found in time linear in the size of Gs.

We have implemented the first variant of the algorithm (henceforth called Filter-
Kruskal+) since degree-one nodes of Gs can be identified easily by maintaining a counter
for each representative. Indeed, counter values 0, 1, and “> 1” suffice and can be stored
together with the rank information in the unused parent references of component represen-
tatives (see also [5]). Figure 4 in the appendix indicates that we get a near linear number
of comparisons for sparse random graphs. Unfortunately, we will see that the overhead
even for this simple measure is such that we see no improvement with respect to running
time. Therefore we refrain from implementing the two-core refinement because this would
even require building a proper adjacency-list representation of Gs which would probably
be even slower. For the convertion time, refer to the Figure 13.

If we would take the time to build Gs explicitly, it would probably be even better to
solve the MST problem recursively for Gs. With this measure we would move into the
direction of a variant of the linear time randomized algorithm [8]. The difference would
be that by taking advantage of random edge weights, we do not need a complicated data
structure for filtering out heaviest edges on a cycle. Instead, we recurse on the lighter half
of the edges and use a simple union-find data structure (which for this application could
be made to run in linear time). The only missing ingredient to a linear time algorithm
would be a node reduction algorithm. We could use the traditional Boruvka algorithm
[3], or the sequential node reduction from [5]. The latter algorithm has an interesting
deterministic variant where in each step, we remove the node with minimum degree. We
have not implemented any of these algorithms because we do not think they could be
competetive to our simple Filter-Kruskal algorithm in practice.

5The k-core of a graph G is the maximal vertex induced subgraph of G with minimal degree k. All
k-cores can be found in linear time by subsequently removing small degree nodes.

6

4 Experiments

Algorithms. We have experimented with Kruskal, qKruskal – the Kruskal modifica-
tion from [16], Filter-Kruskal, Filter-Kruskal+ from Section 3.4, and several variants of
Jarńık–Prim (JP). For JP we only show results for the best implementations: pJP for Irit
Katriels implementation with pairing heaps [9] and qJP, our own implementation combined
with Paredes quickHeap priority queue [16]. qJP is considerably faster than Paredes own
code since we use a faster graph representation (adjacency arrays rather than adjacency
lists). We also use a multi-core implementation of Filter-Kruskal (Filter-KruskalP for P
cores) and a version of Kruskal with parallel sorting of edges (KruskalP). Our graph data
structure implements the interface of the Boost Graph Library [12], but uses a graph rep-
resentation that is specific to the algorithm. For the variants of Kruskals algorithm this is
simply an array of edges, for the JP algorithm, we use an adjacency array representation.
We have also measured the time needed for converting between these representations.
Implementation. The implementation uses C++ with the GNU compiler version 4.3.1
and optimization level O3. The experiments are run on machine with two AMD Opteron
2.0 GHz quad-core CPUs.
Instances. Unfortunately, there is no established suite of real world instances for MST
problems. Mostly, synthetic graphs families from the study [14] were used in the past. From
these we use random graphs with random edge weights, graphs that force a decreaseKey for
every edge (and, incidentally, make filtering completely ineffective), and random geometric
graphs where n random points in the unit square are connected with their k closest neigh-
bors wrt. Euclidean distance. Note that the resulting edge weights are not independent
random numbers. We also use lollipop graphs with random edge weights where a path of
length n/2 is appended to a random graph with n/2 nodes. Perhaps most interestingly,
we have obtained a few instances generated by the image segmentation application by Jan
Wassenberg (see also [6]), that was ran on satelite images, [1].

Figure 2 shows the running time of the algorithms discussed above for random graphs
with random edge weights and n = 216. Kruskal’s algorithm performs well for up to 8n
edges where it is also well parallelizable. For more dense graphs, JP is better. None of
the two priority queue variants is a clear winner. Quickheaps are a bit better for very
sparse graphs whereas pairing heaps win for more dense graph. qKruskal does improve on
Kruskal and outperforms qJP. Filter-Kruskal shows uniformly good performance over the
entire range of densities. It is clearly better than qKruskal and only for rather dense graph
it is still outperformed by JP. On 8 cores, Filter-Kruskal becomes the clear winner. Note
that a parallel implementation of JP does not look promising except for very large, very
dense graphs where parallelizing the innermost loop becomes interesting.

A more direct comparison to the sophisticated parallel MST implementations by Bader
and Cong [2] would be interesting. However, they only report speedups for at least one
million nodes and our codes are considerably faster than their codes if one simply scales the
clock frequency of the machines. Hence, it currently looks like our algorithms are better
at least for a small number of cores and in particular for small inputs.

Somewhat disappointingly, the “improved” Algorithm Filter-Kruskal+ is always slightly

7

 10

 100

 1 4 16 64 256 1024

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

Kruskal
qKruskal
Kruskal8

filterKruskal+
filterKruskal

filterKruskal8
qJP
pJP

Figure 2: Time per edge for random graphs with random edge weight and 216 nodes.

slower than Filter-Kruskal – even the moderate additional effort for including degree-one
edges never really pays off. We view this as an indication that even more complicated
algorithms like [8] are even more far from practical than we thought.

We have performed analogous experiments for smaller and larger random graphs with
n = 1024 and n = 222 (see Figures 5 and 6 in the appendix). The ranking of the algo-
rithms is similar as before, except that for very large graphs, Filter-Kruskal consistently
outperforms JP. For small graphs, it is not astonishing that parallelization is not worthwile.
Here, pJP is the best algorithm throughout whereas qJP performs worse than both pJP
and Filter-Kruskal.

For the difficult instances, we see in Figure 7 in the appendix that qJP becomes ex-
tremely slow, pJP and filterKruskal are now somewhat worse than Kruskal, qKruskal yields
a slight improvement over Kruskal and parallel Kruskal is the best algorithm.

For random geometric graphs (see Figure 8 in the appendix) with 216 nodes, we again

8

have similar ranking as for random graphs, except that this time Filter-Kruskal outperforms
the JP variants.

For lollipop graphs (see Figures 9–11 in the appendix) we see similar result as for
random graphs. The biggest difference is that qKruskal is now no better than Kruskal.
JP ourperforms sequential Filter-Kruskal for sufficiently dense graphs but not by a large
margin.

Finally, for the image segmentation instances shown in Figure 12, we see few surprises.
Filter-Kruskal is again the best algorithm. As for lollipop graphs, qKruskal performs no
better than Kruskal which is a confirmation of the intuition that this heuristics is not very
robust.

The bottom line is that Kruskal remains a good algorithm for very sparse graphs and
Filter-Kruskal and pJP contend for the best performance on more dense instances. We tend
to give preference for Filter-Kruskal for three reasons. First, it shows good performance
also for sparse graphs. Second, it is easily parallelizable, yielding a speedup of above two
already on low cost servers. Third, it only requires a list of edges as its input whereas JP
needs a full fledged adjacency array. Figure 13 in the appendix shows that building an
adjacency array from a list of edges can take an order of magnitude longer than computing
th MST!6 This means that in cases where the adjacency array is not available, Filter-
Kruskal will be much faster than JP. In contrast, building an edge list from an adjacency
array is very fast, indeed, the times given in Figure 13 are overestimates because we could
fuse the loops for conversion and for the top level partitioning – scan the adjacency array
and output to a partitioned array of edges.

5 Conclusions

Enhancing Kruskal’s algorithm with a simple filtering step leads to considerably improved
performance. In particular, for arbitrary graphs with random edge weights, we obtain
linear expected execution time for all but rather sparse graphs. It seems that this also
applies to edge weights occurring in some real world applications. The resulting Filter-
Kruskal algorithm not only outperforms Kruskals algorithm but is also competitive with
the Jarńık–Prim algorithm even for dense graph. Filter-Kruskal considerably outperforms
Jarńık–Prim if multiple cores are available or if the adjacency array is not given as part of
the input.

The more sophisticated Filter-Kruskal+ algorithm that also includes some edges into
the MST without sorting, is interesting because it seems to yield a practical and relatively
simple algorithm with average case linear execution time. Its somewhat disappointing
practical performance might be offset in the future by more opportunities for paralleliza-
tion. First experiments indicate that its nonparallelizable component grows sublinearly
with n (something like n0.6).

6We use the standard conversion algorithm that essentially performs a bucket sort on the endpoints
of the edges [13, page 169], causing ≈ 10m cache faults. For large instances, this could be somewhat
accelerated by using multi-pass algorithms but it is unlikely that the general picture gets reversed.

9

Acknowledgements

We would like to thank Irit Katriel, Rodrigo Paredes, Dominik Schultes and Jan Wassen-
berg for providing graph generators, instances, and source codes. We also thank for fruitful
discussions with Martin Dietzfelbinger, Gonzalo Navarro, and Rodrigo Paredes.

References

[1] Space imaging gallery. http://www.spaceimagingme.com/content/Gallery/index.asp.

[2] D.A. Bader and G. Cong. A fast, parallel spanning tree algorithm for symmetric
multiprocessors (smps). Parallel and Distributed Computing, 65(9):994–1006, 2005.

[3] O. Boruvka. O jistém problému minimálńım. Pràce, Moravské Prirodovedecké Spolec-
nosti, pages 1–58, 1926.

[4] T. M. Chan. Backwards analysis of the Karger–Klein–Tarjan algorithm for minimum
spanning trees. Information Processing Letters, 67(6):303–304, 1998.

[5] R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn. Engineering an external memory
minimum spanning tree algorithm. In IFIP TCS, Toulouse, 2004.

[6] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation.
International Journal of Computer Vision, 59(2):167–181, 2004.

[7] V. Jarńık. O jistém problému minimálńım. Práca Moravské Pr̆́ırodovĕdecké
Spolec̆nosti, 6:57–63, 1930. In Czech.

[8] D. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm for
finding minimum spanning trees. Journal of the ACM, 42:321–329, 1995.

[9] I. Katriel, P. Sanders, and J. L. Träff. A practical minimum spanning tree algorithm
using the cycle property. In 11th European Symposium on Algorithms (ESA), number
2832 in LNCS, pages 679–690. Springer, 2003.

[10] V. King. A simpler minimum spanning tree verification algorithm. Algorithmica,
18:263–270, 1997.

[11] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7:48–50, 1956.

[12] L. Q. Lee, A. Lumsdaine, and J. G. Siek. The Boost graph library: user guide and
reference manual. Addison-Wesley, 2002.

[13] K. Mehlhorn and P. Sanders. Algorithms and Data Structures — The Basic Toolbox.
Springer, 2008.

10

[14] B. M. E. Moret and H. D. Shapiro. An empirical assessment of algorithms for con-
structing a minimum spanning tree. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 15:99–117, 1994.

[15] K. Noshita. A theorem on the expected complexity of Dijkstra’s shortest path algo-
rithm. Journal of Algorithms, 6:400–408, 1985.

[16] R. Paredes and G. Navarro. Optimal incremental sorting. In 8th Workshop on Algo-
rithm Engineering & Experiments, pages 171–182. SIAM, 2006.

[17] R. C. Prim. Shortest connection networks and some generalizations. Bell Systems
Technical Journal, pages 1389–1401, November 1957.

[18] R. Seidel and M. Sharir. Top-down analysis of path compression. SIAM Journal of
Computing, 34(3):515–525, 2005.

[19] J. Singler, P. Sanders, and F. Putze. MCSTL: The multi-core standard template
library. In 13th International Euro-Par Conference, volume 4641 of LNCS, pages
682–694. Springer, 2007.

[20] P. Tsigas and Y. Zhang. A simple, fast parallel implementation of quicksort and
its performance evaluation on SUN enterprise 10000. In PDP, pages 372–381. IEEE
Computer Society, 2003.

11

A Omitted Proofs (With Repeated Theorems)

Lemma 1 Let C denote the number of (edge weight) comparisons performed by Filter-
Kruskal. Then Filter-Kruskal performs ≤ n − 1 union operations, an expected number of
≤ 2m + C find operations, and O(m + C) work outside union and find operations.

Proof: Since Filter-Kruskal performs a union operation whenever it finds an MST edge,
the claim on the number of union operations is obvious. Recall that Kruskal performs 2m
find operation – one for each endpoint of an edge. In the worst case, Filter-Kruskal performs
the same number of find operations in calls of Kruskal for subsets of edges. In addition,
Filter-Kruskal performs some find operations in calls of filter. More precisely, when a call
of Filter-Kruskal picks a pivot of rank r, the corresponding call of filter will perform |E|
comparisons and 2(|E| − r) find operations. The expected value of r is |E|/2 end hence,
E[2(|E|−r)] = |E| – the same as the number of comparisons. All the remaining operations
can be charged to comparisons or find operations proving the claim on the execution time.

Theorem 3 Given an arbitrary graph and random edge weights, the expected running
time of Filter-Kruskal is O

(

m + n log(n) log m

n

)

.

Proof: By Lemmas 1 and 2, it suffices to account for the number of edge weight compar-
isons. Suppose the MSF of the r lightest edges is known. This situation is analogous to
the one in the linear time algorithm [8] when we filter against a random sample of r edges.
Our approach is to integrate the backward analysis of the linear algorithm from [4] and a
textbook analysis of quicksort [13].

Let edge i denote the edge with the i-th smallest weight. Edges i and j are compared at
most once. Hence, we can count comparisons by looking at the indicator random variables
Xij , i < j, where Xij = 1 if edges i and j are compared and Xij = 0 otherwise. Hence, the
expected number of comparison is

E

[

∑

i≤m

∑

i<j≤m

Xij

]

=
∑

i≤m

∑

i<j≤m

E[Xij] =
∑

i≤m

∑

i<j≤m

P [Xij = 1] .

Edges i and j are compared only if one of them is picked as a pivot and neither of them
is filtered out. If we ignore the second condition, the probability is 2/(j − i + 1) (see [13]
for more details). This bound already suffices to bound the expected comparisons for the
case i ≤ n:

∑

i≤n

∑

i<j≤m

2

j − i + 1
≤ 2n

∑

j≤m

1

j
= 2nHm ≤ 2n (ln m + 1) = O(n log n)

where Hm =
∑

i≤m
1/m ≤ ln m + 1 denotes the harmonic sum. We will need the last

estimate several times – ln m ≤ 2 lnn = O(log n). For the case i > n we do take the
second condition into account but only for the first pivot with rank r ≤ j that we encounter.
(Pivots initially chosen that have rank r > j will not lead to comparisons of edges i and j

12

but they pass both edges to the same recursive subproblem.) If r = i or r = j (probability
is 2/j), edges i and j are compared. If i < r < j, edges i and j are not compared. If r ≤ n
(probability n/j), we assume filtering to be ineffective and only multiply the probability
2/(j − i + 1) that at some point i or j are chosen as a pivot. Finally, if r > n (probability
1/j for each such choice of r), Chan [4] has proven that i (or, independently, j) will survive
filtering with probability at most n/r. Hence we get comparison probability

∑

n<r<i

1

j

(n

r

)2 2

j − i + 1
≤ 2n

j(j − i + 1)

where the latter estimate stems from the relation
∑

n<r<i
1/r2 ≤

∑

r>n
1/r2 ≤ 1/n. Over-

all, we get

P [Xij = 1] ≤ 2

j
+

n

j
· 2

j − i + 1
+

2n

j(j − i + 1)
=

2

j
+

4n

j(j − i + 1)
.

For the 2/j term and the case i > n we get the total contribution

∑

n<i≤m

∑

i<j≤m

2

j
= 2

∑

n<i≤m

Hm − Hi ≤ 2
∑

1<i≤m

Hm − Hi = 2(m − 1) .

The latter sum can for example be evaluated with a computer algebra system like Maple
or you write the sums into a triangular form such that each of m − 1 columns sums to 2.

For the term 4n/j(j − i + 1), we estimate

4n

m
∑

i=n+1

m
∑

j=i+1

1

j(j − i + 1)
= 4n

m
∑

j=n+2

1

j

j−n+1
∑

∆=2

1

∆
≤ 4nHm

m
∑

j=n+2

1

j
= Hm(Hm − Hn+2)

= O
(

log n log
m

n

)

.

13

B Additional Figures

 2

 2.5

 3

 3.5

 4

 4.5

 32 64 27 28 29 210211212213214215216217218219220221222

co
m

pa
ris

on
s

/ e
dg

es
 m

 =
 n

 lo
g(

n)

number of nodes n

filterKruskal
log(log(x))

Figure 3: Number of edge comparisons performed by algorithm Filter-Kruskal for random
graphs with n log n edges.

 5

 10

 15

 20

 25

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

nu
m

be
r

of
 c

om
pa

ris
on

s
/ n

number of nodes n

m=n
m=2n
m=4n

Figure 4: Number of edge comparisons performed by algorithm Filter-Kruskal+ for random
graphs.

14

 10

 100

 1000

 1 2 4 8 16 32 64 128 256

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

Kruskal
qKruskal
Kruskal8

filterKruskal+
filterKruskal

filterKruskal8
qJP
pJP

Figure 5: Time per edge for random graphs with random edge weights and 1024 nodes.

 100

 1000

 1 2 4 8 16

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

Kruskal
qKruskal
Kruskal8
filterKruskal+
filterKruskal
filterKruskal8
qJP
pJP

Figure 6: Time per edge for random graphs with random edge weights and 222 nodes.

15

 10

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64 128 256

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

Kruskal
qKruskal
Kruskal8

qJP
pJP

filterKruskal

Figure 7: Time per edge for graphs that are bad for JP and Filter-Kruskal with 216 nodes.

 10

 100

 4 8 16 32 64 128 256

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

Kruskal
qKruskal
Kruskal8
filterKruskal+
filterKruskal
filterKruskal8
qJP
pJP

Figure 8: Time per edge for random geometric graphs with 216 nodes.

16

 10

 100

 1000

 1 2 4 8 16 32 64 128

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

Kruskal
qKruskal
Kruskal8

filterKruskal+
filterKruskal

filterKruskal8
qJP
pJP

Figure 9: Time per edge for lollipop graphs with random edge weights and 1024 nodes.

 10

 100

 1 4 16 64 256 1024

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

Kruskal
qKruskal
Kruskal8
filterKruskal+
filterKruskal
filterKruskal8
qJP
pJP

Figure 10: Time per edge for lollipop graphs with random edge weights and 217 nodes.

17

 32

 64

 128

 256

 512

 1024

 1 2 4 8 16

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

Kruskal
qKruskal
Kruskal8
filterKruskal+
filterKruskal
filterKruskal8
qJP
pJP

Figure 11: Time per edge for lollipop graphs with random edge weights and 223 nodes.

 10

 100

 4 8 16

tim
e

/ m
 [n

s]

m / n

Kruskal
qKruskal
Kruskal8

filterKruskal+
filterKruskal

filterKruskal8
qJP
pJP

 4 8 16

m / n

Figure 12: Time per edge for two families of image segmentation problems with 800 000
nodes (left) and 4 163 616 nodes (right) respectively.

18

 10

 100

 1000

 1 4 16 64 256 1024 4096 16384

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

n=216, Edges -> Adj. Array
n=222, Edges -> Adj. Array
n=216, Adj. Array -> Edges
n=222, Adj. Array -> Edges

Figure 13: Time per edge for converting between edge sequences and adjacency arrays.

19

