

Scalable High-Quality Graph and Hypergraph Partitioning

June 13, 2022 Lars Gottesbüren, Tobias Heuer, Peter Sanders, Sebastian Schlag

Hypergraphs

- generalization of graphs $\Rightarrow hyperedges \ connect \geq 2 \ nodes$
- **graphs** \Rightarrow dyadic (**2-ary**) relationships
- hypergraphs \Rightarrow (d-ary) relationships
- hypergraph $H = (V, E, c, \omega)$
 - vertex set V = {1, ..., n}
 - edge set $E \subseteq \mathcal{P}(V) \setminus \emptyset$
 - node weights $c: V \to \mathbb{R}_{\geq 1}$
 - edge weights $\omega : E \to \mathbb{R}_{\geq 1}$

Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

locks V_i are **roughly equal-sized**:

$$C(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \dots, V_k\}$ such that:

locks V_i are roughly equal-sized:

$$C(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

imbalance parameter

Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \dots, V_k\}$ such that:

locks V_i are **roughly equal-sized**:

$$C(V_i) \leq (1 + \varepsilon) \left[\frac{c(V)}{k} \right]$$

connectivity objective is **minimized**:

parameter

Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \dots, V_k\}$ such that:

locks V_i are **roughly equal-sized**:

$$C(V_i) \leq (1 + \varepsilon) \left[\frac{c(V)}{k} \right]$$

connectivity objective is **minimized**:

$$\sum_{e \in E} (\lambda(e) - 1) \ \omega(e) = 12$$
connectivity
blocks connected by net e

parameter

Applications

Distributed Databases

VLSI Design

Route Planning

Institute of Theoretical Informatics, Algorithmics II

Multilevel Partitioning

Multilevel Partitioning

Multilevel Partitioning

Mt-KaHyPar: Algorithmic Components

Input Hypergraph **Parallel Coarsening** O Traditional log(*n*)-level local Coarsening (Mt-KaHyPar-D) . . . Ca search Ľ coars \bigcirc n-level Coarsening (Mt-KaHyPar-Q) uncontract Č Thread 1 Thread 2 . . . **Initial Partitioning**

Mt-KaHyPar: Algorithmic Components

7 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

Institute of Theoretical Informatics, Algorithmics II

Mt-KaHyPar: Algorithmic Components

7

R2

- Refinement Task

Institute of Theoretical Informatics, Algorithmics II

contracts matching or clustering on each level

Institute of Theoretical Informatics, Algorithmics II

contracts matching or clustering on each level

 \Rightarrow approximately $\mathcal{O}(\log n)$ levels

Institute of Theoretical Informatics, Algorithmics II

contracts matching or clustering on each level

 \Rightarrow approximately $\mathcal{O}(\log n)$ levels

contract one vertex at a time

Institute of Theoretical Informatics, Algorithmics II

*n***-level Partitioning**

contract one vertex at a time

Unoarsening: Almost *n* local search invocations \Rightarrow **High Quality**! (used in KaHyPar)

*n***-level Partitioning**

contract one vertex at a time

Coarsening: Almost n levels

Unoarsening: Almost *n* local search invocations \Rightarrow **High Quality**! (used in KaHyPar)

\Rightarrow Inherently Sequential!

Contraction Forest

Any sequence of contractions form a forest

Contraction Forest

Any sequence of contractions form a forest

Any sequence of contractions form a forest

10 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

Institute of Theoretical Informatics, Algorithmics II

Any sequence of contractions form a forest

Any sequence of contractions form a forest

Contraction Forest

Contraction order:

- 1. Contract v_{15} onto v_8
- 2. Contract v_8 onto v_4
- 3. Contract v_4 onto v_2

Any sequence of contractions form a forest

Observations

There is more than one contraction order leading to the same contraction forest

Any sequence of contractions form a forest

Observations

There is more than one contraction order leading to the same contraction forest

Rules

- Contractions in different subtrees are independent
- Contract v when its children are contracted onto v

Any sequence of contractions form a forest

Observations

There is more than one contraction order leading to the same contraction forest

Rules

- Contractions in different subtrees are independent
- Contract v when its children are contracted onto v

Parallelization Idea

Any sequence of contractions form a forest

Observations

There is more than one contraction order leading to the same contraction forest

Rules

- Contractions in different subtrees are independent
- Contract v when its children are contracted onto v

Parallelization Idea

Any sequence of contractions form a forest

Observations

There is more than one contraction order leading to the same contraction forest

Rules

- Contractions in different subtrees are independent
- Contract v when its children are contracted onto v

Parallelization Idea

Any sequence of contractions form a forest

Observations

There is more than one contraction order leading to the same contraction forest

Rules

- Contractions in different subtrees are independent
- Contract v when its children are contracted onto v

Parallelization Idea

Any sequence of contractions form a forest

Contraction ForestObservations $\bullet^{V_1} \bullet^{V_2}$ There is more than one contraction order leading to
the same contraction forest $T_i =$ Thead iContractions in different subtrees are independent $\bullet^{V_1} \bullet^{V_2}$ Contract v when its children are contracted onto v

Parallelization Idea

Any sequence of contractions form a forest

Contraction Forest
• $V_1 • V_2$ Observations• $V_1 • V_2$ There is more than one contraction order leading to
the same contraction forest $T_i = Thead i$ Contractions in different subtrees are independent
Contract v when its children are contracted onto vParallelization IdeaContract contraction forest bottom-up in parallel

Problem: Contraction forest is not known in advance

Idea: Construct contraction forest *on-the-fly*

Algorithm 1: Parallel n-level Coarsening

for each $u \in V$ in parallel

- $v \leftarrow \text{find contraction partner for } u$
- if add(v, u) to contraction forest then
 - contract v onto u

Idea: Construct contraction forest *on-the-fly*

Algorithm 1: Parallel *n*-level Coarsening

for each $u \in V$ in parallel

 $v \leftarrow$ find contraction partner for u

if add(v, u) to contraction forest then

contract v onto u

Idea: Construct contraction forest *on-the-fly*

Algorithm 1: Parallel *n*-level Coarsening

for each $u \in V$ in parallel

 $v \leftarrow$ find contraction partner for u

if add (v, u) to contraction forest then

contract v onto u

Institute of Theoretical Informatics, Algorithmics II

Idea: Construct contraction forest *on-the-fly*

Algorithm 1: Parallel *n*-level Coarsening

for each $u \in V$ in parallel

 $v \leftarrow$ find contraction partner for u

if add (v, u) to contraction forest then

contract v onto u

$$T_i = \text{Thead } i$$

 T_1
 $0 \bullet V_5$

 T_2

Idea: Construct contraction forest *on-the-fly*

 $T_i = \text{Thead } i$ $T_3 = T_1$ T_1 T_2

Algorithm 1: Parallel n-leve	el Coarsening
------------------------------	---------------

for each $u \in V$ in parallel

 $v \leftarrow$ find contraction partner for u

if add (v, u) to contraction forest then

contract v onto u

Algorithm 1: Parallel <i>n</i> -level Coarsening	
for each $u \in V$ in parallel	
$v \leftarrow$ find contraction partner for u	
if add (v, u) to contraction forest then	
contract v onto u	

Algorithm 1: Parallel <i>n</i> -level Coarsening
for each $u \in V$ in parallel
$v \leftarrow$ find contraction partner for u
if add (v, u) to contraction forest then
contract v onto u

Algorithm 1: Parallel <i>n</i> -level Coarsening
for each $u \in V$ in parallel
$v \leftarrow$ find contraction partner for u
if add (v, u) to contraction forest then
contract v onto u

Algorithm 1: Parallel <i>n</i> -level Coarsening	
for each $u \in V$ in parallel	
$v \leftarrow$ find contraction partner for u	
if add (v, u) to contraction forest then	
contract v onto u	

Idea: Construct contraction forest *on-the-fly*

Cyclic Dependency \Rightarrow Discard Contraction

Idea: Construct contraction forest *on-the-fly*

Algorithm 1: Parallel *n*-level Coarseningfor each $u \in V$ in parallel $v \leftarrow$ find contraction partner for uif add (v, u) to contraction forest thencontract v onto u

Algorithm 1: Parallel <i>n</i> -level Coarsening
for each $u \in V$ in parallel
$v \leftarrow$ find contraction partner for u
if add (v, u) to contraction forest then
contract v onto u

Algorithm 1: Parallel <i>n</i> -level Coarsening
for each $u \in V$ in parallel
$v \leftarrow$ find contraction partner for u
if add (v, u) to contraction forest then
contract v onto u

Algorithm 1: Parallel <i>n</i> -level Coarsening	
for each $u \in V$ in parallel	
$v \leftarrow$ find contraction partner for u	
if add (v, u) to contraction forest then	
contract v onto u	

Algorithm 1: Parallel <i>n</i> -level Coarsening
for each $u \in V$ in parallel
$v \leftarrow$ find contraction partner for u
if add (v, u) to contraction forest then
contract v onto u

Algorithm 1: Parallel <i>n</i> -level Coarsening	
for each $u \in V$ in parallel	
$v \leftarrow$ find contraction partner for u	
if add (v, u) to contraction forest then	
contract v onto u	

Idea: Construct contraction forest *on-the-fly*

Algorithm 1: Parallel <i>n</i> -level Coarsening
for each $u \in V$ in parallel
$v \leftarrow$ find contraction partner for u
if add (v, u) to contraction forest then
contract v onto u

Simple locking protocol used to modify contraction forest

Consistency Requirements

Contraction Consistency

Data Structure Consistency

Institute of Theoretical Informatics, Algorithmics II

Consistency Requirements

Contraction Consistency

Data Structure Consistency

Parallel Uncoarsening

traditional *n*-level uncontracts only **one** vertex on each level \Rightarrow inherently sequential

Parallel Uncoarsening

traditional *n*-level uncontracts only **one** vertex on each level \Rightarrow inherently sequential

Idea

assemble independent uncontractions in a batch B with $|B| pprox b_{ ext{max}}$

- uncontract B in parallel
- then run parallel localized refinement around B
- construct *batches* $\mathcal{B} = \langle B_1, \ldots, B_l \rangle$

uncontracting B_i enables uncontraction of all vertices in B_{i+1}

13 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

Institute of Theoretical Informatics, Algorithmics II

Parallel Uncoarsening

traditional *n*-level uncontracts only **one** vertex on each level \Rightarrow inherently sequential

Idea

assemble independent uncontractions in a batch B with $|B| \approx b_{max}$

- uncontract B in parallel
- then run parallel localized refinement around B
- construct *batches* $\mathcal{B} = \langle B_1, \ldots, B_l \rangle$
- uncontracting B_i enables uncontraction of all vertices in B_{i+1}
- **top-down traversal** of contraction forest \mathcal{F}

13 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

Institute of Theoretical Informatics, Algorithmics II

Parallel Uncoarsening

traditional *n*-level uncontracts only **one** vertex on each level \Rightarrow inherently sequential

Idea

assemble independent uncontractions in a batch B with $|B| \approx b_{max}$

- uncontract B in parallel
- then run parallel localized refinement around B
- construct *batches* $\mathcal{B} = \langle B_1, \ldots, B_l \rangle$
- uncontracting B_i enables uncontraction of all vertices in B_{i+1}
- **top-down traversal** of contraction forest \mathcal{F}

13 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

Institute of Theoretical Informatics, Algorithmics II

Parallel Uncoarsening

traditional *n*-level uncontracts only **one** vertex on each level \Rightarrow inherently sequential

Idea

assemble independent uncontractions in a batch B with $|B| \approx b_{max}$

- uncontract B in parallel
- then run parallel localized refinement around B
- construct *batches* $\mathcal{B} = \langle B_1, \ldots, B_l \rangle$
- uncontracting B_i enables uncontraction of all vertices in B_{i+1}
- **top-down traversal** of contraction forest \mathcal{F}

13 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

Institute of Theoretical Informatics, Algorithmics II

Parallel Uncoarsening

traditional *n*-level uncontracts only **one** vertex on each level \Rightarrow inherently sequential

Idea

assemble independent uncontractions in a batch B with $|B| \approx b_{\max}$

- uncontract B in parallel
- then run parallel localized refinement around B
- construct *batches* $\mathcal{B} = \langle B_1, \ldots, B_l \rangle$
- uncontracting B_i enables uncontraction of all vertices in B_{i+1}
- **top-down traversal** of contraction forest \mathcal{F}

13 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

Institute of Theoretical Informatics, Algorithmics II

Parallel Uncoarsening

traditional *n*-level uncontracts only **one** vertex on each level \Rightarrow inherently sequential

Idea

assemble independent uncontractions in a batch B with $|B| \approx b_{max}$

- uncontract B in parallel
- then run parallel localized refinement around B
- construct *batches* $\mathcal{B} = \langle B_1, \ldots, B_l \rangle$
- uncontracting B_i enables uncontraction of all vertices in B_{i+1}
- **top-down traversal** of contraction forest \mathcal{F}

$$b_{\max} = 3$$

$$\mathcal{B} = \langle \begin{bmatrix} v_3 & v_7 & v_4 \end{bmatrix}, \begin{bmatrix} v_5 & v_6 & v_{12} \end{bmatrix}, \begin{bmatrix} v_8 & v_9 & v_{10} \end{bmatrix}, \begin{bmatrix} v_{11} & v_{13} & v_{14} \end{bmatrix},$$

13 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

Institute of Theoretical Informatics, Algorithmics II

Parallel Uncoarsening

traditional *n*-level uncontracts only **one** vertex on each level \Rightarrow inherently sequential

Idea

assemble independent uncontractions in a batch B with $|B| \approx b_{max}$

- uncontract B in parallel
- then run parallel localized refinement around B
- construct *batches* $\mathcal{B} = \langle B_1, \ldots, B_l \rangle$
- uncontracting B_i enables uncontraction of all vertices in B_{i+1}
- **top-down traversal** of contraction forest \mathcal{F}

$$b_{\max} = 3$$

$$\mathcal{B} = \langle \begin{bmatrix} v_3 & v_7 & v_4 \end{bmatrix}, \begin{bmatrix} v_5 & v_6 & v_{12} \end{bmatrix}, \begin{bmatrix} v_8 & v_9 & v_{10} \end{bmatrix}, \begin{bmatrix} v_{11} & v_{13} & v_{14} \end{bmatrix}, \begin{bmatrix} v_{15} & v_{15} & v_{15} \end{bmatrix}$$

Parallel Uncoarsening

traditional *n*-level uncontracts only **one** vertex on each level \Rightarrow inherently sequential

Idea

assemble independent uncontractions in a batch B with $|B| \approx b_{max}$

uncontract *B* in parallel

then run parallel localized refinement around B

construct *batches* $\mathcal{B} = \langle B_1, \ldots, B_l \rangle$

uncontracting B_i enables uncontraction of all vertices in B_{i+1}

top-down traversal of contraction forest \mathcal{F}

$$b_{\max} = 3$$

$$\mathcal{B} = \langle V_3 \ V_7 \ V_4 \rangle, V_5 \ V_6 \ V_{12} \rangle, V_8 \ V_9 \ V_{10} \rangle, V_{11} \ V_{13} \ V_{14} \rangle, V_{15}$$

Parallel Uncoarsening

traditional *n*-level uncontracts only **one** vertex on each level \Rightarrow inherently sequential

Idea

assemble independent uncontractions in a batch B with $|B| \approx b_{max}$

uncontract B in parallel

- $b_{\text{max}} = 1000$ in practice
- then run parallel loc **Implementation Detail**:
- construct batches $\mathcal{B} =$ Uncontract siblings in reverse order of contraction
 uncontracting B_i enables and the set of the
- **top-down traversal** of contraction forest \mathcal{F}

```
b_{\max} = 3
\mathcal{B} = \langle V_3 \ V_7 \ V_4 \ , V_5 \ V_6 \ V_{12} \ , V_8 \ V_9 \ V_{10} \ , V_{11} \ V_{13} \ V_{14} \ , V_{15}
```


The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

14 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

Compute a maximum (*s*, *t*)-flow

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

Current Cut = 250, Current Imbalance = 15% Imbalanced!

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

Augment flow again to a maximum (s, t)-flow

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

14 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

The value of a **maxium flow** between to vertices *s* and *t* is equal with the **minimum cut** seperating *s* and *t*

Our implementation uses a **parallel** maximum flow algorithm (push-relabel algorithm)

- Flow computation returns a sequences moves
- What could possibly go wrong?

- Flow computation returns a sequences moves
- What could possibly go wrong?
 - Applying the move sequence could violate the balance constraint

- Flow computation returns a sequences moves
- What could possibly go wrong?
 - Applying the move sequence could violate the balance constraint
 - Applying the move sequence could worsen the solution quality

Experiments – Large Instances

- for comparison with fast partitioners: Zoltan, PaToH-D, Hype, BiPart
 for scaling experiments
- 1st gen Epyc Rome, 1 socket, 64 cores @ 2.0-3.35 Ghz, 1024 GB RAM
- 94 large hypergraphs: [publicly available]
 SuiteSparse Matrix Collection 42
 SAT Competition 2014 (3 representations) 14.3 = 42
 DAC2012 VLSI Circuits 10
 Largest hypergraph ≈ 2 billion pins
- $k \in \{2, 8, 16, 64\}$ with imbalance: $\varepsilon = 3\%$
- 5 random seeds
- 1,4,16,64 threads

Experiments – Scalabilty

17 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

Experiments – Scalabilty

17 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

Experiments – Medium-Sized Instances

for comparison with sequential partitioners: KaHyPar, hMetis, PaToH
 Intel Xeon Gold, 2 sockets, 20 cores @ 2.1 Ghz, 96 GB RAM

- 488 hypergraphs: [publicly available]
 SuiteSparse Matrix Collection 184
 SAT Competition 2014 (3 representations) 92.3 = 276
 DAC2012 VLSI Circuits 10
 ISPD98 18
- k ∈ {2, 4, 8, 16, 32, 64, 128} with imbalance: ε = 3%
 10 random seeds
 10 threads

$p_{Algo}(\tau) = |\{I \in \mathcal{I} \mid Algo(I) \leq \tau \cdot Best(I)\}|/|\mathcal{I}|$

instances 1.00Algorithm Gmean *t*[*s*] 0.80Mt-KaHyPar-Q 10 3.19 KaHyPar-HFC 48.98 0.60 -Of 0.40Fraction 0.200.01 $10^2 \bigcirc$ 1.5 $\mathbf{2}$ 1.051.1 \mathcal{T} Mt-KaHyPar-Q 10 — KaHyPar-HFC

$p_{A/go}(\tau) = |\{I \in \mathcal{I} \mid A/go(I) \leq \tau \cdot Best(I)\}|/|\mathcal{I}|$

20 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

Multilevel vs n-Level Partitioning

Multilevel vs n-Level Partitioning

Idea: Perform additional runs with the faster algorithm until its expected running time equals the running time of the slower algorithm

- Idea: Perform additional runs with the faster algorithm until its expected running time equals the running time of the slower algorithm
- Given an instance I and two algorithms A and B

- Idea: Perform additional runs with the faster algorithm until its expected running time equals the running time of the slower algorithm
- Given an instance I and two algorithms A and B

Algorithm A					
Run	1	2	3	4	
Quality	1232	1123	1621	1345	-
Running Time	23.2	24.5	21.0	22.5	
Algorithm B					
Run	1	2	3	4	
Quality	1532	1103	1287	1845	
Running Time	5.2	8.3	6.0	7.3	

- Idea: Perform additional runs with the faster algorithm until its expected running time equals the running time of the slower algorithm
- Given an instance I and two algorithms A and B

Algorithm A					Campio ono ran nom caon aigo
Run	1	2	3	4	Algorithm A
Quality	1232	1123	1621	1345	Best Result 1123
Running Time	23.2	24.5	21.0	22.5	Total Time 24.5
C					
Algorithm B					
Run	1	2	3	4	Algorithm B
Quality	1532	1103	1287	1845	Best Result 1845
Running Time	5.2	8.3	6.0	7.3	Total Time 7.3

Sample one run from each algorithm

- Idea: Perform additional runs with the faster algorithm until its expected running time equals the running time of the slower algorithm
- Given an instance I and two algorithms A and B

Algorithm A					
Run	1	2	3	4	Algorithm A
Quality	1232	1123	1621	1345	Best Result 1123
Running Time	23.2	24.5	21.0	22.5	Total Time 24.5
Algorithm B					Sample additional runs of algorithm B
Run	1	2	3	4	_ Algorithm B
Quality	1532	1103	1287	1845	Best Result 1456
Running Time	5.2	8.3	6.0	7.3	Total Time 11.6

- Idea: Perform additional runs with the faster algorithm until its expected running time equals the running time of the slower algorithm
- Given an instance I and two algorithms A and B

Algorithm A Run	1	2	3	4	Algorithm A
Quality	1232	1123	1621	1345	Best Result 1123
Running Time	23.2	24.5	21.0	22.5	Total Time 24.5
Algorithm B Run	1	2	3	4	Sample additional runs of algorithm B
Quality	1532	1103	1287	1845	Best Result 1456
Running Time	5.2	8.3	6.0	7.3	Total Time 16.8

- Idea: Perform additional runs with the faster algorithm until its expected running time equals the running time of the slower algorithm
- Given an instance I and two algorithms A and B

Algorithm A					
Run	1	2	3	4	Algorithm A
Quality	1232	1123	1621	1345	Best Result 1123
Running Time	23.2	24.5	21.0	22.5	Total Time 24.5
			16.8 -	+ 8.3 = 2	5.1 > 24.5
Algorithm B			\Rightarrow ac	cept last	sample with probability $(24.5 - 16.8)/8.3 = 92\%$
Run	1	2	3	4	Algorithm B
Quality	1532	1103	1287	1845	Best Result 1456
Running Time	ΕO	02	60	73	Total Time 16.8
running rine	J. C	0.3	0.0	1.0	

- Idea: Perform additional runs with the faster algorithm until its expected running time equals the running time of the slower algorithm
- Given an instance I and two algorithms A and B

Algorithm A Run	1	2	3	4	Algorithm A
Quality	1232	1123	1621	1345	Best Result 1123 Total Time 24.5
	23.2	24.5	21.0	22.5	
Algorithm B			-		
Run	1	2	3	4	Algorithm B
Quality	1532	1103	1287	1845	Best Result 1103
Running Time	5.2	8.3	6.0	7.3	Total Time 25.1

22 June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning

Institute of Theoretical Informatics, Algorithmics II

Effectiveness Tests

Idea: Perform additional runs with the faster algorithm until its expected running time equals the running time of the slower algorithm

Given an instance *I* and two algorithms *A* and *B*

Algorithm A				
Run	1	2	3	4
Quality	1232	1123	1621	1345
Running Time	23.2	24.5	21.0	22.5
Algorithm B				
Run	1	2	3	4
Quality	1532	1103	1287	1845
Running Time	5.2	8.3	6.0	7.3

This is also called a *virtual instance* \Rightarrow we create 10 virtual instances per instance

Algorithm A	
Best Result	1123
Total Time	24.5

Algorithm B	
Best Result	1103
Total Time	25.1

Multilevel vs n-Level - Effectiveness Tests

Conclusion

Mt-KaHyPar

- achieves the same solution quality as the highest quality sequential system in fast parallel code
- order of magnitude faster than its sequential counterparts with only 10 threads
- great speedups

https://github.com/kahypar/mt-kahypar