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Hypergraphs

hypergraph H = (V , E , c,ω)
vertex set V = {1, ..., n}
edge set E ⊆ P (V ) \ ∅
node weights c : V → R≥1

edge weights ω : E → R≥1

graphs⇒ dyadic (2-ary) relationships

hypergraphs⇒ (d-ary) relationships

⇒ hyperedges connect ≥ 2 nodes
generalization of graphs
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ε-Balanced Hypergraph Partitioning Problem

Partition hypergraph H = (V , E , c,ω) into k disjoint blocks
Π = {V1, . . . , Vk} such that:

blocks Vi are roughly equal-sized:

c(Vi) ≤ (1 + ε)
⌈

c(V )
k

⌉
connectivity objective is minimized:
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ε-Balanced Hypergraph Partitioning Problem

Partition hypergraph H = (V , E , c,ω) into k disjoint blocks
Π = {V1, . . . , Vk} such that:

imbalance
parameterblocks Vi are roughly equal-sized:

c(Vi) ≤ (1 + ε)
⌈

c(V )
k

⌉
connectivity objective is minimized:∑

e∈E (λ(e)− 1) ω(e) = 12

connectivity:
# blocks connected by net e
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Applications

VLSI Design

Route Planning

HPC

Distributed Databases

q1

q2
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Trade-Off Landscape for Hypergraph Partitioning
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Trade-Off Landscape for Graph Partitioning
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Mt-KaHyPar: Algorithmic Components
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Mt-KaHyPar: Algorithmic Components

contract

Input Hypergraph

uncontract

local
search

cluster

Initial Partitioning

C
oa

rs
en

in
g

U
nc

oa
rs

en
in

gParallel Coarsening

e1
e2

e3

C1

C2

Traditional log(n)-level
Coarsening (Mt-KaHyPar-D)

e1
e2

e3

e1
e2

e3

n-level Coarsening (Mt-KaHyPar-Q)

e1 e2

e3

Thread 1 Thread 2

7



June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning Institute of Theoretical Informatics, Algorithmics II

Mt-KaHyPar: Algorithmic Components

contract

Input Hypergraph

uncontract

local
search

cluster

Initial Partitioning

C
oa

rs
en

in
g

U
nc

oa
rs

en
in

gParallel Coarsening

e1
e2

e3

C1

C2

Traditional log(n)-level
Coarsening (Mt-KaHyPar-D)

e1
e2

e3

e1
e2

e3

n-level Coarsening (Mt-KaHyPar-Q)

e1 e2

e3

Thread 1 Thread 2

Parallel Recursive Bipartitioning based Initial Partitioning with Work-Stealing

v1 v2 Parallel Recursion

= Coarsening Task
= Bipartition Task
= Refinement Task

= Coarsening Task
= Bipartition Task
= Refinement Task

Thread 1
Thread 2
Thread 3
Thread 4

C1
B1
R1

C2
B2
R2

C1
C1

Task Queue

B2

B2
B2

B2

Thread 1
Thread 2
Thread 3
Thread 4

C1
C1

Task Queue

B2

B2
B2

B2

B2 B2

Work-
Stealing

B2 B2

v1 v3

v2 v4

k = 4

7



June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning Institute of Theoretical Informatics, Algorithmics II

Mt-KaHyPar: Algorithmic Components

contract

Input Hypergraph

uncontract

local
search

cluster

Initial Partitioning

C
oa

rs
en

in
g

U
nc

oa
rs

en
in

gParallel Coarsening

e1
e2

e3

C1

C2

Traditional log(n)-level
Coarsening (Mt-KaHyPar-D)

e1
e2

e3

e1
e2

e3

n-level Coarsening (Mt-KaHyPar-Q)

e1 e2

e3

Thread 1 Thread 2

Parallel Recursive Bipartitioning based Initial Partitioning with Work-Stealing

v1 v2 Parallel Recursion

= Coarsening Task
= Bipartition Task
= Refinement Task

= Coarsening Task
= Bipartition Task
= Refinement Task

Thread 1
Thread 2
Thread 3
Thread 4

C1
B1
R1

C2
B2
R2

C1
C1

Task Queue

B2

B2
B2

B2

Thread 1
Thread 2
Thread 3
Thread 4

C1
C1

Task Queue

B2

B2
B2

B2

B2 B2

Work-
Stealing

B2 B2

v1 v3

v2 v4

k = 4

Parallel Direct k -Way FM

Parallel Flow-Based Refinement

s t

V1 V2B1 B2

Improvement

Moves

Best Prefix

Moves vertices greedily

e1

e2

e3
e4

v1
v2Thread 1

Thread 2

7



June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning Institute of Theoretical Informatics, Algorithmics II

Traditional Multilevel Partitioning
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n-level Partitioning
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Contraction Forest

Any sequence of contractions form a forest

Contraction Forest
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Contraction Forest

Any sequence of contractions form a forest

Contraction Forest
v1 v2

v3 v4

v5 v6 v7 v8

v9 v10 v11 v12 v13 v14 v15

Roots are the vertices of the
coarsest hypergraph
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Contraction Forest

Any sequence of contractions form a forest

Contraction Forest
v1 v2

v3 v4

v5 v6 v7 v8

v9 v10 v11 v12 v13 v14 v15

Contraction order:

1. Contract v15 onto v8

2. Contract v8 onto v4

3. Contract v4 onto v2
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Contraction Forest

Any sequence of contractions form a forest

Contraction Forest Observations

There is more than one contraction order leading to
the same contraction forest

Parallelization Idea

Contract contraction forest bottom-up in parallel

Ti = Thead i

v1 v2

Problem: Contraction forest is not known in advance

Contractions in different subtrees are independent

Contract v when its children are contracted onto v

Rules
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Contraction Forest Construction

Idea: Construct contraction forest on-the-fly Algorithm 1: Parallel n-level Coarsening
for each u ∈ V in parallel

v ← find contraction partner for u
if add (v , u) to contraction forest then

contract v onto u
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for each u ∈ V in parallel
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1
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Cyclic Dependency
⇒ Discard Contraction
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Algorithm 1: Parallel n-level Coarsening
for each u ∈ V in parallel

v ← find contraction partner for u
if add (v , u) to contraction forest then

contract v onto u
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Contraction Forest Construction

Idea: Construct contraction forest on-the-fly

Ti = Thead i

v8

T2

1

1

v2

v5

1

00

v90

T3

Pending counter of v8 is zero
⇒ we assume contraction of v8 has already started
⇒ find suitable ancestor of v8

v3

v1

Algorithm 1: Parallel n-level Coarsening
for each u ∈ V in parallel

v ← find contraction partner for u
if add (v , u) to contraction forest then

contract v onto u
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Contraction Forest Construction

Idea: Construct contraction forest on-the-fly

Ti = Thead i

1

1

v2

v50 v80 v90

0

T3

Thread T3 decreases pend-
ing counter of v2 to zero
⇒ Recursively continue v3

v1

Algorithm 1: Parallel n-level Coarsening
for each u ∈ V in parallel

v ← find contraction partner for u
if add (v , u) to contraction forest then

contract v onto u
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Contraction Forest Construction

Idea: Construct contraction forest on-the-fly

Ti = Thead i

v50 v80 v90

v20

v1

v30

0

Simple locking protocol used to modify contraction forest

Algorithm 1: Parallel n-level Coarsening
for each u ∈ V in parallel

v ← find contraction partner for u
if add (v , u) to contraction forest then

contract v onto u
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Consistency Requirements
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tu
Lu

Contraction Consistency Data Structure Consistency

see paper
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traditional n-level uncontracts only one vertex on each level⇒ inherently sequential
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Parallel Uncoarsening

traditional n-level uncontracts only one vertex on each level⇒ inherently sequential

Idea
assemble independent uncontractions in a batch B with |B| ≈ bmax

uncontract B in parallel
then run parallel localized refinement around B

construct batches B = 〈B1, . . . , Bl〉
uncontracting Bi enables uncontraction of all vertices in Bi+1
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uncontract B in parallel
then run parallel localized refinement around B

construct batches B = 〈B1, . . . , Bl〉
uncontracting Bi enables uncontraction of all vertices in Bi+1

v1 v2

v3 v4

v5 v6 v7 v8

v9 v10 v11 v12 v13 v14 v15
top-down traversal of contraction forest F

eligible for uncontractionbmax = 3

B = 〈 〉, , , , already uncontracted
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Parallel Uncoarsening

traditional n-level uncontracts only one vertex on each level⇒ inherently sequential

Idea
assemble independent uncontractions in a batch B with |B| ≈ bmax

uncontract B in parallel
then run parallel localized refinement around B

construct batches B = 〈B1, . . . , Bl〉
uncontracting Bi enables uncontraction of all vertices in Bi+1

v1 v2

v3 v4

v5 v6 v7 v8

v9 v10 v11 v12 v13 v14 v15
top-down traversal of contraction forest F

eligible for uncontractionbmax = 3

B = 〈 〉, , , ,v3 v7 v4
already uncontracted
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Parallel Uncoarsening

traditional n-level uncontracts only one vertex on each level⇒ inherently sequential

Idea
assemble independent uncontractions in a batch B with |B| ≈ bmax

uncontract B in parallel
then run parallel localized refinement around B

construct batches B = 〈B1, . . . , Bl〉
uncontracting Bi enables uncontraction of all vertices in Bi+1

v1 v2

v3 v4

v5 v6 v7 v8

v9 v10 v11 v12 v13 v14 v15
top-down traversal of contraction forest F

eligible for uncontractionbmax = 3

B = 〈 〉, , , ,v3 v7 v4 v5 v6 v12
already uncontracted
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Parallel Uncoarsening

traditional n-level uncontracts only one vertex on each level⇒ inherently sequential

Idea
assemble independent uncontractions in a batch B with |B| ≈ bmax

uncontract B in parallel
then run parallel localized refinement around B

construct batches B = 〈B1, . . . , Bl〉
uncontracting Bi enables uncontraction of all vertices in Bi+1

v1 v2

v3 v4

v5 v6 v7 v8

v9 v10 v11 v12 v13 v14 v15
top-down traversal of contraction forest F

eligible for uncontractionbmax = 3

B = 〈 〉, , , ,v3 v7 v4 v5 v6 v12 v8 v9 v10
already uncontracted
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Parallel Uncoarsening

traditional n-level uncontracts only one vertex on each level⇒ inherently sequential
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assemble independent uncontractions in a batch B with |B| ≈ bmax

uncontract B in parallel
then run parallel localized refinement around B

construct batches B = 〈B1, . . . , Bl〉
uncontracting Bi enables uncontraction of all vertices in Bi+1

v1 v2

v3 v4

v5 v6 v7 v8

v9 v10 v11 v12 v13 v14 v15
top-down traversal of contraction forest F

eligible for uncontractionbmax = 3

B = 〈 〉, , , ,v3 v7 v4 v5 v6 v12 v8 v9 v10 v11 v13 v14
already uncontracted
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Parallel Uncoarsening

traditional n-level uncontracts only one vertex on each level⇒ inherently sequential

Idea
assemble independent uncontractions in a batch B with |B| ≈ bmax

uncontract B in parallel
then run parallel localized refinement around B

construct batches B = 〈B1, . . . , Bl〉
uncontracting Bi enables uncontraction of all vertices in Bi+1

v1 v2

v3 v4

v5 v6 v7 v8

v9 v10 v11 v12 v13 v14 v15
top-down traversal of contraction forest F

eligible for uncontractionbmax = 3

B = 〈 〉, , , ,v3 v7 v4 v5 v6 v12 v8 v9 v10 v11 v13 v14 v15
already uncontracted

bmax = 1000 in practice
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Parallel Uncoarsening

traditional n-level uncontracts only one vertex on each level⇒ inherently sequential

Idea
assemble independent uncontractions in a batch B with |B| ≈ bmax

uncontract B in parallel
then run parallel localized refinement around B

construct batches B = 〈B1, . . . , Bl〉
uncontracting Bi enables uncontraction of all vertices in Bi+1

v1 v2

v3 v4

v5 v6 v7 v8

v9 v10 v11 v12 v13 v14 v15
top-down traversal of contraction forest F

eligible for uncontractionbmax = 3

B = 〈 〉, , , ,v3 v7 v4 v5 v6 v12 v8 v9 v10 v11 v13 v14 v15
already uncontracted

bmax = 1000 in practice

Implementation Detail:
Uncontract siblings in reverse order of contraction
⇒ see paper
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V1 V2
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Parallel Flow-Based Refinement

The value of a maxium flow between to vertices s and t is equal with the minimum cut seperating s and t

V1 V2

Hypergraph

Bipartition Π = {V1, V2}
Cut Hyperedges
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Parallel Flow-Based Refinement

The value of a maxium flow between to vertices s and t is equal with the minimum cut seperating s and t

V1 V2

Initial Cut = 539, Target Imbalance = 3%

14



June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning Institute of Theoretical Informatics, Algorithmics II

Parallel Flow-Based Refinement

The value of a maxium flow between to vertices s and t is equal with the minimum cut seperating s and t

V1 V2

Initial Cut = 539, Target Imbalance = 3%

Grow region around cut via BFS
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Parallel Flow-Based Refinement

The value of a maxium flow between to vertices s and t is equal with the minimum cut seperating s and t

V1 V2

Initial Cut = 539, Target Imbalance = 3%
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Parallel Flow-Based Refinement

The value of a maxium flow between to vertices s and t is equal with the minimum cut seperating s and t

V1 V2

Initial Cut = 539, Target Imbalance = 3%

s t

Compute a maximum (s, t)-flow
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Parallel Flow-Based Refinement

The value of a maxium flow between to vertices s and t is equal with the minimum cut seperating s and t

V1 V2

Initial Cut = 539, Target Imbalance = 3%

s tSr Tr

Source Side Cut Sink Side Cut

Current Cut = 250, Current Imbalance = 15% Imbalanced!
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Parallel Flow-Based Refinement

The value of a maxium flow between to vertices s and t is equal with the minimum cut seperating s and t

V1 V2

Initial Cut = 539, Target Imbalance = 3%

s t

Current Cut = 250, Current Imbalance = 15% Imbalanced!

Contract smaller cut onto its
terminal plus one additional

node Piercing
Node

Piercing node ensure that we
find a different cut in the next it-
eration
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Parallel Flow-Based Refinement

The value of a maxium flow between to vertices s and t is equal with the minimum cut seperating s and t

V1 V2

Initial Cut = 539, Target Imbalance = 3%

s t

Contract smaller cut onto its
terminal plus one additional

node
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Parallel Flow-Based Refinement

The value of a maxium flow between to vertices s and t is equal with the minimum cut seperating s and t

V1 V2

Initial Cut = 539, Target Imbalance = 3%

s t

Augment flow again to a maximum (s, t)-flow
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Parallel Flow-Based Refinement

The value of a maxium flow between to vertices s and t is equal with the minimum cut seperating s and t

V1 V2

Initial Cut = 539, Target Imbalance = 3%

s t

Current Cut = 498, Current Imbalance = 2.5%

Sr

Tr

Balanced!
Improvement = 539− 498 = 41
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Parallel Flow-Based Refinement

The value of a maxium flow between to vertices s and t is equal with the minimum cut seperating s and t

V1 V2

New Cut = 498, New Imbalance = 2.5%
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Parallel Flow-Based Refinement

The value of a maxium flow between to vertices s and t is equal with the minimum cut seperating s and t

V1 V2

New Cut = 498, New Imbalance = 2.5%

Our implementation uses a parallel maximum flow algorithm (push-relabel algorithm)
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Parallel Flow-Based Refinement

V1 V2

V3 V4

T1

T2

T3

T4

General Idea: Schedule parallel flow problems on adjacent block pairs
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General Idea: Schedule parallel flow problems on adjacent block pairs
Nodes can overlap
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T4

General Idea: Schedule parallel flow problems on adjacent block pairs
Nodes can overlap

Flow computation returns a sequences moves

What could possibly go wrong?
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Parallel Flow-Based Refinement

V1 V2

V3 V4

T1

T2

T3

T4

General Idea: Schedule parallel flow problems on adjacent block pairs
Nodes can overlap

Flow computation returns a sequences moves

What could possibly go wrong?
Applying the move sequence could violate the balance constraint
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Parallel Flow-Based Refinement

V1 V2

V3 V4

T1

T2

T3

T4

General Idea: Schedule parallel flow problems on adjacent block pairs
Nodes can overlap

Flow computation returns a sequences moves

What could possibly go wrong?
Applying the move sequence could violate the balance constraint
Applying the move sequence could worsen the solution quality

15
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Experiments – Large Instances

1st gen Epyc Rome, 1 socket, 64 cores @ 2.0-3.35 Ghz, 1024 GB RAM

k ∈ {2, 8, 16, 64} with imbalance: ε = 3%
5 random seeds
1,4,16,64 threads

for comparison with fast partitioners: Zoltan, PaToH-D, Hype, BiPart
for scaling experiments

94 large hypergraphs: [publicly available]
-
-
-

Largest hypergraph ≈ 2 billion pins

SuiteSparse Matrix Collection 42
SAT Competition 2014 (3 representations) 14·3 = 42
DAC2012 VLSI Circuits 10
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Experiments – Scalabilty
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Experiments – Scalabilty

harmonic mean speedup of Mt-KaHyPar-Q:
3.7 with 4 threads
11.7 with 16 threads
22.6 with 64 threads

instances ≥ 100s:
3.7 with 4 threads
12.3 with 16 threads
25 with 64 threads
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Experiments – Medium-Sized Instances

k ∈ {2, 4, 8, 16, 32, 64, 128} with imbalance: ε = 3%
10 random seeds
10 threads

for comparison with sequential partitioners: KaHyPar, hMetis, PaToH
Intel Xeon Gold, 2 sockets, 20 cores @ 2.1 Ghz, 96 GB RAM

488 hypergraphs: [publicly available]
-
-
-
-

SuiteSparse Matrix Collection 184
SAT Competition 2014 (3 representations) 92·3 = 276
DAC2012 VLSI Circuits 10
ISPD98 18
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Experiments – Connectivity Metric (Quality)
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Experiments – Connectivity Metric (Quality)
pAlgo(τ) = |{I ∈ I | Algo(I) ≤ τ · Best(I)}|/|I|
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Experiments – Connectivity Metric (Quality)
pAlgo(τ) = |{I ∈ I | Algo(I) ≤ τ · Best(I)}|/|I|

τ = 1 ⇔ fraction of instances for which algo-
rithm finds the best partition

KaHyPar-CA ≈ 50%

Mt-KaHyPar-Q ≈ 37%

Mt-KaHyPar-D ≈ 5%
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Experiments – Connectivity Metric (Quality)
pAlgo(τ) = |{I ∈ I | Algo(I) ≤ τ · Best(I)}|/|I|
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Experiments – Connectivity Metric (Quality)

Algorithm Gmean t [s]

Mt-KaHyPar-D 10 0.95
PaToH-D 1.17
Mt-KaHyPar-Q 10 3.19
PaToH-Q 5.86
KaHyPar-CA 28.14
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Mt-KaHyPar-Q 10 3.19
KaHyPar-HFC 48.98
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Algorithm Gmean t [s]

Mt-KaHyPar-Q 10 3.19
Mt-KaHyPar-Q-F 10 5.08
KaHyPar-HFC 48.98

pAlgo(τ) = |{I ∈ I | Algo(I) ≤ τ · Best(I)}|/|I|
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Multilevel vs n-Level Partitioning
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Multilevel vs n-Level Partitioning

Algorithm Gmean t [s]

Mt-KaHyPar-D 10 0.89
Mt-KaHyPar-Q 10 2.99

21



June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning Institute of Theoretical Informatics, Algorithmics II

Multilevel vs n-Level Partitioning

Algorithm Gmean t [s]

Mt-KaHyPar-D 10 0.89
Mt-KaHyPar-Q 10 2.99

Does Mt-KaHyPar-Q have an unfair advantage due to its longer running time?
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Effectiveness Tests

Idea: Perform additional runs with the faster algorithm until its expected running time
equals the running time of the slower algorithm
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Given an instance I and two algorithms A and B
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Effectiveness Tests

Idea: Perform additional runs with the faster algorithm until its expected running time
equals the running time of the slower algorithm

Given an instance I and two algorithms A and B

Algorithm A
Run 1 2 3 4 5

Quality 1232 1123 1621 1345 1056
Running Time 23.2 24.5 21.0 22.5 28.4

Algorithm B
Run 1 2 3 4 5

Quality 1532 1103 1287 1845 1456
Running Time 5.2 8.3 6.0 7.3 4.3
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Effectiveness Tests

Idea: Perform additional runs with the faster algorithm until its expected running time
equals the running time of the slower algorithm

Given an instance I and two algorithms A and B

Algorithm A
Run 1 2 3 4 5

Quality 1232 1123 1621 1345 1056
Running Time 23.2 24.5 21.0 22.5 28.4

Algorithm B
Run 1 2 3 4 5

Quality 1532 1103 1287 1845 1456
Running Time 5.2 8.3 6.0 7.3 4.3

Sample one run from each algorithm

Algorithm B
Best Result 1845
Total Time 7.3

Algorithm A
Best Result 1123
Total Time 24.5
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Effectiveness Tests

Idea: Perform additional runs with the faster algorithm until its expected running time
equals the running time of the slower algorithm

Given an instance I and two algorithms A and B

Algorithm A
Run 1 2 3 4 5

Quality 1232 1123 1621 1345 1056
Running Time 23.2 24.5 21.0 22.5 28.4

Algorithm B
Run 1 2 3 4 5

Quality 1532 1103 1287 1845 1456
Running Time 5.2 8.3 6.0 7.3 4.3

Algorithm A
Best Result 1123
Total Time 24.5

Sample additional runs of algorithm B

Algorithm B
Best Result 1456
Total Time 11.6
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Effectiveness Tests

Idea: Perform additional runs with the faster algorithm until its expected running time
equals the running time of the slower algorithm

Given an instance I and two algorithms A and B

Algorithm A
Run 1 2 3 4 5

Quality 1232 1123 1621 1345 1056
Running Time 23.2 24.5 21.0 22.5 28.4

Algorithm B
Run 1 2 3 4 5

Quality 1532 1103 1287 1845 1456
Running Time 5.2 8.3 6.0 7.3 4.3

Algorithm A
Best Result 1123
Total Time 24.5

Sample additional runs of algorithm B

Algorithm B
Best Result 1456
Total Time 16.8
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Effectiveness Tests

Idea: Perform additional runs with the faster algorithm until its expected running time
equals the running time of the slower algorithm

Given an instance I and two algorithms A and B

Algorithm A
Run 1 2 3 4 5

Quality 1232 1123 1621 1345 1056
Running Time 23.2 24.5 21.0 22.5 28.4

Algorithm B
Run 1 2 3 4 5

Quality 1532 1103 1287 1845 1456
Running Time 5.2 8.3 6.0 7.3 4.3

Algorithm A
Best Result 1123
Total Time 24.5

Algorithm B
Best Result 1456
Total Time 16.8

16.8 + 8.3 = 25.1 > 24.5
⇒ accept last sample with probability (24.5− 16.8)/8.3 = 92%

22



June 13, 2022 Tobias Heuer – Scalable High-Quality Graph and Hypergraph Partitioning Institute of Theoretical Informatics, Algorithmics II

Effectiveness Tests

Idea: Perform additional runs with the faster algorithm until its expected running time
equals the running time of the slower algorithm

Given an instance I and two algorithms A and B

Algorithm A
Run 1 2 3 4 5

Quality 1232 1123 1621 1345 1056
Running Time 23.2 24.5 21.0 22.5 28.4

Algorithm B
Run 1 2 3 4 5

Quality 1532 1103 1287 1845 1456
Running Time 5.2 8.3 6.0 7.3 4.3

Algorithm A
Best Result 1123
Total Time 24.5

Algorithm B
Best Result 1103
Total Time 25.1
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Effectiveness Tests

Idea: Perform additional runs with the faster algorithm until its expected running time
equals the running time of the slower algorithm

Given an instance I and two algorithms A and B

Algorithm A
Run 1 2 3 4 5

Quality 1232 1123 1621 1345 1056
Running Time 23.2 24.5 21.0 22.5 28.4

Algorithm B
Run 1 2 3 4 5

Quality 1532 1103 1287 1845 1456
Running Time 5.2 8.3 6.0 7.3 4.3

Algorithm A
Best Result 1123
Total Time 24.5

Algorithm B
Best Result 1103
Total Time 25.1

This is also called a virtual instance
⇒ we create 10 virtual instances per in-
stance
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Multilevel vs n-Level - Effectiveness Tests
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Conclusion

Mt-KaHyPar

achieves the same solution quality as the highest qual-
ity sequential system in fast parallel code

order of magnitude faster than its sequential counter-
parts with only 10 threads

great speedups

https://github.com/kahypar/mt-kahypar
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