
Felix Putze and Peter Sanders

Algorithmics

design

implement

an
al

yz
e

exp
erim

en
t

Course Notes
Algorithm Engineering

TU Karlsruhe
October 19, 2009

Preface
These course notes cover a lecture on algorithm engineering for the basic toolbox that
Peter Sanders is reading at Universität Karlsruhe since 2004. The text is compiled from
slides, scientific papers and other manuscripts. Most of this material is in English so that
this language was adopted as the main language. However, some parts are in German.
The primal sources of our material are given at the beginning of each chapter. Please refer
to the original publications for further references.
This document is still work in progress. Please report bugs of any type (content, language,
layout, . . .) to putze@ira.uka.de. Thank you!

1

Contents

1 Was ist Algorithm Engineering? 6
1.1 Einführung . 6
1.2 Stand der Forschung und offene Probleme 8

2 Data Structures 16
2.1 Arrays & Lists . 16
2.2 External Lists . 18
2.3 Stacks, Queues & Variants . 20

3 Sorting 24
3.1 Quicksort Basics . 24
3.2 Refined Quicksort . 25
3.3 Lessons from experiments . 27
3.4 Super Scalar Sample Sort . 30
3.5 Multiway Merge Sort . 34
3.6 Sorting with parallel disks . 35
3.7 Internal work of Multiway Mergesort 38
3.8 Experiments . 41

4 Priority Queues 44
4.1 Introduction . 44
4.2 Binary Heaps . 45
4.3 External Priority Queues . 47
4.4 Adressable Priority Queues . 54

5 External Memory Algorithms 57
5.1 Introduction . 57
5.2 The external memory model and things we already saw 59
5.3 The Stxxl library . 60
5.4 Time-Forward Processing . 62
5.5 Cache-oblivious Algorithms . 64

2

5.5.1 Matrix Transposition . 67
5.5.2 Searching Using Van Emde Boas Layout 69
5.5.3 Funnel sorting . 71
5.5.4 Is the Model an Oversimplification? 74

5.6 External BFS . 76
5.6.1 Introduction . 76
5.6.2 Algorithm of Munagala and Ranade 77
5.6.3 An Improved BFS Algorithm with sublinear I/O 78
5.6.4 Improvements in the previous implementat-

ions of MR BFS and MM BFS R 81
5.6.5 A Heuristic for maintaining the pool 82

5.7 Maximal Independent Set . 84
5.8 Euler Tours . 85
5.9 List Ranking . 86

6 van Emde Boas Trees 90
6.1 From theory to practice . 90
6.2 Implementation . 91
6.3 Experiments . 95

7 Shortest Path Search 98
7.1 Introduction . 98
7.2 “Classical” and other Results . 99
7.3 Highway Hierarchy . 102

7.3.1 Introduction . 102
7.3.2 Hierarchies and Contraction . 103
7.3.3 Query . 107
7.3.4 Experiments . 111

7.4 Transit Node Routing . 116
7.4.1 Computing Transit Nodes . 117
7.4.2 Experiments . 119
7.4.3 Complete Description of the Shortest Path 122

7.5 Dynamic Shortest Path Computation . 123
7.5.1 Covering Nodes . 124
7.5.2 Static Highway-Node Routing 126
7.5.3 Construction . 127
7.5.4 Query . 127
7.5.5 Analogies To and Differences From Related Techniques 128
7.5.6 Dynamic Multi-Level Highway Node Routing 129
7.5.7 Experiments . 131

3

8 Minimum Spanning Trees 137
8.1 Definition & Basic Remarks . 137

8.1.1 Two important properties . 137
8.2 Classic Algorithms . 138

8.2.1 Excursus: The Union-Find Data Structure 141
8.3 QuickKruskal . 143
8.4 The I-Max-Filter algorithm . 144
8.5 External MST . 149

8.5.1 Semiexternal Algorithm . 150
8.5.2 External Sweeping Algorithm 151
8.5.3 Implementation & Experiments 153

8.6 Connected Components . 156

9 String Sorting 158
9.1 Introduction . 158
9.2 Multikey Quicksort . 159
9.3 Radix Sort . 160

10 Suffix Array Construction 162
10.1 Introduction . 162
10.2 The DC3 Algorithm . 162
10.3 External Suffix Array Construction . 165

11 Presenting Data from Experiments 170
11.1 Introduction . 170
11.2 The Process . 171
11.3 Tables . 172
11.4 Two-dimensional Figures . 172
11.5 Grids and Ticks . 181
11.6 Three-dimensional Figures . 182
11.7 The Caption . 183
11.8 A Check List . 184

12 Appendix 186
12.1 Used machine models . 186
12.2 Amortized Analysis for Unbounded Arrays 187
12.3 Analysis of Randomized Quicksort . 188
12.4 Insertion Sort . 189
12.5 Lemma on Interval Maxima . 190
12.6 Random Permutations without additional I/Os 191
12.7 Proof of Discarding Theorem for Suffix Array Construction 192

4

12.8 Pseudocode for the Discarding Algorithm 192

5

Chapter 1

Was ist Algorithm Engineering?

1.1 Einführung
Algorithmen (einschließlich Datenstrukturen) sind das Herz jeder Computeranwendung
und damit von entscheidender Bedeutung für große Bereiche von Technik, Wirtschaft,
Wissenschaft und täglichem Leben. Die Algorithmik befasst sich mit der systematischen
Entwicklung effizienter Algorithmen und hat damit entscheidenden Anteil an der effek-
tiven Entwicklung verläßlicher und ressourcenschonender Technik. Wir nennen hier nur
einige besonders spektakuläre Beispiele:

Das schnelle Durchsuchen der gewaltigen Datenmengen des Internet (z.B. mit
Google) hat die Art verändert, wie wir mit Wissen und Information umgehen. Möglich
wurde dies durch Algorithmen zur Volltextsuche, die in Sekundenbruchteilen alle Tr-
effer aus Terabytes von Daten herausfischen können und durch Ranking-Algorithmen,
die Graphen mit Milliarden von Knoten verarbeiten, um aus der Flut von Treffern
relevante Antworten zu filtern. Weniger sichtbar aber ähnlich wichtig sind Algorith-
men für die effiziente Verteilung von sehr häufig zugegriffenen Daten unter massiven
Lastschwankungen oder gar Überlastungsangriffen (distributed denial of service attacks).
Der Marktführer auf diesem Gebiet, Akamai, wurde von Algorithmikern gegründet. Eines
der wichtigsten wissenschaftlichen Ereignisse der letzten Jahre war die Veröffentlichung
des menschlichen Genoms. Mitentscheidend für die frühe Veröffentlichung war die von
der Firma Celera verwendete und durch algorithmische Überlegungen begründete Aus-
gestaltung des Sequenzierprozesses (whole genome shotgun sequencing). Die Algorith-
mik hat sich hier nicht auf die Verarbeitung der von Naturwissenschaftlern produzierten
Daten beschränkt, sondern gestaltenden Einfluss auf den gesamten Prozess ausgeübt.

Die Liste der Bereiche, in denen ausgefeilte Algorithmen eine Schlüsselrolle spielen,
ließe sich fast beliebig fortsetzen: Computergrafik, Bildverarbeitung, geografische Infor-
mationssysteme, Kryptografie, Produktions-, Logistik- und Verkehrsplanung . . .

Wie funktioniert nun der Transfer algorithmischer Innovation in Anwendungsbere-

6

abstrakte
Modelle

Entwurf

Analyse

Leistungsgarantien

Implementierung

Anwendungen

realistische
Modelle

Entwurf

Implementierung

bibliotheken
Algorithmen−

Leistungs−
garantien

A
n

w
en

d
u

n
g

en

6

2

4

1
8

Deduktion

falsifizierbare

Induktion
Hypothesen 53Analyse Experimente

Algorithm
Engineering

A
lg

or
ith

m
en

th
eo

rie

reale
Eingaben 7

Figure 1.1: Zwei Sichtweisen der Algorithmik: Links: traditionell. Rechts: AE = Algo-
rithmik als von falsifizierbaren Hypothesen getriebener Kreislauf aus Entwurf, Analyse,
Implementierung, und experimenteller Bewertung von Algorithmen.

iche? Traditionell hat sich die Algorithmik der Methodik der Algorithmentheorie bedi-
ent, die aus der Mathematik stammt: Algorithmen werden für einfache und abstrakte
Problem- und Maschinenmodelle entworfen. Hauptergebnis sind dann beweisbare Leis-
tungsgarantien für alle möglichen Eingaben. Dieser Ansatz führt in vielen Fällen zu ele-
ganten, zeitlosen Lösungen, die sich an viele Anwendungen anpassen lassen. Die harten
Leistungsgarantien ergeben zuverlässig hohe Effizienz auch für zur Implementierungszeit
unbekannte Typen von Eingaben. Aufgreifen und Implementieren eines Algorithmus ist
aus Sicht der Algorithmentheorie Teil der Anwendungsentwicklung. Nach allgemeiner
Beobachtung ist diese Art des Ergebnistransfers aber ein sehr langsamer Prozess. Bei
wachsenden Anforderungen an innovative Algorithmen ergeben sich daraus wachsende
Lücken zwischen Theorie und Praxis: Reale Hardware entwickelt sich durch Parallelis-
mus, Pipelining, Speicherhierarchien u.s.w. immer weiter weg von einfachen Maschi-
nenmodellen. Anwendungen werden immer komplexer. Gleichzeitig entwickelt die Al-
gorithmentheorie immer ausgeklügeltere Algorithmen, die zwar wichtige Ideen enthalten
aber manchmal kaum implementierbar sind. Außerdem haben reale Eingaben oft wenig
mit den worst-case Szenarien der theoretischen Analyse zu tun. Im Extremfall werden
viel versprechende algorithmische Ansätze vernachlässigt, weil eine vollständige Anal-
yse mathematisch zu schwierig wäre.

Seit Beginn der 1990er Jahre wird deshalb eine breitere Sichtweise der Algorithmik
immer wichtiger, die als algorithm engineering (AE) bezeichnet wird und bei der En-
twurf, Analyse, Implementierung und experimentelle Bewertung von Algorithmen gleich-
berechtigt nebeneinander stehen. Der gegenüber der Algorithmentheorie größere Meth-

7

odenapparat, die Einbeziehung realer Software und der engere Bezug zu Anwendun-
gen verspricht realistischere Algorithmen, die Überbrückung entstandener Lücken zwis-
chen Theorie und Praxis, und einen schnelleren Transfer von algorithmischem Know-
how in Anwendungen. Abbildung 1.1 zeigt die Sichtweise der Algorithmik als AE und
eine Aufteilung in acht eng interagierende Aktivitäten. Ziele und Arbeitsprogramm des
Schwerpunktprogramms ergeben sich daraus in natürlicher Weise: Einsatz der vollen
Schlagkraft der AE Methodologie mit dem Ziel, Lücken zwischen Theorie und Praxis
zu überbrücken.

1. Studium realistischer Modelle für Maschinen und algorithmische Probleme.

2. Entwurf von einfachen und auch in der Realität effizienten Algorithmen.

3. Analyse praktikabler Algorithmen zwecks Etablierung von Leistungsgarantien, die
Theorie und Praxis einander näher bringen.

4. Sorgfältige Implementierungen, die die Lücken zwischen dem besten theoretischen
Algorithmus und dem besten implementierten Algorithmus verkleinern.

5. Systematische, reproduzierbare Experimente, die der Widerlegung oder Stärkung
aussagekräftiger, falsifizierbarer Hypothesen dienen, die sich aus Entwurf, Anal-
yse oder früheren Experimenten ergeben. Oft wird es z.B. um den Vergleich von
Algorithmen gehen, deren theoretische Analyse zu viele Fragen offen lässt.

6. Entwicklung und Ausbau von Algorithmenbibliotheken, die Anwendungsentwick-
lungen beschleunigen und algorithmisches Know-how breit verfügbar machen.

7. Sammeln von großen und realistischen Probleminstanzen sowie Entwicklung von
Benchmarks.

8. Einsatz von algorithmischem Know-how in konkreten Anwendungen.

1.2 Stand der Forschung und offene Probleme
Im Folgenden beschreiben wir die Methodik des AE anhand von Beispielen.

Fallbeispiel: Routenplanung in Straßennetzen
Jeder kennt diese zunehmend wichtige Anwendung: Man gibt Start- und Zielpunkt in
ein Navigationssystem ein und wartet auf die Ausgabe der schnellsten Route. Hier hat
das AE in letzter Zeit Lösungen entwickelt, die in Sekundenbruchteilen optimale Routen
berechnen wo kommerzielle Lösungen trotz erheblich längerer Rechenzeiten bisher keine
Qualitätsgarantien geben können und gelegentlich deutlich daneben liegen. Auf den er-
sten Blick ist das Anwendungsmodell ein klassisches und wohl studiertes Problem aus

8

der Graphentheorie: kürzeste Wege in Graphen. Die altbekannte Lehrbuchlösung — Di-
jkstra’s Algorithmus — hätte allerdings auf einem Hochleistungs-Server Antwortzeiten
im Minutenbereich und wäre auf leistungsschwächerer mobiler Hardware mit begren-
ztem Hauptspeicher hoffnungslos langsam. Kommerzielle Routenplaner greifen deshalb
zu Heuristiken, die annehmbare Antwortzeiten haben, aber nicht immer die beste Route
finden.

Auf den zweiten Blick bietet sich ein verfeinertes Problemmodell an, das die Vor-
berechnung von Informationen zulässt, die dann für viele Anfragen verwendet werden.
Die Theorie winkt ab und beweist, dass nur eine unpraktikabel große vorberechnete
Datenstruktur die Berechnung von schnellsten Routen in beliebigen Graphen beschleu-
nigt. Reale Straßengraphen haben jedoch Eigenschaften, welche die Vorberechnungsidee
praktikabel machen. Die Wirksamkeit dieser Ansätze hängt von Hypothesen über die
Eigenschaft der Straßengraphen ab, wie ”‘weit weg von Start und Ziel kann man die
Suche auf überregionale Straßen beschränken”’ oder ”‘Straßen, die vom Ziel wegführen,
darf man ignorieren”’. Solche intuitiven Formulierungen gilt es dann so zu formalisieren,
dass sich daraus Algorithmen mit Leistungsgarantien entwickeln lassen. Letztlich lassen
diese Hypothesen sich aber nur durch Experimente mit Implementierungen überprüfen,
die realistische Straßengraphen verwenden. Letzteres ist in der Praxis schwierig, da viele
Firmen nur ungern Daten an Forscher herausgeben. Besonders wertvoll ist deshalb ein
frei verfügbarer Graph der USA, der aus Daten im Web konstruiert wurde und jetzt für
eine DIMACS Implementation Challenge zur Routenplanung Verwendung finden soll.
Die Experimente decken Schwachstellen auf, die wiederum zum Entwurf verbesserter
Algorithmen führen. Zum Beispiel stellte sich heraus, dass schon wenige Langstreck-
enfährverbindungen den Vorberechnungsaufwand der ersten Version des Algorithmus
enorm in die Höhe treiben.

Trotz der Erfolge gibt es viele offene Fragen. Kann man die Heuristiken auch theo-
retisch analysieren um zu allgemeineren Leistungsgarantien zu kommen? Wie verträgt
sich die Idee der Vorberechnung mit Anwendungsanforderungen wie Änderung des
Straßennetzes, Baustellen, Staus, oder verschiedenen Zielfunktionen der Benutzer? Wie
lassen sich die komplexen Speicherhierarchien von Mobilgeräten berücksichtigen?

Modelle
Ein wichtiger Aspekt des AE sind Maschinenmodelle. Sie betreffen im Prinzip alle
Anwendungen und sind die Schnittstelle zwischen der Algorithmik und der rasanten
technologische Entwicklung mit immer komplexerer Hardware. Wegen seiner großen
Einfachheit ist das streng sequentielle, mit uniformem Speicher ausgestattete von Neu-
mann Maschinenmodell immer noch Grundlage der meisten algorithmischen Arbeiten.
Dies ist vor allem bei der Verarbeitung großer Datenmengen ein Problem, da die Zu-
griffszeit auf den Speicher sich um viele Größenordnungen ändert, je nachdem, ob

9

auf den schnellsten Cache eines Prozessors, auf den Hauptspeicher oder auf die Fest-
platte zugegriffen wird. Speicherhierarchien werden in der Algorithmik bisher meist
auf zwei Schichten beschränkt (I/O Modell). Dieses Modell ist sehr erfolgreich und
eine Vielzahl von Ergebnissen dazu ist bekannt. Allerdings klaffen oft große Lücken
zwischen den besten bekannten Algorithmen und den implementierten Verfahren. Bib-
liotheken für Sekundärspeicheralgorithmen wie STXXL versprechen diese Situation zu
verbessern. In letzter Zeit gibt es aber verstärktes Interesse an weiteren immer noch
einfachen Modellen zur Verarbeitung großer Datenmengen, z.B. einfache Modelle für
mehrschichtige Speicherhierarchien, Datenstrommodelle, bei denen die Daten über ein
Netzwerk hereinkommen, oder Sublinearzeitalgorithmen, bei denen gar nicht alle Daten
berührt werden müssen.

Nur punktuelle Ergebnisse gibt es bisher zu anderen komplexen Eigenschaften
moderner Prozessoren, wie den Ersetzungsmechanismen von Hardwarecaches oder
Sprungvorhersage.

Wir erwarten, dass die Erforschung paralleler Algorithmen in nächster Zeit eine Re-
naissance erfahren wird, denn durch die Verbreitung von Multithreading, Multi-Core-
CPUs und Clustern hält die Parallelverarbeitung nun Einzug in den Mainstream der
Datenverarbeitung. Die traditionellen ”‘flachen”’ Modelle für Parallelverarbeitung sind
hier allerdings nur von begrenztem Nutzen, da es parallel zur Speicherhierarchie eine
Hierarchie mehr oder weniger eng gekoppelter Verarbeitungseinheiten gibt.

Entwurf
Eine entscheidende Komponente des AE ist die Entwicklung implementierbarer Algo-
rithmen, die effiziente Ausführung in realistischen Situationen erwarten lassen. Le-
ichte Implementierbarkeit bedeutet vor allem Einfachheit aber auch Möglichkeiten zur
Codewiederverwendung. Effiziente Ausführung bedeutet in der Algorithmentheorie gute
asymptotische Ausführungszeit und damit gute Skalierungseigenschaften für sehr große
Eingaben. Im AE sind aber auch konstante Faktoren und die Ausnutzung einfacher Prob-
leminstanzen wichtig.

Ein Beispiel hierzu:
Der Sekundärspeicheralgorithmus zur Berechnung minimaler Spannbäume war der

erste Algorithmus, der ein nichttriviales Graphenproblem mit Milliarden von Knoten auf
einem PC löst. Theoretisch ist er suboptimal, weil er einen FaktorO(log m

M
) mehr Platten-

zugriffe benötigt als der theoretisch beste Algorithmus (dabei istm die Anzahl der Kanten
des Eingabegraphen undM der Hauptspeicher der Maschine). Auf sinnvoll konfigurierten
Maschinen benötigt er aber jetzt und in absehbarer Zukunft höchstens ein Drittel der Plat-
tenzugriffe der asymptotisch besten bekannten Algorithmen. Hat man eine Prioritätsliste
für Sekundärspeicher zur Verfügung wie in STXXL, ist der Pseudocode des Algorithmus
ein Zwölfzeiler und die Analyse der erwarteten Ausführungszeit ein Siebenzeiler.

10

Analyse
Selbst einfache, in der Praxis bewährte Algorithmen sind oft schwer zu analysieren und
dies ist ein Hauptgrund für Lücken zur Algorithmentheorie. Die Analyse solcher Algo-
rithmen ist damit ein wichtiger Aspekt des AE. Zum Beispiel sind randomisierte (zufalls-
gesteuerte) Algorithmen oft viel einfacher und schneller als die besten bekannten deter-
ministischen Algorithmen. Allerdings sind selbst einfache randomisierte Algorithmen oft
schwer zu analysieren.

Viele komplexe Optimierungsprobleme werden mittels Metaheuristiken wie (ran-
domisierter) lokaler Suche oder genetischer Programmierung gelöst. So entworfene Al-
gorithmen sind einfach und flexibel an das jeweils vorliegende Problem anpassbar. Nur
ganz wenige dieser Algorithmen sind aber bisher analysiert worden obwohl Leistungs-
garantien von großem theoretischen und praktischen Interesse wären.

Ein berühmtes Beispiel für lokale Suche ist der Simplexalgorithmus zur linearen Op-
timierung — vielleicht der praktisch wichtigste Algorithmus in der mathematischen Op-
timierung. Einfache Varianten des Simplexalgorithmus benötigen für spezielle, konstru-
ierte Eingaben exponentielle Zeit. Es wird aber vermutet, dass es Varianten gibt, die in
polynomieller Zeit laufen. In der Praxis jedenfalls genügt eine lineare Zahl Iterationen.
Bisher kennt man aber lediglich subexponentielle erwartete Laufzeitschranken für inprak-
tikable Varianten. Spielmann und Teng konnten jedoch zeigen, dass selbst kleine zufällige
Veränderungen der Koeffizienten eines beliebigen linearen Programms genügen, um die
erwartete Laufzeit des Simplexalgorithmus polynomiell zu machen. Dieses Konzept der
geglätteten Analyse (smoothed analysis) ist eine Verallgemeinerung der average case
analysis und auch jenseits des Simplexalgorithmus ein interessantes Werkzeug des AE.
Zum Beispiel konnten Beier und Vöcking für eine wichtige Familie NP-harter Probleme
zeigen, dass ihre geglättete Komplexität polynomiell ist. Dieses Ergebnis erklärt u.a.,
warum das NP-harte Rucksackproblem sich in der Praxis effizient lösen lässt und hat auch
zur Verbesserung der besten Codes für Rucksackprobleme geführt. Es gibt auch enge
Beziehungen zwischen geglätteter Komplexität, Näherungsalgorithmen und sogenannten
pseudopolynomiellen Algorithmen, die ebenfalls ein interessanter Ansatz zur praktischen
Lösungen NP-harter Probleme sind.

Implementierung
Die Implementierung ist nur scheinbar der am klarsten vorgezeichnete und langweiligste
Schritt im Kreislauf des AE. Ein Grund dafür sind die großen semantischen Lücken zwis-
chen abstrakt formulierten Algorithmen, imperativen Programmiersprachen und realer
Hardware.

Ein extremes Beispiel für die semantische Lücke sind viele geometrische Algorith-
men, die unter der Annahme exakter Arithmetik mit reellen Zahlen und ohne explizite

11

Berücksichtigung degenerierter Fälle entworfen sind. Die Robustheit geometrischer Al-
gorithmen kann deshalb als eigener Zweig des AE betrachtet werden.

Selbst Implementierungen relativ einfacher grundlegender Algorithmen können sehr
anspruchsvoll sein. Dort gilt es nämlich oft mehrere Kandidaten auf Grund kleiner kon-
stanter Faktoren in ihrer Ausführungszeit zu vergleichen. Der einzige verlässliche Weg
besteht dann darin, alle Kontrahenten voll auszureizen, denn schon kleine Implemen-
tierungsdetails können sich zu einem Faktor zwei in der Ausführungszeit auswachsen.
Selbst ein Vergleich des erzeugten Maschinencodes kann angezeigt sein, um Zweifelsfälle
aufzuklären.

Oft liefern erst Implementierungen von Algorithmen einen letzten Beleg für deren Ko-
rrektheit bzw. die Qualität der Ergebnisse. In der Geometrie und bei Graphenproblemen
wird natürlicherweise meist eine graphische Ausgabe der Ergebnisse erzeugt, wodurch
Nachteile des Algorithmus oder sogar Fehler sofort sichtbar werden.

Zum Beispiel wurde zur Einbettung eines planaren Graphen 20 Jahre lang auf eine
Arbeit von Hopcroft und Tarjan1 verwiesen. Dort findet sich aber nur eine vage Beschrei-
bung wie sich ein Planaritätstestalgorithmus erweitern lässt. Einige Versuche einer
detaillierteren Beschreibung waren fehlerhaft. Dies wurde erst bemerkt, als die er-
sten korrekten Implementierungen erstellt wurden. Lange Zeit gelang es niemandem,
einen berühmten Algorithmus2 zur Berechnung von 3-Zusammenhangskomponenten (ein
wichtiges Werkzeug beim Graphenzeichnen und in der Signalverarbeitung) zu implemen-
tieren. Erst während einer Implementierung im Jahr 2000 wurden die Fehler im Algorith-
mus identifiziert und korrigiert.

Es gibt sehr viele interessante Algorithmen für wichtige Probleme, die noch nie im-
plementiert wurden. Zum Beispiel, die asymptotisch besten Algorithmen für viele Fluss-
und Matchingprobleme, die meisten Algorithmen für mehrschichtige Speicherhierarchien
(cache oblivious Algorithmen) oder geometrische Algorithmen, die Cuttings oder ε-Netze
benutzen.

Experimente
Aussagekräftige Experimente sind der Schlüssel zum Schließen des Kreises im AE-
Prozess. Zum Beispiel brachten Experimente3 zur Kreuzungsminimierung beim
Graphenzeichnen eine neue Qualität in diesen Bereich. Alle vorhergehenden Studien
arbeiteten mit relativ dichten Graphen und wiesen jeweils nach, dass die Kreuzungszahl
recht nahe an die jeweiligen oberen theoretischen Schranken herankam. In den ange-

1J. Hopcroft and R. E. Tarjan: Efficient planarity testing. J. of the ACM, 21(4):549–568, 1974.
2R. E. Tarjan and J. E. Hopcroft: Dividing a graph into triconnected components. SIAM J. Comput.,

2(3):135–158, 1973.
3M. Jünger and P. Mutzel: 2-layer straightline crossing minimization: Performance of exact and heuris-

tic algorithms. Journal of Graph Algorithms and Applications (JGAA), 1(1):1–25, 1997.

12

sprochenen Experimenten wird dagegen auch mit optimalen Algorithmen und den in der
Praxis wichtigen dünnen Graphen gearbeitet. Es stellte sich heraus, dass die Ergebnisse
mancher Heuristiken um ein Vielfaches über der optimalen Kreuzungszahl liegen. Dieses
Papier gehört inzwischen zu den am meisten zitierten Arbeiten im Bereich des Graphen-
zeichnens.

Experimente können auch entscheidenden Einfluss auf die Algorithmenanalyse
haben: Die Rekonstruktion einer Kurve aus einer Menge von Messpunkten ist die
grundlegendste Variante einer wichtigen Familie von Bildverarbeitungsproblemen. In
einer Arbeit von Althaus und Mehlhorn4 wird ein scheinbar recht aufwendiges Ver-
fahren untersucht, das auf dem Handlungsreisendenproblem beruht. Bei Experimenten
stellte sich heraus, dass ”‘vernünftige”’ Eingaben zu leicht lösbaren Instanzen des Hand-
lungsreisendenproblems führen. Diese Beobachtung wurde dann formalisiert und be-
wiesen.

Gegenüber den Naturwissenschaften ist das AE in der privilegierten Situation, eine
Vielzahl von Experimenten schnell und vergleichsweise kostengünstig durchführen zu
können. Die Rückseite dieser Medaille ist aber eine hochgradig nichttriviale Planung,
Auswertung, Archivierung, Aufbereitung und Interpretation dieser Ergebnisse. Aus-
gangspunkt sollten dabei falsifizierbare Hypothesen über das Verhalten der untersuchten
Algorithmen sein, die aus Entwurf, Analyse, Implementierung oder früheren Experi-
menten stammen. Ergebnis ist eine Widerlegung, Bestätigung oder Verfeinerung dieser
Hypothesen. Diese führen als Ergänzung beweisbarer Leistungsgarantien nicht nur zu
besserem Verständnis der Algorithmen, sondern liefern auch Ideen für bessere Algorith-
men, genauere Analyse oder effizientere Implementierung.

Erfolgreiches Experimentieren hat viel mit Software Engineering zu tun. Ein mod-
ularer Aufbau der Implementierungen ermöglicht flexible Experimente. Geschickter
Einsatz von Werkzeugen erleichtert die Auswertung. Sorgfältige Dokumentation und
Versionsverwaltung erleichtert Reproduzierbarkeit — eine zentrale Anforderung wis-
senschaftlicher Experimente, die bei den schnellen Modellwechseln von Soft- und Hard-
ware eine große Herausforderung darstellt.

Probleminstanzen
Sammlungen von realistischen Probleminstanzen zwecks Benchmarking haben sich als
entscheidend für die Weiterentwicklung von Algorithmen erwiesen. Zum Beispiel gibt
es interessante Sammlungen für einige NP-harte Probleme wie das Handlungsreisenden-
problem, das Steinerbaumproblem, Satisfiability, Set Covering oder Graphpartition-
ierung. Besonders bei den beiden ersten Problemen hat das zu erstaunlichen
Durchbrüchen geführt. Mit Hilfe tiefer mathematischer Einsichten in die Struktur der

4E. Althaus and K. Mehlhorn: Traveling salesman-based curve reconstruction in polynomial time.
SIAM Journal on Computing, 31(1):27–66, 2002.

13

Probleme kann man selbst große, realistische Instanzen des Handlungsreisendenproblems
und des Steinerbaumproblems exakt lösen.

Merkwürdigerweise sind realistische Probleminstanzen für polynomiell lösbare Prob-
leme viel schwerer zu bekommen. Zum Beispiel gibt es dutzende praktischer Anwendun-
gen der Berechnung maximaler Flüsse aber die Algorithmenentwicklung muss bislang
mit synthetischen Instanzen vorlieb nehmen.

Anwendungen
Die Algorithmik spielt eine Schlüsselrolle bei der Entwicklung innovativer IT-
Anwendungen und entsprechend sind anwendungsorientierte AE-Projekte aller Art eine
sehr wichtiger Teil des Schwerpunktprogramms. Hier nennen wir nur einige grand chal-
lenge Anwendungen, bei denen Algorithmik eine wichtige Rolle spielen könnte und
die ein besonderes Potential haben, einen wichtigen Einfluss auf Wissenschaft, Technik,
Wirtschaft oder tägliches Leben zu haben.5

Bioinformatik Neben dem bereits genannten Problem der Genomsequenzierung
hält die Mikrobiologie viele weitere algorithmische Herausforderungen bereit: die
Berechnung der Tertiärstrukturen von Proteinen; Algorithmen zur Berechnung von
Stammbäumen von Arten; data mining in den Daten zur Genaktivierung, die in großem
Umfang mit DNA chips gewonnen werden. . . Diese Probleme können nur in enger Ko-
operation mit Molekularbiologen oder Chemikern gelöst werden.

Information Retrieval Die zu Beginn erwähnten Indizierungs- und Rankingalgorith-
men von Internetsuchmaschinen sind zwar sehr erfolgreich, lassen aber noch viel zu
wünschen übrig. Viele Heuristiken sind kaum publiziert, geschweige denn mit Leis-
tungsgarantien ausgestattet. Nur in kleineren Systemen wird bisher ernsthaft versucht,
Ähnlichkeitssuche zu unterstützen und es zeichnet sich ein Rüstungswettlauf zwischen
Rankingalgorithmen und Spammern ab, die diese zu täuschen versuchen.

Verkehrsplanung Der Einsatz von Algorithmen in der Verkehrsplanung hat gerade
erst begonnen. Neben einzelnen Anwendungen im Flugverkehr, wo Probleminstanzen
relativ klein und das Einsparpotenzial groß ist, beschränken sich diese Anwendungen
auf verhältnismäßig einfache, isolierte Bereiche: Datenerfassung (Netze, Straßenkate-
gorien, Fahrzeiten), Monitoring und partielle Lenkung (Toll Collect, Bahnleitstände),

5Dessen ungeachtet wird natürlich nicht erwartet, dass ein einzelnes Teilprojekt den Durchbruch bei
einer grand challenge bringt, und viele Teilprojekte werden sich mit weniger spektakulären, aber ebenso
interessanten Anwendungen beschäftigen.

14

Prognose (Simulation, Vorhersagemodelle) und einfache Nutzerunterstützung (Routen-
planung, Fahrplanabfrage). Das AE kann wesentlich zur Weiterentwicklung und Integra-
tion dieser verschiedenen Aspekte hin zu leistungsfähigen Algorithmen für eine bessere
Planung und Lenkung unserer Verkehrssysteme (Lenkung durch Maut, Fahrplanopti-
mierung, Linienplanung, Fahrzeug- und Personaleinsatzplanung) beitragen. Besondere
Herausforderungen sind dabei die sehr komplexen Anwendungsmodelle und die daraus
entstehenden riesigen Problemgrößen.

Geografische Informationssysteme Moderne Erdbeobachtungssatelliten und andere
Datenquellen erzeugen inzwischen täglich viele Terabyte an Informationen, die wichtige
Anwendungen in Landwirtschaft, Umweltschutz, Katastrophenschutz, Tourismus etc.
versprechen. Die effektive Verarbeitung solch gewaltiger Datenmengen ist aber eine
echte Herausforderung bei der Know-how aus geometrischen Algorithmen, Parallelverar-
beitung und Speicherhierarchien sowie AE mit realen Eingabedaten eine wichtige Rolle
spielen wird.

Kommunikationsnetzwerke Im selben Maße wie Netzwerke immer vielseitiger und
größer werden, wächst der Bedarf an effizienten Verfahren zu ihrer Organisation. Beson-
deres Interesse gilt hier mobilen, ad-hoc und Sensornetzen, sowie Peer-to-peer Netzen
und der Koordination konkurrierender Agenten mit spieltheoretischen Techniken. All
diesen neuartigen Anwendungen ist gemeinsam, dass sie ohne eine zentrale Planung und
Organisation auskommen müssen.

Viele der hier untersuchten Fragestellungen kann man als noch-nicht-Anwendungen
bezeichnen. Aus der Perspektive des AE ist daran besonders interessant, dass auch prak-
tische Arbeiten hier keine verlässlichen Daten über Größe und Eigenarten der späteren
Anwendungssituation haben. Einerseits ergibt sich daraus ein noch größerer Bedarf an
beweisbaren Leistungsgarantien. Andererseits sind die Modelle vieler theoretischer Ar-
beiten auf diesem Gebiet noch weiter von der Realität entfernt als sonst.

Planungsprobleme Zeitliche Abläufe in Produktion und Logistik werden stets enger,
und der Bedarf an algorithmischer Unterstützung und Optimierung wächst. Erste Ansätze
hierzu aus der Algorithmik werden durch Onlinealgorithmen (dial a ride, Scheduling) und
flows over time (Routing mit Zeitfenstern, dynamische Flüsse) gegeben. Die Entwicklung
steht jedoch erst in den Anfängen. Für aussagekräftige Qualitätsaussagen zu Onlinealgo-
rithmen muss insbesondere die kompetitive Analyse überdacht werden, die sich zu sehr
am groben worst-case Verhalten orientiert. Flows over Time verlangen nach besseren
Techniken, um algorithmisch möglichst effizient mit der Dimension ”‘Zeit”’ umzugehen.

15

Chapter 2

Data Structures

Most material in this chapter was taken from a yet unpublished book manuscript by Pe-
ter Sanders and Ulrich Mehlhorn. Some parts on external data structures were presented
in [7]. Notice that during the lecture, the latter topics were covered in the talk on ex-
ternal algorithms, not in the introduction on data structures. If you are unfamiliar with
external memory models, please read the introduction in 5.2 or the short overview in the
appendix 12.1.

2.1 Arrays & Lists
For starters, we will study how algorithm engineering can be applied to the (apparently?)
easy field of sequence data structures.

Bounded Arrays: Usually the most basic, built-in sequence data structure in pro-
gramming languages. They have constant running time for [·]-, popBack- and pushBack-
operations which remove or add an element behind the currently last entry. Their major
drawback is that their size has to be known in advance to reserve enough memory.

Unbounded Arrays: To bypass this often unconvenient restriction, unbounded arrays
are introduced (std::vector from the C++ STL is an example). They are imple-
mented on a bounded array. If this array runs out of space for new elements, a new array
of double size is allocated and the old content copied. If the filling degree is reduced to a
quarter by pop-operations, the array is replaced with new one, using only the half space.
We can show amortized costs of O(1) for pushBack and popBack implemented that way.
A proof is given in the appendix in 12.2. Note that is not possible to already shrink the
array when it is half full since repeated insertion and deletion at that point would lead to
costs of O(n) for a single operation.

Double Linked Lists1: Figure 2.1 shows the basic building block of a linked list. A

1Sometimes singly linked lists (maintaining only a successor pointer) are sufficient and more space

16

Class Item of Element
e : Element
next : Handle
prev : Handle
invariant next→prev=prev→next=this

Figure 2.1: Prototype of a segment in doubly linked list

Figure 2.2: Structure of a double linked list

list item (a link of a chain) stores one element and pointers to successor and predecessor.
This sounds simple enough, but pointers are so powerful that we can make a big mess
if we are not careful. What makes a consistent list data structure? We make a simple
and innocent looking decision and the basic design of our list data structure will follow
from that: The successor of the predecessor of an item must be the original item, and
the same holds for the predecessor of a successor. If all items fulfill this invariant, they
will form a collection of cyclic chains. This may look strange, since we want to represent
sequences rather than loops. Sequences have a start and an end, wheras loops have neither.
Most implementations of linked lists therefore go a different way, and treat the first and
last item of a list differently. Unfortunately, this makes the implementation of lists more
complicated, more errorprone and somewhat slower. Therefore, we stick to the simple
cyclic internal representation.

For conciseness, we implement all basic list operations in terms of the single operation
splice depicted in Figure 2.3. splice cuts out a sublist from one list and inserts it after some
target item. The target can be either in the same list or in a different list but it must not
be inside the sublist. splice can easily be specialized to common methods like insert,
delete, . . .

Since splice never changes the number of items in the system, we assume that there
is one special list freeList that keeps a supply of unused elements. When inserting new
elements into a list, we take the necessary items from freeList and when deleting elements

efficient. As they have non-intuitive semantics on some operations and are less versatile, we focus on
doubly linked lists.

17

we return the corresponding items to freeList. The function checkFreeList allocates mem-
ory for new items when necessary. A freeList is not only useful for the splice operation
but it also simplifies our memory management which can otherwise easily take 90% of
the work since a malloc would be necessary for every element inserted2. It remains to
decide how to simulate the start and end of a list. The class List in Figure 2.2 introduces
a dummy item h that does not store any element but seperates the first element from the
last element in the cycle formed by the list. By definition of Item, h points to the first
“proper” item as a successor and to the last item as a predecessor. In addition, a handle
head pointing to h can be used to encode a position before the first element or after the
last element. Note that there are n+1 possible positions for inserting an element into an
list with n elements so that an additional item is hard to circumvent if we want to code
handles as pointers to items. With these conventions in place, a large number of useful
operations can be implemented as one line functions that all run in constant time. Thanks
to the power of splice, we can even manipulate arbitrarily long sublists in constant time.
The dummy header can also be useful for other operations. For example consider the fol-
lowing code for finding the next occurrence of x starting at item from. If x is not present,
head should be returned. We use the header as a sentinel. A sentinel is a dummy element
in a data structure that makes sure that some loop will terminate. By storing the key we
are looking for in the header, we make sure that the search terminates even if x is origi-
nally not present in the list. This trick saves us an additional test in each iteration whether
the end of the list is reached. A drawback of dummy headers is that it requires additional
space. This seems negligible for most applications but may be costly for many, nearly
empty lists. This is a typical scenario for hash tables using chaining on collisions.

2.2 External Lists
The direct implementation of a linked list in an external memory model will have costs of
1 I/O when following a link, which leads to Θ(N) I/Os for traversing N elements. This is
caused by the high degree of freedom in the allocation of list elements within memory3.
A first idea to improve this is to introduce locality by requiring to store B consecutive
elements together. Traversal is now only N/B = O(scan(N)) I/Os, but an insertion or
deletion can cost Θ(N/B) I/Os for moving all following elements. We relax the invariant
to ≥ 2

3
B elements in every pair of consecutive blocks. Traversal is still available for

≤ 3N/B = O(scan(N)) I/Os. For inserting in block i, we have to distinguish to cases: If
block i has space we pay 1 I/O and are done. If it is full but a neighbor has space, we push

2Another countermeasure to allocation overhead is scheduling many insertions at the same time, result-
ing in only one malloc and possibly less cache faults as many items reside in the same memory block

3A faster traversal is possible if we use list ranking (see 5.9) as preprocessing, which can be done
in O(sort(N)). Sorting with respect to each element’s rank (distance from last node) will then give a
scannable representation of the list

18

//Remove 〈a, . . . , b〉 from its current list and insert it after t
// . . . , a′, a, . . . , b, b′, . . . , t, t′, . . .) 7→ (. . . , a′, b′, . . . , t, a, . . . , b, t′, . . .)
Procedure splice(a,b,t : Handle)

assert b is not before a ∧ t 6∈ 〈a, . . . , b〉
a′ := a→prev
b′ := b→next
a′→next := b′

b′→prev := a′

b→next := t′

a→prev := t

t→next := a
t′→prev := b

Figure 2.3: The splice method

Figure 2.4: The direct implementation of linked lists is not suited for external memory.

an element to it for O(1) I/Os. If both neighbors are full, we split block i into 2 blocks of
≈ B/2 elements, for (amortized) costs of O(1) I/Os (≥ B/6 deletions needed to violate
the invariant). For deletion from block i: if blocks i and i + 1 or blocks i and i − 1 have
≤ 2B/3 elements⇒ merge the two blocks, again for (amortized) O(1) I/Os.

Figure 2.5: First approach: block B consecutive list elements together

19

Figure 2.6: Second approach: block ≥ 2
3
B consecutive list elements together

S-List B-Array U-Array
dynamic + − +
space wasting pointer too large? too large?

set free?
time wasting cache miss + resizing
worst case time (+) + −

Table 2.1: Pros and cons for implementation variants of a stack

2.3 Stacks, Queues & Variants
We now want to use these general sequence types to implement another important data
structure: A stack with operations push (insert at the end of the sequence) and pop (return
and remove the last element) which we both want to implement with constant costs. Let
us examine the alternatives:

A bounded array is only feasible if you can give a tight limit for the number of inserted
elements; otherwise, you have to allocate much memory in advance to avoid running out
of space. A linked list comes with nontrivial memory management and a lot of cache
faults (when every successor is in a different memory block). An unbounded array has
no constant cost guaranty for a single operation and can consume up to twice the actually
required space. So none of the basic data structures comes without major drawbacks. For
an optimal solution, we need to take a hybrid approach:

A hybrid stack is a linked list containing bounded arrays of size B. When the current
array is full, another one is allocated and linked. We now have a dynamic data structure

...

B
Figure 2.7: A hybrid stack

20

...

...

B

Directory

Elemente
Figure 2.8: A variant of the hybrid stack

with (small) constant worst case access time4 at the back pointer. We give up a maximum
of n/B + B wasted space (for pointers and one empty block). This is minimized for
B = Θ(

√
n).

A variant of this stack works as follows: Instead of having each block maintain a
pointer to its successor, we use a directory (implemented as an unbounded array) contain-
ing these. Together with two additional references to the current dictionary entry and the
current position in the last block, we gain the functionality of a stack. Additionally, it is
now easy to implement [·] in constant time using integer division and modulo arithmetic.
The drawback of this approach is non-constant worst case insertion time (although we
still have constant amortized costs).

There are further specialized data structures that can be useful for certain algorithms:
a FIFO queue allows insertion at one end and extraction at the other. FIFO queues are
easy to implement with singly linked lists with a pointer to the last element. For bounded
queues, we can also use cyclic arrays where entry zero is the successor of the last entry.
Now it suffices to maintain two indices h and t delimiting the range of valid queue entries.
These indices travel around the cycle as elements are queued and dequeued. The cyclic
semantics of the indices can be implemented using arithmetics modulo the array size.5

Our implementation always leaves one entry of the array empty because otherwise it
would be difficult to distinguish a full queue from an empty queue. Bounded queues can
be made unbounded using similar techniques as for unbounded arrays.

Finally, deques – allowing read/write access at both ends – cannot be implemented
efficiently using singly linked lists. But the array based FIFO from Figure 2.3 is easy
to generalize. Circular array can also support access using [·] (interpreting [i] as [i +
hmod n].

With techniques from both the hybrid stack variant and the cyclic FIFO queue, we
can derive a data structure with constant costs for random accesses and costs O(

√
n) for

4although inserting at the end of the current array is still costlier
5On some machines one might get significant speedups by choosing the array size as a power of two

and replacing mod by bit operations.

21

h

t0n

b

Figure 2.9: A variant of the hybrid stack

insertion/deletion on arbitrary positions: Instead of bounded arrays, we have our directory
point to cyclic arrays. Random access works as above. For insertion at a random location,
shift the elements in the corresponding cyclic array that follow the new element’s position.
If the array was full, we have no room for the last element so it is propagated to the next
cyclic array. Here, it replaces the last element (which can travel further) and the indices
are rotated by one, giving the new element index 0. In the worst case, we haveB elements
to move in the first array and constant time operations for the other n/B subarrays. This
is again minized for B = Θ(

√
n).

Another specialized variant we can develop is an I/O efficient stack6: We use 2 buffers
of size B in main memory and a pointer to the end of the stack. When both buffers are
full, we write the one containing the older elements to disk and use the freed room for
new insertions. When both buffers run empty, we refill one with a block from disk. This
leads to amortized I/O costs of O(1/B). Mind that only one buffer is not sufficient: A
sequence of B insertions followed by alternating insertions and deletions will incur 1 I/O
per operation.

[image] ⇐=
Table 2.2 summarizes some of the results found in this chapter by comparing running

times for common operations of the presented data structures. Predictably, arrays are bet-
ter at indexed access whereas linked lists have their strenghts at sequence manipulation
at arbitrary positions. However, both basic approaches can implement the special opera-
tions needed for stacks and queues roughly equally well. Where both approaches work,
arrays are more cache efficient whereas linked lists provide worst case performance guar-
antees. This is particularly true for all kinds of operations that scan through the sequence;
findNext is only one example.

612.1 gives an introduction on our external memory model

22

Operation List UArray hybr . Stack hybr . Array cycl . Array explanation of ‘∗’
[·] n 1

√
n 1 1

| · | 1∗ 1 1 1 1 not with inter-list splice
first 1 1 1 1 1
last 1 1 1 1 1
insert 1 n n

√
n n

remove 1 n n
√
n n

pushBack 1 1∗ 1 1 1∗ amortized
pushFront 1 n n

√
n 1∗ amortized

popBack 1 1∗ 1 1 1∗ amortized
popFront 1 n n

√
n 1∗ amortized

concat 1 n n n n
splice 1 n n n n
findNext ,. . . n n∗ n∗ n∗ n∗ cache efficient

Table 2.2: Running times of operations on sequences with n elements. Entries have an
implicit O(·) around them.

23

Chapter 3

Sorting

The findings on how branch mispredictions affect quicksort are taken from [1]. Super
Scalar Sample Sort is described in [2], Multiway Merge Sort is covered in [3], the analysis
of duality between prefetching and buffered writing is from [4].

3.1 Quicksort Basics
Sorting is one of the most important algorithmic problems both practically and theoret-
ically. Quicksort is perhaps the most frequently used sorting algorithm since it is very
fast in practice, needs almost no additional memory, and makes no assumptions on the
distribution of the input.

Function quickSort(s : Sequence of Element) : Sequence of Element
if |s| ≤ 1 then return s // base case
pick p ∈ s uniformly at random // pivot key
a := 〈e ∈ s : e < p〉 // (A)
b := 〈e ∈ s : e = p〉 // (B)
c := 〈e ∈ s : e > p〉 // (C)
return concatenation of quickSort(a), b, and quickSort(c)

Figure 3.1: Quicksort (high-level implementation)

Analysis shows that Quicksort picking pivots randomly will perform an expected
number of ≈ 1.4n log(n) comparisons1. A proof for this bound is given in the appendix

1With other other strategies for selecting a pivot, better constant factors can be achieved: e.g. ”median
of three” reduces the expected number of comparisons to ≈ 1.2n log(n)

24

quickSort qsort i-> partition <-j
3 6 8 1 0 7 2 4 5 9 3 6 8 1 0 7 2 4 5 9 3 6 8 1 0 7 2 4 5 9
1 0 2|3|6 8 7 4 5 9 2 0 1|8 6 7 3 4 5 9 2 6 8 1 0 7 3 4 5 9
0|1|2 4 5|6|8 7 9 1 0|2|5 6 7 3 4|8 9 2 0 8 1 6 7 3 4 5 9

4|5 7|8|9 0 1| |4 3|7 6 5|8 9 2 0 1|8 6 7 3 4 5 9
0 1 2 3 4 5 6 7 8 9 | |3 4|5 6|7| j i

| | |5 6| |
0 1 2 3 4 5 6 7 8 9

Figure 3.2: Execution of both high-level and refined version of quickSort . (Figure 3.1
and Figure 3.3) on 〈2, 7, 1, 8, 2, 8, 1〉 using the first character of a subsequence as the
pivot. The right block shows the first execution of the repeat loop for partitioning the
input in qSort .

in 12.3. The worst case occurs if all elements are different and we are always so unlucky
to pick the largest or smallest element as a pivot and results in Θ(n2) comparisons. As
the number of executed instructions and cache faults is proportional to the number of
comparisons, this is (at least in theory) a good measure for the total runtime of Quicksort.

3.2 Refined Quicksort
Figure 3.3 gives pseudocode for an array based quicksort that works in-place and uses
several implementation tricks that make it faster and very space efficient.

To make a recursive algorithm compatible to the requirement of in-place sorting of
an array, quicksort is called with a reference to the array and the range of array indices
to be sorted. Very small subproblems with size up to n0 are sorted faster using a simple
algorithm like insertion sort2. The best choice for the constant n0 depends on many details
of the machine and the compiler. Usually one should expect values around 10–40. An
efficient implementation of Insertion Sort is given in the appendix in 12.4.

The pivot element is chosen by a function pickPivotPos that we have not specified
here. The idea is to find a pivot that splits the input more accurately than just choosing
a random element. A method frequently used in practice chooses the median (‘middle’)
of three elements. An even better method would choose the exact median of a random
sample of elements.

The repeat-until loop partitions the subarray into two smaller subarrays. Elements

2Some books propose to leave small pieces unsorted and clean up at the end using a single insertion sort
that will be fast as the sequence is already almost sorted. Although this nice trick reduces the number of
instructions executed by the processor, our solution is faster on modern machines because the subarray to
be sorted will already be in cache.

25

//Sort the subarray a[`..r]
Procedure qSort(a : Array of Element; `, r : N)

while r − ` ≥ n0 do // Use divide-and-conquer
j := pickPivotPos(a, l, r)
swap(a[`], a[j]) // Helps to establish the invariant
p := a[`]
i := `; j := r
repeat // a: ` i→ j← r

invariant 1: ∀i′ ∈ `..i− 1: a[i′] ≤ p // a: ∀ ≤ p
invariant 2: ∀j′ ∈ j + 1..r: a[j′] ≥ p // a: ∀ ≥ p
invariant 3: ∃i′ ∈ i..r : a[i′] ≥ p // a: ∃ ≥ p
invariant 4: ∃j′ ∈ `..j : a[j′] ≤ p // a: ∃ ≤ p
while a[i] < p do i++ // Scan over elements (A)
while a[j] > p do j−− // on the correct side (B)
if i ≤ j then swap(a[i], a[j]); i++ ; j−−

until i > j // Done partitioning
if i < l+r

2
then qSort(a,`,j); ` := j

else qSort(a,i,r) ; r := i
insertionSort(a[l..r]) // faster for small r − l

Figure 3.3: Refined quicksort

26

equal to the pivot can end up on either side or between the two subarrays. Since quicksort
spends most of its time in this partitioning loop, its implementation details are important.
Index variable i scans the input from left to right and j scans from right to left. The key
invariant is that elements left of i are no larger than the pivot whereas elements right of j
are no smaller than the pivot. Loops (A) and (B) scan over elements that already satisfy
this invariant. When a[i] ≥ p and a[j] ≤ p, scanning can be continued after swapping
these two elements. Once indices i and j meet, the partitioning is completed. Now, a[`..j]
represents the left partition and a[i..r] represents the right partition. This sounds simple
enough but for a correct and fast implementation, some subtleties come into play.

To ensure termination, we verify that no single piece represents all of a[`..r] even if
p is the smallest or largest array element. So, suppose p is the smallest element. Then
loop A first stops at i = `; loop B stops at the last occurrence of p. Then a[i] and a[j]
are swapped (even if i = j) and i is incremented. Since i is never decremented, the right
partition a[i..r] will not represent the entire subarray a[`..r]. The case that p is the largest
element can be handled using a symmetric argument.

The scanning loops A and B are very fast because they make only a single test. On
the first glance, that looks dangerous. For example, index i could run beyond the right
boundary r if all elements in a[i..r] were smaller than the pivot. But this cannot hap-
pen. Initially, the pivot is in a[i..r] and serves as a sentinel that can stop Scanning Loop
A. Later, the elements swapped to the right are large enough to play the role of a sen-
tinel. Invariant 3 expresses this requirement that ensures termination of Scanning Loop
A. Symmetric arguments apply for Invariant 4 and Scanning Loop B.

Our array quicksort handles recursion in a seemingly strange way. It is something like
“semi-recursive”. The smaller partition is sorted recursively, while the larger partition is
sorted iteratively by adjusting ` and r. This measure ensures that recursion can never go
deeper than dlog n

n0
e levels. Hence, the space needed for the recursion stack is O(log n).

Note that a completely recursive algorithm could reach a recursion depth of n− 1 so the
space needed for the recursion stack could be considerably larger than for the input array
itself.

3.3 Lessons from experiments
We now run Quicksort on real machines to check if it behaves differently than our analysis
on the RAM model predicted. We will see that modern hardware architecture can have
influence on the runtime and try to find algorithmic solutions to these problems.

In the analysis, we saw that the number of comparisons determines the runtime of
Quicksort. On a real machine a comparison and the corresponding if-clause are mapped to
a branch instruction. In modern processors with long execution pipelines and superscalar
execution, dozens of subsequent instructions are executed in parallel to achieve a high

27

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 10 12 14 16 18 20 22 24 26

na
no

se
cs

 c
on

st
an

t

n

in sort Seconds / n lg n for algs: random pivot - median of 3 - exact median - skewed pivot n/10 - n/11

random pivot
median of 3

exact median
skewed pivot n/10
skewed pivot n/11

Figure 3.4: Runtime for Quicksort using different strategies for pivot selection

peak throughput. To keep the pipeline filled, the outcome of each branch is predicted by
the hardware (based on several possible heuristics). When a branch is mispredicted, much
of the work already done on the instructions following the predicted branch direction turns
out to be wasted. Therefore, ingenious and very successful schemes have been devised to
accurately predict the direction a branch takes . Unfortunately, we are facing a dilemma
here. Information theory tells us that the optimal number of n log n element comparisons
for sorting can only be achieved if each element comparison yields one bit of information,
i.e., there is a 50% chance for the branch to take either direction. In this situation, even the
most clever branch prediction algorithm is helpless. A painfully large number of branch
mispredictions seems to be unavoidable.

Figure 3.4 compares the runtime of Quicksort implementations using different strate-
gies of selecting a pivot. Together with standard techniques (random, median of three,
. . .) α-skewed pivots are used, i.e., pivots which have a rank of αn. Theory suggests
large constant factors in execution time for these strategies with α � 1

2
compared to a

perfect median. In practice, Figure 3.4 shows that these implementations are actually
faster than those that use an (approximated) median as pivot.

An explanation for this can be found in Figure 3.5: A pivot with rank close to n/2
produces many more branch mispredictions than a pivot that separates the sequence in
two parts of very different sizes. The costs to flush the entire instruction pipeline outweigh

28

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 10 12 14 16 18 20 22 24 26

br
an

ch
 m

is
se

s
co

ns
ta

nt

n

in sort Branch misses / n lg n for algs: random pivot - median of 3 - exact median - skewed pivot n/10 - n/11

random pivot
median of 3

exact median
skewed pivot n/10
skewed pivot n/11

Figure 3.5: Number of branch mispredictions for Quicksort using different strategies for
pivot selection

29

the fewer partition steps of these variants.

3.4 Super Scalar Sample Sort
We now study a sorting algorithm which is aware of hardware phenomenons like branch
mispredictions or superscalar execution. This algorithm is called Super Scalar Sample
Sort (SSSS) which is an engineered version of Sample Sort which in turn is a generaliza-
tion of Quicksort.

Function sampleSort(e = 〈e1, . . . , en〉 : Sequence of Element, k : Z) : Sequence of Element
if n/k is “small” then return smallSort(e) // base case, e.g. quicksort
let 〈S1, . . . , Sak−1〉 denote a random sample of e
sort S // or at least locate the elements whose rank is a multiple of a
〈s0, s1, s2, . . . , sk−1, sk〉:= 〈−∞, Sa, S2a, . . . , S(k−1)a,∞〉 // determine splitters
for i := 1 to n do

find j ∈ {1, . . . , k} such that sj−1 < ei ≤ sj
place ei in bucket bj

return concatenate(sampleSort(b1), . . . , sampleSort(bk))

Figure 3.6: Standard Sample Sort

Our starting point is ordinary sample sort. Fig. 3.6 gives high level pseudocode. Small
inputs are sorted using some other algorithm like quicksort. For larger inputs, we first
take a sample of s = ak randomly chosen elements. The oversampling factor a allows
a flexible tradeoff between the overhead for handling the sample and the accuracy of
splitting. Our splitters are those elements whose rank in the sample is a multiple of a. Now
each input element is located in the splitters and placed into the corresponding bucket.
The buckets are sorted recursively and their concatenation is the sorted output. A first
advantage of Sample Sort over Quicksort is the number of logk n recursion levels which
is by a factor log2 k smaller than the recursion depth of Quicksort log2 n. Every element
is moved once during each level, resulting in less cache faults for Sample Sort. However,
this alone does not resolve the central issue of branch mispredictions and only comes to
bear for very large inputs.

SSSS is an implementation strategy for the basic sample sort algorithm. All sequences
are represented as arrays. More precisely, we need two arrays of size n. One for the
original input and one for temporary storage. The flow of data between these two arrays
alternates in different levels of recursion. If the number of recursion levels is odd, a final
copy operation makes sure that the output is in the same place as the input. Using an array

30

o

B

a’

a

i

move
refer

refer

refer

Figure 3.7: Two-pass element distribution in Super Scalar Sample Sort

of size n to accommodate all buckets means that we need to know exactly how big each
bucket is. In radix sort implementations this is done by locating each element twice. But
this would be prohibitive in a comparison based algorithm. Therefore we use an additional
auxiliary array, o, of n oracles – o(i) stores the bucket index for element ei. A first pass
computes the oracles and the bucket sizes. A second pass reads the elements again and
places element ei into bucket bo(i). This two pass approach incurs costs in space and time.
However these costs are rather small since bytes suffice for the oracles and the additional
memory accesses are sequential and thus can almost completely be hidden via software
or hardware prefetching3. In exchange we get simplified memory management, no need
to test for bucket overflows. Perhaps more importantly, decoupling the expensive tasks
of finding buckets and distributing elements to buckets facilitates software pipelining by
the compiler and prevents cache interferences of the two parts. This optimization is also
known as loop distribution.

Theoretically the most expensive and algorithmically the most interesting part is how
to locate elements with respect to the splitters. Fig. 3.8 gives pseudocode and a picture
for this part. Assume k is a power of two. The splitters are placed into an array t such
that they form a complete binary search tree with root t1 = sk/2. The left successor
of tj is stored at t2j and the right successor is stored at t2j+1. This is the arrangement
well known from binary heaps but used for representing a search tree here. To locate an
element ai, it suffices to travel down this tree, multiplying the index j by two in each
level and adding one if the element is larger than the current splitter. This increment is
the only instruction that depends on the outcome of the comparison. Some architectures

3This is true as long as we can accommodate one buffer per bucket in the cache, limiting the parameter
k. Other limiting factors are the size of the TLB (translation lookaside buffer, storing mappings of virtual
to physical memory addresses) and k ≤ 256 if we want to store the bucket indices in one byte

31

3k/8s k/8s 5k/8s 7k/8s

 k/4s 3k/4s

 k/2s

< <

<

1b 2b 3b 4b 5b 6b 7b 8b
< < < <> > > >

>>

>
t:= 〈sk/2, sk/4, s3k/4, sk/8, s3k/8, s5k/8, s7k/8, . . .〉
for i := 1 to n do // locate each element

j:= 1 // current tree node := root
repeat log k times // will be unrolled

j:= 2j + (ai > tj) // left or right?
j:= j − k + 1 // bucket index
|bj|++ // count bucket size
oi:= j // remember oracle

Figure 3.8: Finding buckets using implicit search trees. The picture is for k = 8. We
adopt the convention from C that “x > y” is one if x > y holds, and zero else.

cmp.gt p7=r1,r2 cmp.gt p6=r1,r2
(p7) br.cond .label (p6) add r3=4,r3

add r3=4,r3
.label:

Table 3.1: Translation of if(r1 > r2) r3 := r3 + 4 with branches (left) and
predicated instructions (right)

like IA-64 have predicated arithmetic instructions that are only executed if the previously
computed condition code in the instruction’s predicate register is set. Others at least have
a conditional move so that we can compute j:= 2j and then, speculatively, j′:= j+1. Then
we conditionally move j′ to j. The difference between such predicated instructions and
ordinary branches is that they do not affect the instruction flow and hence cannot suffer
from branch mispredictions.

Experiments (conducted on an Intel Itanium processor with Intel’s compiler to have
support for predicated instructions and software pipelining) show that our implementa-
tion of SSSS outperforms two well known library implementations for sorting. In the
Experiment 32 bit random integers in the range [0, 109] were sorted4.

For this first version of SSSS, several improvements are possible. For example, the
current implementation suffers from many identical keys. This could be fixed without
much overhead: If si−1 < si = si+1 = · · · = sj (identical splitters are an indicator for
many identical keys), j > i, change si to si − 1. Do not recurse on buckets bi+1,. . . ,bj –
they all contain identical keys. Now SSSS can even profit from an input like this.¡

Another disadvantage compared to quicksort is that SSSS is not inplace. One could
make it almost inplace however. This is most easy to explain for the case that both input

4note that the algorithm’s runtime is not influenced by the distribution of elements, so a random distri-
bution of elements is no unfair advantage for SSSS

32

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4096 16384 65536 218 220 222 224

tim
e

/ n
 lo

g
n

[n
s]

n

Intel STL
GCC STL

sss-sort

Figure 3.9: Runtime for sorting using SSSS and other algorithms

 0

 1

 2

 3

 4

 5

 6

 7

 4096 16384 65536 218 220 222 224

tim
e

/ n
 lo

g
n

[n
s]

n

Total
FB+DIST+BA

FB+DIST
FB

Figure 3.10: Breakdown of the execution time of SSSS (divided by n log n) into phases.
“FB” denotes the finding of buckets for the elements, “DIST” the distribution of the
elements to the buckets, “BA” the base sorting routines. The remaining time is spent in
finding the splitters etc.

33

M

i=0 i=M i=2M

i=2Mi=0 i=M

run internalsort

f

t

Figure 3.11: Run formation

st stps

B

__aeghikmnst__aaeilmpsss__bbeilopssu__eilmnoprstf

make things as simple as possible but no simpler

t

next
k

________aaabbeeeeghiiiiklllmmmnnooppprss

ssM out

internal

ssrunBuffer

f

Figure 3.12: Example of 4-way merging with M = 12, B = 2

and output are a sequence of blocks (compare chapter 2). Sampling takes sublinear space
and time. Distribution needs at most 2k additional blocks and can otherwise recycle freed
blocks of the input sequence. Although software pipelining may be more difficult for this
distribution loop, the block representation facilitates a single pass implementation with-
out the time and space overhead for oracles so that good performance may be possible.
Since it is possible to convert inplace between block list representation and an array rep-
resentation in linear time, one could actually attempt an almost inplace implementation
of SSSS.

3.5 Multiway Merge Sort
We will now study another algorithm based on the concept of Merge Sort which is espe-
cially well suited for external sorting. For external algorithms, an efficient sorting sub-
routine is even more important than for main memory algorithms because one often tries
to avoid random disk accesses by ordering the data, allowing a sequential scan.

Multiway Merge Sort first splits the data into dn/Me runs which fit into main memory
where they are sorted. We merge these runs until only one is left. Instead of ordinary 2-
way-merging, we merge k := M/B runs in a single pass resulting in a smaller number
of merge phases. We only have to keep one block (containing the currently smallest
elements) per run in main memory. We maintain a priority queue containing the smallest
elements of each run in the current merging step to efficiently keep track of the overall
smallest element.

34

21 D

emulated disk

logical block

physical blocks

Figure 3.13: Striping: one logical block consists of D physical blocks.

Every element is read/written twice for forming the runs (in blocks of size B) and
twice for every merging phase. Access granularity is blocks. This leads to the following
(asymptotically optimal) total number of I/Os:

2n

B
(1 + dlogk #runse) =

2n

B

(
1 +

⌈
logM/B

n

M

⌉)
:= sort(n) (3.1)

Let us consider the following realistic parameters: B = 2MB, M = 1GB. For inputs
up to a size of n = 512GB, we get only one merging phase! In general, this is the
case if we can store dn/Me buffers (one for each run) of size B in internal memory (i.e.,
n ≤M2/B). Therefore, only one additional level can increase the I/O volume by 50%.

3.6 Sorting with parallel disks
We now consider a system with D disks. There are different ways to model this situation
(see Figure 3.15) but all have in common that in one I/O step we can fetch up to D blocks
so we can hope to reduce the number of I/Os by this factor:

2n

BD

(
1 +

⌈
logM/B

n

M

⌉)
(3.2)

An obvious idea to handle multiple disks is the concept of striping: An emulated disk
contains logical blocks of size DB consisting of one physical block per disk. The algo-
rithms for run formation and writing the output can be used unchanged on this emulated
disk. For the merging step however, we have to be careful: With larger (logical) blocks
the number of I/Os becomes:

2n

BD

(
1 +

⌈
logM/BD

n

M

⌉)
(3.3)

The algorithm will move more data in one I/O step (compared to the setup with one
disk) but requires a possibly deeper recursion level. In practice, this can make the differ-
ence between one or two merge phases. We therefore have to work on the level of physical

35

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

internal buffers

...

controls

prediction sequence

pr
ef

et
ch

 b
uf

fe
rs

Figure 3.14: The smallest element of each block triggers fetch.

blocks to achieve optimal constant factors. This comes with the necessity to distribute the
runs in an intelligent way among the disks and to find a schedule for fetching blocks into
the merger.

For starters, it is necessary to find out which block on which disk will be required next
when one of the merging buffers runs out of elements. This can be computed offline when
all runs are formed: A block is required the moment its smallest element is required. We
can therefore sort the set of all smallest elements to get a prediction sequence.

To be able to refill the merge buffers in time we maintain prefetch buffers which we fill
(if necessary) while the merging of the current elements takes place. This allows parallel
access of next due blocks and helps for an efficiency near 1 (i.e. fetching D blocks in one
I/O step). How many prefetch buffers should we use?

We first approach this question by using a simplified model ((a) in figure 3.15) where
we have D read-/write-heads on one large disk. Here, D prefetch buffers suffice: In one
I/O-step we can refill all buffers, transferring D blocks of size B which leads to a total
(optimal) number of I/Os as in equation 3.2.

If we replace the multihead model with D independent disks (each with its own
right/write-head) we get a more realistic model. But now D prefetch buffers seem too
few as it is possible that all next k blocks reside on the same disk which would need that
many I/O steps for filling the buffers while the other disks lie idle, leading to a non-optimal
efficiency.

A first solution is to increase the number of prefetch buffers to kD. But that would
leave us with less space for merge buffers, write buffers and other data that we have to

36

M

B1 2 D

Multihead Model

[Aggarwal Vitter 88]

(a)

M

B

... D1 2

independent disks

[Vitter Shriver 94]
(b)

Figure 3.15: Different models for systems with several disks

...
prediction sequence

internal buffers

...

...

...

...

...

...

prefetch buffers

Figure 3.16: Distribution of runs using randomized cycling.

keep in main memory.
Instead, we use the randomized cycling pattern while forming runs: For every run j,

we map block i to πj(i mod D) for a random permutation πj . This makes the event of
getting a “difficult“ distribution highly unlikely.

With a naive prefetching strategy and random cycling, we can achieve a good perfor-
mance with only O(D logD) buffers. Is it possible to even reduce this to O(D)?

The prefetching strategy leaves more room for optimization. The naive approach
fetches in one I/O-step the next blocks from the prediction sequence until all free buffers
are filled or a disk would be accessed twice.

The problem is now to find an optimal offline prefetching schedule (offline, because
the prediction sequence yields the order in which the blocks on each disk are needed).
For the solution, we make a digression to online buffered writing and use the principle of
duality to transform our result here into a schedule for offline prefetching.

In online buffered writing, we have a sequence Σ of blocks to be written to one of D

37

W/D

...

...

...

1 2 3

queues

D

Sequence Σof blocks

randomized
mapping

write whenever

one of W

buffers is free

otherwise, output

one block from

each nonempty queue

Figure 3.17: The online buffered writing problem and its optimal solution.

disks. We also have W buffers, W/D for each disk. It can be shown that randomized,
equally distributed writing to one of the free buffers and outputting one block of each
queue if no capacity is left is an optimal strategy and achieves an expected efficiency of
1− o(D/W).

We can now reverse this process to obtain an optimal offline prefetching algorithm
called lazy prefetching: Given the prediction sequence Σ, we calculate the optimal online
writing sequence T for ΣR and use TR as prefetching schedule. Note that we do not use
the distribution between the disks the writing algorithm produces and that the random
distribution during the writing process corresponds to random cycling.

Figure 3.19 gives an example in which our optimal strategy yields a better result than
a naive prefetching approach: The upper half shows the result of the example schedule
from 3.18 created by inverting a writing schedule. The bottom half shows the result of
naive prefetching, always fetching the next block from every disk in one step (as long as
there are free buffers).

3.7 Internal work of Multiway Mergesort
Until now we have only regarded the number of I/Os. In fact, when running with several
disks our sorting algorithm can very well be compute bound, i.e. prefetching D new
blocks requires less time than merging them. We use the technique of overlapping to
minimize wait time for whichever task is bounding our algorithm in a given environment.
Take the following example on run formation (i denotes a run):

Thread A: Loop { wait-read i; sort i; post-write i};
Thread B: Loop { wait-write i; post-read i+2};

38

r q p o l i f

n g e

m k j

h

abcd

abcdefghijklmnopqr

ΣR

Σ

8 7 6 5 4 3 2 1

1output step 2 3 4 5 6 7 8

Puffer

input step

order of reading

order of writing

(a)

abcdefghijklmnopqr

ΣR

Σ
r
q
p
o
n
m

8 7 6 5 4 3 2 1

1output step 2 3 4 5 6 7 8

Puffer

input step

r

m

n

order of reading

order of writing

(b)

abcdefghijklmnopqr

ΣR

Σ q
p
o
l
k

j

k

8 7 6 5 4 3 2 1

1output step 2 3 4 5 6 7 8

Puffer

input step

qr

m

n

order of reading

order of writing

(c)

abcdefghijklmnopqr

ΣR

Σ
p
o
l

j

ki

h

j

h

p

8 7 6 5 4 3 2 1

1output step 2 3 4 5 6 7 8

Puffer

input step

qr

m

n

order of reading

order of writing

(d)

abcdefghijklmnopqr

ΣR

Σ

o
l

ki j

h

p

e
f
g

g

o

8 7 6 5 4 3 2 1

1output step 2 3 4 5 6 7 8
Puffer

input step

qr

m

n

order of reading

order of writing

(e)

abcdefghijklmnopqr

ΣR

Σ

l

ki j

h

p

e
f

g

od

c e

l

d

8 7 6 5 4 3 2 1

1output step 2 3 4 5 6 7 8

Puffer

input step

qr

m

n

order of reading

order of writing

(f)

abcdefghijklmnopqr

ΣR

Σ

ki j

h

p

f

g

o

c e

l

d

b

a

c

i

8 7 6 5 4 3 2 1

1output step 2 3 4 5 6 7 8

Puffer

input step

qr

m

n

order of reading

order of writing

(g)

abcdefghijklmnopqr

ΣR

Σ

k j

h

p

f

g

o

e

l

d

b

a

c

i

b

f

8 7 6 5 4 3 2 1

1output step 2 3 4 5 6 7 8

Puffer

input step

qr

m

n

order of reading

order of writing

(h)

abcdefghijklmnopqr

ΣR

Σ

k j

h

p

g

o

e

l

d

a

c

i

b

f

a

8 7 6 5 4 3 2 1

1output step 2 3 4 5 6 7 8

Puffer

input step

qr

m

n

order of reading

order of writing

(i)

Figure 3.18: Example: Optimal randomized online writing

39

c d e f h igb j m n o p q rka l

rqpolif

nge

mkj

h

a b c d

1 2 3 4 5 6 7

7 6 5 4 3 2 1 Ausgabeschritt

8Eingabeschritt

optimal

Σ R

f

c

h

d

rqp

e

a

g

b

i

n

m

Eingabeschritt1

[Barve−Grove−Vitter 97]

ol

2

j k

43 5 6 7

Σ

8 9

Figure 3.19: Example: resulting offline reading schedule

During initialization, runs 1 and 2 are read, i is set to 1. Thread A sorts runs in memory
and writes them to disk. Thread B will wait until run i is finished (and thread A works on
i+ 1) and reads the next run i+ 2 into the freed space. The thread doing the more intense
work will never wait for the other one.

A similar result can be achieved during the merging step but this is considerably more
complicated and beyond the scope of this course.

As internal work influences running time, we need a fast solution for the most compute
intense step during merging: A Tournament Tree (or Loser Tree) is a specialized data
structure for finding the smallest element of all runs. For k = 2K , it is a complete binary
tree with K levels, where each leaf contains the currently smallest element of one run.
Each internal node contains the ’loser’ (i.e., the greater) of the ’competition’ between its
two child nodes. Above the root node, we store the global winner along with a pointer
to the corresponding run. After writing this element to the output buffer, we simply have
to move the next element of its run up until there is a new global winner. Compared to
general purpose data structures like binary heaps, we get exactly log k comparisons (no
hidden constant factors). Similar to the implicit search trees we used for Sample Sort,
Tournament Trees can be implemented as arrays where finding the parent node simply
maps to an index shift to the right. The inner loop for moving from leaf to root can
be unrolled and contains predictable load instructions and index computations allowing

40

6 2 7 9 1 4 74

6 7 9 7

4 4

2

1

3
6 2 7 9 4 74

6 7 9 7

4 4

3

2deleteMin+
insertNext

3

Figure 3.20: A tournament tree

for (int i=(winnerIndex+kReg)>>1; i>0; i>>=1){
currentPos = entry + i;
currentKey = currentPos->key;
if (currentKey < winnerKey) {

currentIndex = currentPos->index;
currentPos->key = winnerKey;
currentPos->index = winnerIndex;
winnerKey = currentKey;
winnerIndex = currentIndex;}}

Figure 3.21: Inner loop of Tournament Tree computation

exploitation of instruction parallelism.

3.8 Experiments
Experiments on Multiway Merge Sort were performed in 2001 on a 2 × 2GHz Xeon ×
2 threads machine (Intel IV with Netburst) with several 66 MHz PCI-buses, 4 fast IDE
controllers (Promise Ultra100 TX2) and 8 fast IDE disks (IBM IC35L080AVVA07). This
inexpensive (mid 2002) setup gave a high I/O-bandwidth of 360 MB/s. The keys consisted
of 16 GByte random 32 bit integers, run size was 256 MByte, block size B was 2MB (if
not otherwise mentioned).

Figure 3.22 shows the running time for different element sizes (for a constant total data
volume of 16 GByte). The smaller the elements, the costlier becomes internal work, espe-
cially during run formation (there are more elements to sort). With a high I/O throughput
and intelligent prefetching algorithms, I/O wait time never makes up for more than half of
the total running time. This proves the point that overlapping and tuning of internal work
are important.

41

0

50

100

150

200

250

300

350

400

16 32 64 128 256 512 1024

tim
e

[s
]

element size [byte]

run formation
merging
I/O wait in merge phase
I/O wait in run formation phase

Figure 3.22: Multiway Merge Sort with different element sizes

12

14

16

18

20

22

24

26

128 256 512 1024 2048 4096 8192

so
rt

 ti
m

e
[n

s/
by

te
]

block size [KByte]

128 GBytes 1x merge
128 GBytes 2x merge

16 GBytes

Figure 3.23: Performance using different block sizes

42

What is a good block size B? An intuitive approach would link B to the size of a
physical disk block. However, figure 3.23 shows that B is no technology constant but a
tuning parameter: A larger B is better (as it reduces the amortized costs of O(1/B) I/Os
per element), as long as the resulting smaller k still allows for a single merge phase (see
curve for 128GB).

43

Chapter 4

Priority Queues

The material on external priority queues was first published in [5].

4.1 Introduction
Priority queues are an important data structure for many applications, including: short-
est path search (Dijkstra’s Algorithm), sorting, construction of mimimum spanning trees,
branch and bound search, discrete event simulaton and many more. While the first ex-
amples are widely known and also covered in other chapters, we give a short explanation
of the latter two applications: The best first branch-and-bound approach to optimization
elements are partial solutions of an optimization problem and the keys are optimistic es-
timates of the obtainable solution quality. The algorithm repeatedly removes the best
looking partial solution, refines it, and inserts zero or more new partial solutions. In a
discrete event simulation one has to maintain a set of pending events. Each event happens
at some scheduled point in time and creates zero or more new events scheduled to happen
at some time in the future. Pending events are kept in a priority queue. The main loop
of the simulation deletes the next event from the queue, executes it, and inserts newly
generated events into the priority queue.
Our (non-addressable) priority queue M needs to support the following operations:

Procedure build({e1, . . . , en}) M := {e1, . . . , en}
Procedure insert(e) M := M ∪ {e}
Function deleteMin e:= minM ; M := M \ {e}; return e

There are different approaches to implementing priority queues but most of them re-
sort to an implicit or explicit tree representation which is heap-ordered1: If w is a succes-
sor of v, the key stored in w is not greater than the key stored in v. This way, the overall
smallest key is stored in the root.

1In 4.4 we will see implementations using a whole forest of heap-ordered trees

44

4.2 Binary Heaps
Priority queues are often implemented as binary heaps, stored in an array h where the
successors for an element at position i are stored at positions 2i and 2i + 1. This is an
implicit representation of a near-perfect binary tree which only might lack some leafs in
the bottom level. We require that this array is heap-ordered, i.e.,

if 2 ≤ j ≤ n then h[bj/2c] ≤ h[j].

Binary Heaps with arrays are bounded in space, but they can be made unbounded in
the same way as bounded arrays are made unbounded. Asuming non-hierarchical mem-
ory, we can implement all desired operations in an efficient manner:

An insert puts a new element e tentatively at the end of the heap h, i.e., e is put at
a leaf of the tree represented by h.[reformulated:more rendundancy, less ambiguity]⇐=
Then e is moved to an appropriate position on the path from the leaf h[n] to the root.

Procedure insert(e : Element)
assert n < w
n++ ; h[n]:= e
siftUp(n)

where siftUp(s) moves the contents of node s towards the root until the heap prop-
erty[was heap condition] holds. ⇐=

Procedure siftUp(i : N)
assert the heap property holds except maybe for j = i
if i = 1 ∨ h[bi/2c] ≤ h[i] then return
assert the heap property holds except for j = i
swap(h[i], h[bi/2c])
assert the heap property holds except maybe for j = bi/2c
siftUp(bi/2c)

Since siftUp will potentially move the element up to the root and perform a com-
parison on every level, insert takes O(log n) time. On avergage, a constant number of
comparisons will suffice.

deleteMin in its basic form replaces the root with the leftmost leaf which is then
sifted down (analogously to siftUp), resulting in 2 log n key comparisons (on every level,
we have to find the minimum of three elements). The bottom-up heuristic suggests an
improvement for that operation: The hole left by the removed minimum is “sifted down“
to a leaf (requiring only one comparison per level between the two successors of the hole),
is only now replaced by the rightmost leaf which is then sifted up again (costing constant
time on average, like insertion).

45

97

2

97

2

movecompare swap

97

1

48

6

8

8

6

2

97

4

delete Min
O(1)

sift down hole
log(n)

average
O(1)

sift up

8

2

9

7

8

2

6

4 4

6

4

6

8

2

9

7

6

4

Figure 4.1: The bottom-up heuristic

int i=1, m=2, t = a[1];
m += (m != n && a[m] > a[m + 1]);
if (t > a[m]) {

do { a[i] = a[m];
i = m;
m = 2*i;
if (m > n) break;
m += (m != n && a[m] > a[m + 1]);

} while (t > a[m]);
a[i] = t;}

Figure 4.2: An efficient version of standard deleteMin

This approach should be a factor two faster then the naive implementation. However,
if the latter is programmed properly (see figure 4.2), there are no measureable differences
in runtime: The given implementation has log n comparisons more than bottom-up but
these are stop criterions for the loop and thus easy to handle for branch prediction. Notice
how the increment of m avoids branches within the loop.

[siftDown mit logn + loglogn Vergleichen] ⇐=
For the initial construction of a heap there are also two competing approaches:

buildHeapBackwards moves from the leaves to the root, ensuring the heap property on
every level. buildHeapRecursive first fixes this properties recursively on the two subtrees
of the root and then sifts the remaining node down. Here, we have the reverse situation
compared to deleteMin: Both algorithms asymptotically cost O(n) time but on a real
machine, the recursive variant is faster by a factor two: It is more cache efficient. Note,
that a subtree with B leaves and therefore logB levels can be stored in B logB blocks of

46

Procedure buildHeapBackwards
for i := bn/2c downto 1 do siftDown(i)

Procedure buildHeapRecursive(i : N)
if 4i ≤ n then

buildHeapRecursive(2i)
buildHeapRecursive(2i+ 1)

siftDown(i)

Figure 4.3: Two implementations for buildHeap

insertion bufferm

tournament tree
data structure

sorted
sequencesm...1 2 k

k−merge

mbuffer

Figure 4.4: A simple external PQ for n < km

size B. If these blocks fit into the cache, we only require O(n/B) I/O operations.

4.3 External Priority Queues
We now study a variant of external priority queues2 which are called sequence heaps.

Merging k sorted sequences into one sorted sequence (k-way merging) is an I/O effi-
cient subroutine used for sorting – we saw this in chapter 3.5. The basic idea of sequence
heaps is to adapt k-way merging to the related but more dynamical problem of priority
queues.

Let us start with the simple case, that at most km insertions take place where m is
the size of a buffer that fits into fast memory. Then the data structure could consist of k
sorted sequences of length up to m. We can use k-way merging for deleting a batch of the
m smallest elements from k sorted sequences. The next m deletions can then be served
from a buffer in constant time.

A separate binary heap with capacity m allows an arbitrary mix of insertions and

2if “I/O“ is replaced by “cache fault“, we can use this approach also one level higher in the memory
hierarchy

47

m

m m

2T 3T

...1 2 k ...1 2 k ...1 2 k

k-merge k-merge k-merge

R-merge

insert heap

mk

buffer 3
group

m’

group
buffer 1 m

1T

m

group
buffer 2

deletion buffer

mk
2

Figure 4.5: Overview of the complete data structure for R = 3 merge groups

deletions by holding the recently inserted elements. Deletions have to check whether the
smallest element has to come from this insertion buffer. When this buffer is full, it is
sorted, and the resulting sequence becomes one of the sequences for the k-way merge.

How can we generalize this approach to handle more than km elements? We cannot
increase m beyond M , since the insertion heap would not fit into fast memory. We cannot
arbitrarily increase k, since eventually k-way merging would start to incur cache faults.
Sequence heaps make room by merging all the k sequences producing a larger sequence
of size up to km.

Now the question arises how to handle the larger sequences. Sequence heaps employ
R merge groupsG1, . . . , GR whereGi holds up to k sequences of size up tomki−1. When
group Gi overflows, all its sequences are merged, and the resulting sequence is put into
group Gi+1.

Each group is equipped with a group buffer of size m to allow batched deletion from
the sequences. The smallest elements of these buffers are deleted in batches of size m′ �
m. They are stored in the deletion buffer. Fig. 4.5 summarizes the data structure. We now
have enough information to understand how deletion works:

DeleteMin: The smallest elements of the deletion buffer and insertion buffer are com-
pared, and the smaller one is deleted and returned. If this empties the deletion buffer, it
is refilled from the group buffers using an R-way merge. Before the refill, group buffers

48

with less than m′ elements are refilled from the sequences in their group (if the group is
nonempty).

DeleteMin works correctly provided the data structure fulfills the heap property, i.e.,
elements in the group buffers are not smaller than elements in the deletion buffer, and in
turn, elements in a sorted sequence are not smaller than the elements in the respective
group buffer. Maintaining this invariant is the main difficulty for implementing insertion.

Insert: New elements are inserted into the insert heap. When its size reaches m, its
elements are sorted (e.g. using merge sort or heap sort). The result is then merged with
the concatenation of the deletion buffer and the group buffer 1. The smallest resulting
elements replace the deletion buffer and group buffer 1. The remaining elements form a
new sequence of length at most m. The new sequence is finally inserted into a free slot
of group G1. If there is no free slot initially, G1 is emptied by merging all its sequences
into a single sequence of size at most km, which is then put into G2. The same strategy is
used recursively to free higher level groups when necessary. When group GR overflows,
R is incremented and a new group is created. When a sequence is moved from one group
to the other, the heap property may be violated. Therefore, when G1 through Gi have
been emptied, the group buffers 1 through i+ 1 are merged, and put into G1.

For cached memory, where the speed of internal computation matters, it is also crucial
how to implement the operation of k-way merging. How is can be done in an efficient
way is described in the chapter about Sorting (3.7).

Analysis
We will now give a sketch for the I/O analysis of our priority queues. Let i denote the
number of insertions and an upper bound to the number of deleteMin operations.

First note that Group Gi can overflow at most every m(ki − 1) insertions: The only
complication is the slot in group G1 used for invalid group buffers. Nevertheless, when
groups G1 through Gi contain k sequences each, this can only happen if

R∑
j=1

m(k − 1)kj−1 = m(ki − 1)

insertions have taken place. Therefore, R =
⌈
logk

I
m

⌉
groups suffice.

Now consider the I/Os performed for an element moving on the following canoni-
cal data path: It is first inserted into the insert buffer and then written to a sequence in
group G1 in a batched manner, i.e., 1/B I/Os are charged to the insertion of this element.
Then it is involved in emptying groups until it arrives in group GR. For each emptying
operation, the element is involved into one batched read and one batched write, i.e., it is

49

b

g

v

j
i
l
q

k f

u
n
m
c

w
t
p
o
h

a

d
b

e
x

3

s
r

b

v

j
i
l
q

k f

u
n
m

w
t
p
o
h

xab

e
d

c
g

s
r

3insert()

(a) Inserting element 3 leads to overflow of insert heap:
it is merged with deletion buffer and group buffer 1 and
then inserted into group 1

b

g

v

j
i
l
q

k f

u
n
m
c

w
t
p
o
h

a

d
b

e
x

3

s
r

e
x

b

v

i
l
q

u
n
m
c

w
t
p
o
h

a

d
b

f
g
j
k

3

s
r

(b) Overflow in group 1: all old elements are merged and
inserted in next group

e
x

b

v

i
l
q

u
n
m
c

w
t
p
o
h

a

d
b

f
g
j
k

3

s
r

e
x

3a

f
g
j
k

bd
b

c
h
i
l

m
n o p

q
r
s
t u v

w

(c) Overflow in group 2: all old elements are merged and inserted
in next group

e
x

3a

f
g
j
k

bd
b

c
h
i
l

m
n o p

q
r
s
t u v

w

e
x

3a

f
g
j
k

c
h
i
l

m
n o p

q
r
s
t u v

w

b
b
d

(d) Group buffers are invalid now: merge and inserted them to group 1

Figure 4.6: Example of an insertion on the sequence heap

50

e
x

3a

f
g
j
k

c
h
i
l

m
n o p

q
r
s
t u v

w

b
b
d

e
x

f
g
j
k

c
h
i
l

m
n o p

q
r
s
t u v

w

b
b
d

(a) Deletion of two elements empties insert heap and deletion buffer

e
x

f
g
j
k

i
l

m
n o p

q
r
s
t u v

wd

c
h
i
l

m
n o p

q
r
s
t u v

w

b
b
d

e
x

j
k

b
f
g

c
h

(b) Every Group fills its buffer via k-way-merging, the deletion buffer is filled
from group buffers via M-way-merging

Figure 4.7: Example of a deletion on the sequence

51

charged with 2(R − 1)/B I/Os for tree emptying operations. Eventually, the element is
read into group buffer R yielding a charge of 1/B I/Os for. All in all, we get a charge of
2R/B I/Os for each insertion.

What remains to be shown (and is ommited here) is that the remaining I/Os only
contribute lower order terms or replace I/Os done on the canonical path. For example, we
save I/Os when an element is extracted before it reaches the last group. We use the costs
charged for this to pay for swapping the group buffers in and out. Eventually, we have
O(sort(I)) I/Os.

In a similar fashion, we can show that I operations inflict I log I key comparisons on
average. As for sorting, this is a good measure for the internal work, since in efficient
implementations of priority queues for the comparison model, this number is close to the
number of unpredictable branch instructions (whereas loop control branches are usually
well predictable by the hardware or the compiler), and the number of key comparisons
is also proportional to the number of memory accesses. These two types of operations
often have the largest impact on the execution time, since they are the most severe limit
to instruction parallelism in a super-scalar processor.

Experiments
We now present the results of some experiments conducted to compare our sequence
heap with other priority queue implementations. Random 32 bit integers were used
as keys for another 32 bits of associated information. The operation sequence used
was (Insert − deleteMin − Insert)N(deleteMin − Insert − deleteMin)N . The
choice of this sequence is nontrivial as it can have measurable influence (factor two
and more) on the performance. Figure 4.9 show this: Here we have the sequence
(Insert (deleteMin Insert)s)N (deleteMin (Insert deleteMin)s)N for several val-
ues of s. For larger s, the performance gets better when N is large enough. This can
be explained with a “locality effect“: New elements tend to be smaller than most old
elements (the smallest of the old elements have long been removed before). Therefore,
many elements never make it into group G1 let alone the groups for larger sequences.
Since most work is performed while emptying groups, this work is saved. So that these
instances should come close to the worst case. To make clear that sequence heaps are
nevertheless still much better than binary or 4-ary heaps, Figure 4.9 additionally contains
their timing for s = 0.

The parameters chosen for the experiments where m′ = 32, m = 256 and k = 128 on
all machines tried. While there were better settings for individual machines, these global
values gave near optimal performance in all cases.

52

0

50

100

150

200

1024 4096 16384 65536 218 220 222 223

(T
(d

el
et

eM
in

)
+

 T
(in

se
rt

))
/lo

g
N

 [
ns

]

N

bottom up binary heap
bottom up aligned 4-ary heap

sequence heap

Figure 4.8: Runtime comparison for several PQ implementations (on a 180MHz MIPS
R10000)

32

64

128

256 1024 4096 16384 65536 218 220 222 223

(T
(d

el
et

eM
in

)
+

 T
(in

se
rt

))
/lo

g
N

 [
ns

]

N

s=0, binary heap
s=0, 4-ary heap

s=0
s=1
s=4

s=16

Figure 4.9: Runtime comparison for different operation sequences

53

a b a

b

a<b

Figure 4.10: Link: Merge to trees preserving the heap property

Figure 4.11: Cut: remove subtree and add it to the forest

4.4 Adressable Priority Queues
For adressable Priority Queues, we want to add the following functionality to the
interface of our basic data structure:

Function remove(h : Handle) e:= h; M := M \ {e}; return e
Procedure decreaseKey(h : Handle, k : Key) assert key(h) ≥ k; key(h):= k
Procedure merge(M ′) M := M ∪M ′

This extended interface is required to efficiently implement Dijkstra’s Algorithm for
shortest paths or the Jarnik-Prim Algorithm for calculating Minimum Spanning Trees
(both make use of the decreaseKey operation).

It is not possible to extend our hitherto approach to become adressable as keys are
constantly swapped in our array for deleteMin and other operations. For this domain, we
implement priority queues as a set of heap-ordered trees and a pointer for finding the tree
containing the globally minimal element. The elementary form of these priority queues is
called Pairing Heap.

With just two basic operations, we can implement adressable priority queues:
Now we can already give a high-level implementation of all necessary operations:

Procedure insertItem(h : Handle)
newTree(h)

Procedure newTree(h : Handle)
forest := forest ∪ {h}
if e < min then minPtr := h

Procedure decreaseKey(h : Handle, k : Key)
key(h):= k

54

if h is not a root then cut(h)

Function deleteMin : Handle
m:= minPtr
forest := forest \ {m}
foreach child h of m do newTree(h)
Perform a pairwise link of the tree roots in forest
return m

Procedure merge(o : AdressablePQ)
if minPtr > o.minPtr then minPtr := o.minPtr
forest := forest ∪ o.forest
o.forest := ∅

An insert adds a new single node tree to the forest. So a sequence of n inserts into
an initially empty heap will simply create n single node trees. The cost of an insert is
clearly O(1).

A deleteMin operation removes the node indicated by minPtr. This turns all
children of the removed node into roots. We then scan the set of roots (old and new)
to find the new minimum. To find the new minimum we need to inspect all roots (old
and new), a potentially very costly process. We make the process even more expensive
(by a constant factor) by doing some useful work on the side, namely combining some
trees into larger trees. Pairing heaps do this by just doing one step of pairwise linking
of arbitrary trees. There are variants doing more complicated operations to prove better
theoretical bounds.

We turn to the decreaseKey operation next. It is given a handle h and a new key
k and decreases the key value of h to k. In order to maintain the heap property, we cut
the subtree rooted at h and turn h into a root. Cutting out subtrees causes the more subtle
problem that it may leave trees that have an awkward shape. While Pairing heaps do
nothing to prevent thiss, some variants of addressable priority queues perform additional
operations to keep the trees in shape.

The remaining operations are easy. We can remove an item from the queue by first
decreasing its key so that it becomes the minimum item in the queue and then perform a
deleteMin. To merge a queue o into another queue we compute the union of roots and
o.roots . To update minPtr it suffices to compare the minima of the merged queues. If
the root sets are represented by linked lists, and no additional balancing is done, a merge
needs only constant time.

Pairing heaps are the simplest form of forest-based adressable priority queues. A more
elaborated and (in theory, at least) faster variant are Fibonacci Heaps. They maintain
a rank (initially zero, denoting the number of its children) for every element, which is
increased for root nodes when another tree is linked to them and a mark flag that is set
when the node lost a child due to a decreaseKey. Root nodes of the same rank are

55

one child

right sibling

data

one child

parent

left sibling
right sibling

data

left sibling
or parent

rank mark

Pairing Heap

Fibonacci Heap

Figure 4.12: Structure of one item in a Pairing Heap or a Fibonacci Heap.

linked after a deleteMin to limit the number of trees. If a cut is executed on a node
with an already marked parent, the parent is cut as well. These rules lead to an amortized
complexity ofO(log n) for deleteMin anO(1) for all other operations. However, both the
constant factors and the worst case performance for a single operation are high, making
Fibonacci Heaps a mainly theoretical tool. In addition, more metainformation per node
increases the memory overhead of Fibonacci Heaps.

56

Chapter 5

External Memory Algorithms

The introduction of this chapter is based on [6]. The sections on time-forward process-
ing, graph algorithms and cache oblivious algorithms use material from the book chap-
ters [10], [8] and [9]. The cache oblivious model was first presented in [11]. The section
on Funnelsort is based on [19]. The external BFS section is from [12] for the presenta-
tion of the algorithm and from [13] for tuning and experiments. Additional material in
multiple sections is from [7].

5.1 Introduction
Massive data sets arise naturally in many domains. Spatial data bases of geographic
information systems like GoogleEarth and NASA’s World Wind store terabytes of
geographically-referenced information that includes the whole Earth. In computer graph-
ics one has to visualize huge scenes using only a conventional workstation with limited
memory. Billing systems of telecommunication companies evaluate terabytes of phone
call log files. One is interested in analyzing huge network instances like a web graph
or a phone call graph. Search engines like Google and Yahoo provide fast text search
in their data bases indexing billions of web pages. A precise simulation of the Earth’s
climate needs to manipulate with petabytes of data. These examples are only a sample of
numerous applications which have to process huge amount of data.

For economical reasons, it is not feasible to build all of the computer’s memory of the
fastest type or to extend the fast memory to dimensions that could hold all relevant data.
Instead, modern computer architectures contain a memory hierarchy of increasing size,
decreasing speed and costs from top to bottom: On top, we have the registers integrated in
the CPU, a number of caches, main memory and finally disks, which are often referenced
as external memory as opposed to internal memory.

The internal memories of computers can keep only a small fraction of these large data
sets. During the processing the applications need to access the external memory (e. g.

57

Figure 5.1: schematic construction of a hard disk

hard disks) very frequently. One such access can be about 106 times slower than a main
memory access. Therefore, the disk accesses (I/Os) become the main bottleneck.

The reason for this high latency is the mechanical nature of the disk access. Figure 5.1
shows the schematic construction of a hard disk. The time needed for finding the data
position on the disk is called seek time or (seek) latency and averages to about 3–10 ms for
modern disks. The seek time depends on the surface data density and the rotational speed
and can hardly be reduced because of the mechanical nature of hard disk technology,
which still remains the best way to store massive amounts of data. Note that after finding
the required position on the surface, the data can be transferred at a higher speed which
is limited only by the surface data density and the bandwidth of the interface connecting
CPU and hard disk. This speed is called sustained throughput and achieves up to 80
MByte/s nowadays. In order to amortize the high seek latency one reads or writes the
data in chunks (blocks). The block size is balanced when the seek latency is a fraction
of the sustained transfer time for the block. Good results show blocks containing a full
track. For older low density disks of the early 90’s the track capacities were about 16-64
KB. Nowadays, disk tracks have a capacity of several megabytes.

Operating systems implement the so called virtual memory mechanism that provides
an additional working space for an application, mapping an external memory file (page
file) to virtual main memory addresses. This idea supports the Random Access Machine
model in which a program has an infinitely large main memory with uniform random
access cost. Since the memory view is unified in operating systems supporting virtual
memory, the application does not know where its working space and program code are
located: in the main memory or (partially) swapped out to the page file. For many appli-
cations and algorithms with non-linear access pattern, these remedies are not useful and

58

even counterproductive: the swap file is accessed very frequently; the data code can be
swapped out in favor of data blocks; the swap file is highly fragmented and thus many
random input/output operations (I/Os) are needed even for scanning.

5.2 The external memory model and things we already
saw

If we bypass the virtual memory mechanism, we cannot apply the RAM model for analy-
sis anymore since we now have to explicitly handle different levels of memory hierarchy,
while the RAM model uses one large, uniform memory.

Several simple models have been introduced for designing I/O-efficient algorithms
and data structures (also called external memory algorithms and data structures). The
most popular and realistic model is the Parallel Disk Model (PDM) of Vitter and Shriver.
In this model, I/Os are handled explicitly by the application. An I/O operation transfers a
block of B consecutive bytes from/to a disk to amortize the latency. The application tries
to transfer D blocks between the main memory of size M bytes and D independent disks
in one I/O step to improve bandwidth. The input size is N bytes which is (much) larger
than M. The main complexity metrics of an I/O-efficient algorithm in this model are:

• I/O complexity: the number of I/O steps should be minimized (the main metric),

• CPU work complexity: the number of operations executed by the CPU should be
minimized as well.

The PDM model has become the standard theoretical model for designing and analyzing
I/O-efficient algorithms.

There are some “golden rules” that can guide the process of designing I/O efficient
algorithms: Unstructured memory access is often very expensive as it comes with 1 I/O
per operation whereas we want 1/B I/Os for an efficient algorithm. Instead, we want to
scan the external memory, always loading the next due block of size B in one step and
processing it internally. An optimal scan will only cost scan(N) := Θ(N

D·B) I/Os. If
the data is not stored in a way that allows linear scanning, we can often use sorting to
reorder and than scan it. As we saw in chapter 3, external sorting can be implemented
with sort(N) := Θ(N

D·B · logM/B
N
B

) I/Os.
A simple example of this technique is the following task: We want to reorder the

elements in an array A into an array B using a given “rank” stored in array C. This
should be done in an I/O efficient way.

int[1..N] A,B,C;
for i=1 to N do A[i]:=B[C[i]];

59

Disk 1 Disk D

CPU

Memory M

Disk i

B
BB

c

Figure 5.2: Vitter’s I/O model with several independent disks

The literal implementation would have worst case costs of Ω(N) I/Os. For N = 106,
this would take ≈ T = 10000 seconds ≈ 3 hours. Using the sort-and-scan technique, we
can lower this to sort(N) and the algorithm would finish in less than a second:

SCAN C: (C[1]=17,1), (C[2]=5,2), ...
SORT(1st): (C[73]=1,73), (C[12]=2,12), ...
par SCAN : (B[1],73), (B[2],12), ...
SORT(2nd): (B[C[1]],1), (B[C[2]],2), ...

We already saw some I/O efficient algorithms using this model in previous chapters:
Chapter 2 presented an external stack, a large section of chapter 3 dealt with external sort-
ing and in chapter 4 we saw external priority queues. Chapter 8 will present an external
approach to minimal spanning trees. In this chapter, we will see some more algorithms,
study how these algorithms and data structures can be implemented in a convenient way
using an algorithm library and learn about other models of external computation.

5.3 The Stxxl library
The Stxxl library is an algorithm library aimed to speed up the process of implement-
ing I/O-efficient algorithms, abstracting away the details of how I/O is performed. Many
high-performance features are supported: disk parallelism, explicit overlapping of I/O and

60

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

T
X

X
L

S

files, I/O requests, disk queues,

block prefetcher, buffered block writer

completion handlers

Block management (BM) layer
typed block, block manager, buffered streams,

Containers:

STL−user layer
vector, stack, set

priority_queue, map
sort, for_each, merge

Pipelined sorting,
zero−I/O scanning

Streaming layer

Algorithms:

Operating System

Applications

Asynchronous I/O primitives (AIO) layer

Figure 5.3: three layer structure of the Stxxl library

computation, external memory algorithm pipelining to save I/Os, improved utilization of
CPU resources (many of these techniques are introduced in Chapter 3 on external sort-
ing). The high-level algorithms and data structures of our library implement interfaces of
the well known C++ Standard Template Library (STL). This allows to elegantly reuse the
STL code such that it works I/O-efficiently without any change, and to shorten the devel-
opment times for the people who already know STL. Our STL-compatible I/O-efficient
implementations include the following data structures and algorithms: unbounded array
(vector), stacks, queue, deque, priority queue, search tree, sorting, etc. They are all well-
engineered and have robust interfaces allowing a high degree of flexibility. Stxxl is a
layered library consisting of three layers (see Figure 5.3):

The lowest layer, the Asynchronous I/O primitives layer (AIO layer), abstracts away
the details of how asynchronous I/O is performed on a particular operating system. Other
existing external memory algorithm libraries only rely on synchronous I/O APIs or allow
reading ahead sequences stored in a file using the POSIX asynchronous I/O API. These
libraries also rely on uncontrolled operating system I/O caching and buffering in order
to overlap I/O and computation in some way. However, this approach has significant
performance penalties for accesses without locality. Unfortunately, the asynchronous I/O
APIs are very different for different operating systems (e.g. POSIX AIO and Win32
Overlapped I/O). Therefore, we have introduced the AIO layer to make porting Stxxl
easy. Porting the whole library to a different platform requires only reimplementing the
AIO layer using native file access methods and/or native multithreading mechanisms.

The Block Management layer (BM layer) provides a programming interface emulat-
ing the parallel disk model. The BM layer provides an abstraction for a fundamental

61

concept in the external memory algorithm design — a block of elements. The block man-
ager implements block allocation/deallocation, allowing several block-to-disk assignment
strategies: striping, randomized striping, randomized cycling, etc. The block management
layer provides an implementation of parallel disk buffered writing, optimal prefetching
HSV01], and block caching. The implementations are fully asynchronous and designed
to explicitly support overlapping between I/O and computation.

The top of Stxxl consists of two modules. The STL-user layer provides external mem-
ory sorting, external memory stack, external memory priority queue, etc. which have
(almost) the same interfaces (including syntax and semantics) as their STL counterparts.
The Streaming layer provides efficient support for pipelining external memory algorithms.
Many external memory algorithms, implemented using this layer, can save a factor of
2–3 in I/Os. For example, the algorithms for external memory suffix array construction
implemented with this module require only 1/3 of the number of I/Os which must be per-
formed by implementations that use conventional data structures and algorithms (either
from Stxxl STL-user layer, LEDASM, or TPIE). The win is due to an efficient interface
that couples the input and the output of the algorithm–components (scans, sorts, etc.). The
output from an algorithm is directly fed into another algorithm as input, without needing
to store it on the disk in-between. This generic pipelining interface is the first of this kind
for external memory algorithms.

5.4 Time-Forward Processing
This section is based on material from [10].

Time-Forward Processing is an elegant technique for solving problems that can be
expressed as a traversal of a directed acyclic graph (DAG) from its sources to its sinks.
Problems of this type arise mostly in I/O-efficient graph algorithms, even though applica-
tions of this technique for the construction of I/O-efficient data structures are also known.
Formally, the problem that can be solved using time-forward processing is that of eval-
uating a DAG G: Let φ be an assignment of labels φ(v) to the vertices of G. Then the
goal is to compute another labelling ψ of the vertices of G so that for every vertex v ∈ G,
label ψ(v) can be computed from labels φ(v) and ψ(u1), . . . , ψ(uk), where u1, . . . , uk are
the in-neighbors of v.

As an illustration, consider the problem of expression-tree evaluation. For this prob-
lem, the input is a binary tree T whose leaves store real numbers and whose internal
vertices are labelled with one of the four elementary binary operations +,−, ∗, /. The
value of a vertex is defined recursively. For a leaf v, its value val(v) is the real number
stored at v. For an internal vertex v with label ◦ ∈ {+,−, ∗, /}, left child x, and right
child y, val(v) = val(x) ◦ val(y). The goal is to compute the value of the root of T . Cast
in terms of the general DAG evaluation problem defined above, tree T is a DAG whose

62

−

∗/

+

∗

2 324

7 1

2 324

7 1

48

8 6

62

(a) (b)

Figure 5.4: (a) The expression tree for the expression ((4 / 2) + (2 ∗ 3)) ∗ (7− 1). (b) The
same tree with its vertices labelled with their values.

edges are directed from children to parents, labelling φ is the initial assignment of real
numbers to the leaves of T and of operations to the internal vertices of T , and labelling ψ
is the assignment of the values val(v) to all vertices v ∈ T . For every vertex v ∈ T , its
label ψ(v) = val(v) is computed from the labels ψ(x) = val(x) and ψ(y) = val(y) of its
in-neighbors (children) and its own label φ(v) ∈ {+,−, ∗, /}.

In order to be able to evaluate a DAG G I/O-efficiently, two assumptions have to be
satisfied: (1) The vertices of G have to be stored in topologically sorted order. That is,
for every edge (v, w) ∈ G, vertex v precedes vertex w. (2) Label ψ(v) has to be com-
putable from labels φ(v) and ψ(u1), . . . , ψ(uk) inO(sort(k)) I/Os. The second condition
is trivially satisfied if every vertex of G has in-degree no more than M .

Given these two assumptions, time-forward processing visits the vertices ofG in topo-
logically sorted order to compute labelling ψ. Visiting the vertices ofG in this order guar-
antees that for every vertex v ∈ G, its in-neighbors are evaluated before v is evaluated.
Thus, if these in-neighbors “send” their labels ψ(u1), . . . , ψ(uk) to v, v has these labels
and its own label φ(v) at its disposal to compute ψ(v). After computing ψ(v), v sends
its own label ψ(v) “forward in time” to its out-neighbors, which guarantees that these
out-neighbors have ψ(v) at their disposal when it is their turn to be evaluated.

The implementation of this technique due to Arge is simple and elegant. The “send-
ing” of information is realized using a priority queueQ. When a vertex v wants to send its
label ψ(v) to another vertex w, it inserts ψ(v) into priority queueQ and gives it priority w.
When vertex w is evaluated, it removes all entries with priority w from Q. Since every
in-neighbor of w sends its label to w by queuing it with priority w, this provides w with
the required inputs. Moreover, every vertex removes its inputs from the priority queue
before it is evaluated, and all vertices with smaller numbers are evaluated before w. Thus,

63

at the time when w is evaluated, the entries in Q with priority w are those with lowest
priority, so that they can be removed using a sequence of DELETEMIN operations.

Using the buffer tree of Arge to implement priority queue Q, INSERT and
DELETEMIN operations on Q can be performed in O

(
(1/B) · logM/B(|E|/B)

)
I/Os

amortized because priority queue Q never holds more than |E| entries. The total num-
ber of priority queue operations performed by the algorithm is O(|E|), one INSERT and
one DELETEMIN operation per edge. Hence, all updates of priority queue Q can be
processed in O(() sort(|E|) I/Os. The computation of labels ψ(v) from labels φ(v) and
ψ(u1), . . . , ψ(uk), for all vertices v ∈ G, can also be carried out in O(sort(|E|)) I/Os,
using the above assumption that this computation takes O(() sort(k)) I/Os for a single
vertex v. Hence, we obtain the following result.

Theorem 1 Given a DAG G = (V,E) whose vertices are stored in topologically sorted
order, graph G can be evaluated in O(sort(|V |+ |E|)) I/Os, provided that the compu-
tation of the label of every vertex v ∈ G can be carried out in O

(
sort(deg−(v))

)
I/Os,

where deg−(v) is the in-degree of vertex v.

5.5 Cache-oblivious Algorithms
Have a look at table 5.1, whiches gives size and other attributes of different levels in
the memory hierarchy for various systems. How can we write portable code that runs
efficiently on different multilevel caching architectures? Not only is the external memory
model restricted to two levels of memory, for most algorithms we have to explicitly give
values for M and B which are different on every level and system. The cache oblivious
model suggests a solution: We want to design algorithms that are not given M and B and
that nevertheless perform well on every memory hierarchy.

The ideal cache oblivious memory model is a two level memory model. We will
assume that the faster level has sizeM and the slower level always transfersB consecutive
words of data to the faster level. These two levels could represent the memory and the
disk, memory and the cache, or any two consecutive levels of the memory hierarchy. In
this chapter, M and B can be assumed to be the sizes of any two consecutive levels of the
memory hierarchy subject to some assumptions about them (For instance the inclusion
property which we will see soon). We will assume that the processor can access the faster
level of memory which has sizeM . If the processor references something from the second
level of memory, an I/O fault occurs and B words are fetched into the faster level of the
memory. We will refer to a block as the minimum unit that can be present or absent from
a level in the two level memory hierarchy. We will use B to denote the size of a block as
in the external memory model. If the faster level of the memory is full (i.e. M is full), a
block gets evicted to make space.

64

Pentium 4 Pentium III MIPS 10000 AMD Athlon Itanium 2
Clock rate 2400 MHz 800 MHz 175 MHz 1333 MHz 1137 MHz
L1 data cache size 8 KB 16 KB 32 KB 128 KB 32 KB
L1 line size 128 B 32 B 32 B 64 B 64 B
L1 associativity 4-way 4-way 2-way 2-way 4-way
L2 cache size 512 KB 256 KB 1024 KB 256 KB 256 KB
L2 line size 128 B 32 B 32 B 64 B 128 B
L2 associativity 8-way 4-way 2-way 8-way 8-way
TLB entries 128 64 64 40 128
TLB associativity full 4-way 64-way 4-way full
RAM size 512 MB 256 MB 128 MB 512 MB 3072 MB

Table 5.1: some exemplary cache and memory configurations

The ideal cache oblivious memory model enables us to reason about a two level mem-
ory model like the external memory model but prove results about a multi-level memory
model. Compared with the external memory model it seems surprising that without any
memory specific parametrization, or in other words, without specifying the parameters
M,B, an algorithm can be efficient for the whole memory hierarchy, nevertheless it is
possible. The model is built upon some basic assumptions which we enumerate next.
Optimal replacement: The replacement policy refers to the policy chosen to replace a
block when a cache miss occurs and the cache is full. In most hardware, this is imple-
mented as FIFO, LRU or Random. The model assumes that the cache line chosen for
replacement is the one that is accessed furthest in the future. This is known as the optimal
off-line replacement strategy.
Two levels of memory: There are certain assumptions in the model regarding the two
levels of memory chosen. They should follow the inclusion property which says that data
cannot be present at level i unless it is present at level i + 1. Another assumption is that
the size of level i of the memory hierarchy is strictly smaller than level i+ 1.
Full associativity: When a block of data is fetched from the slower level of the memory,
it can reside in any part of the faster level.
Automatic replacement: When a block is to be brought in the faster level of the memory,
it is automatically done by the OS/hardware and the algorithm designer does not have
to care about it while designing the algorithm. Note that we could access single blocks
for reading and writing in the external memory model, which is not allowed in the cache
oblivious model.

We will now examine each of the assumptions individually. First we consider the
optimal replacement policy. The most commonly used replacement policy is LRU (least
recently used). We have the following lemma, whose proof is omitted here:

65

Lemma 2 An algorithm that causesQ∗(n,M,B) cache misses on a problem of size n us-
ing a (M,B)-ideal cache incurs Q(n,M,B) ≤ 2Q∗(n, M

2
, B) cache misses on a (M,B)

cache that uses LRU or FIFO replacement. This is only true for algorithms which follow
a regularity condition.

An algorithm whose cache complexity satisfies the condition Q(n,M,B) ≤
O(Q(n, 2M,B)) is called regular (All algorithms presented in this chapter are regular).
Intuitively, algorithms that slow down by a constant factor when memory (M) is reduced
to half, are called regular. It immediately follows from the above lemma that if an algo-
rithm whose number of cache misses satisfies the regularity condition does Q(n,M,B)
cache misses with optimal replacement then this algorithm would make Θ(Q(n,M,B))
cache misses on a cache with LRU or FIFO replacement.

The automatic replacement and full associativity assumption can be implemented in
software by using LRU implementation based on hashing. It was shown that a fully
associative LRU replacement policy can be implemented in O(1) expected time using
O(M

B
) records of size O(B) in ordinary memory. Note that the above description about

the cache oblivious model proves that any optimal cache oblivious algorithm can also be
optimally implemented in the external memory model.

We now turn our attention to multi-level ideal caches. We assume that all the levels
of this cache hierarchy follow the inclusion property and are managed by an optimal
replacement strategy. Thus on each level, an optimal cache oblivious algorithm will incur
an asymptotically optimal number of cache misses. From Lemma 2, this becomes true for
cache hierarchies maintained by LRU and FIFO replacement strategies.

Apart from not knowing the values of M,B explicitly, some cache oblivious algo-
rithms (for example optimal sorting algorithms) require a tall cache assumption. The tall
cache assumption states that M = Ω(B2) which is usually true in practice. Recently,
compiler support for cache oblivious type algorithms have also been looked into.

In cache oblivious algorithm design some algorithm design techniques are used ubiq-
uitously. One of them is a scan of an array which is laid out in contiguous memory.
Irrespective of B, a scan takes at most 1 + dN

B
e I/Os. The argument is trivial and very

similar to the external memory scan algorithm. The difference is that in the cache oblivi-
ous setting the buffer of sizeB is not explicitly maintained in memory. In the assumptions
of the model, B is the size of the data that is always fetched from level 2 memory to level
1 memory. The scan does not touch the level 2 memory until its ready to evict the last
loaded buffer of size B already in level 1. Hence, the total number of times the scan
algorithm will force the CPU to bring buffers from the level 2 memory to level 1 memory
is upper bounded by 1 + dN

B
e.

Another common approach in the cache oblivious model are divide and conquer al-
gorithms. Why does divide and conquer help in general for cache oblivious algorithms?
Divide and conquer algorithms split the instance of the problem to be solved into several
subproblems such that each of the subproblems can be solved independentally. Since the

66

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

B

BAr,s

C
s,r

Figure 5.5: cache aware matrix transposition using block access

algorithm recurses on the subproblems, at some point of time, the subproblems fit inside
M and subsequent recursion, fits the subproblems into B.

5.5.1 Matrix Transposition
We will see the recursive approach in our first example, dealing with matrix transposition.
We will first give an algorithm using the external memory model that requires the
knowledge of M and B. We than have the opportunity to compare both implementations
(cache aware and oblivious) experimentically.

The naive matrix transposition algorithm:

for (i=0; i<N; i++)
for (j=0; j<N; j++)

C[j][i] = A[i][j];

accessing the source matrix A in a row major fashion will have I/O costs of Θ(N) for
writing the target matrix C, leading to total of Θ(N2) I/Os. But if M and B are known,
we can switch from row major access to block access: Partition A and C into blocks of
size r × s with r, s = Θ(

√
M). Apply the naive algorithm to N/r ×N/s matrices (their

elements are s × s sub-matrices). This requires O((N/s)3 · s2/B) = O(N3/(s · B)) =
O(N3/(B ·

√
M)) I/Os, which is optimal.

The oblivious approach works by partitioning the matrix in two blocks A1 and A2,
transposing them recursively and writing the results in the appropriate blocks in the result
matrix C.

Here is the C code for cache oblivious matrix transposition. The following code takes
as input a submatrix given by (x, y) − (x + delx, y + dely) in the input matrix I and

67

A =
(
A1 A2

)
C =

(
C1
C2

)
CO_Transpose(A,C)
{

CO_Transpose(A1,C1);
CO_Transpose(A2,C2);

}

Figure 5.6: pseudo code for cache oblivious matrix transposition

void transpose(int x, int delx, int y, int dely,
ElementType I[N][P], ElementType O[P][N]) {

if((delx == 1) \&\& (dely == 1)) {
O[y][x] = I[x][y];
return;

}
if(delx >= dely){

int xmid = delx / 2;
transpose(x,xmid,y,dely,I,O);
transpose(x+xmid,delx-xmid,y,dely,I,O);
return;

}
// Similarly cut from ymid into two subproblems
...

}

Figure 5.7: C code for cache oblivious matrix transposition

transposes it to the output matrix O. ElementType1 can be any element type , for
instance long.

The code works by divide and conquer, dividing the bigger side of the matrix in the
middle and recursing. It is short, easy to understand and contains no tuning parameters
that have to be tweaked for every new setup. The algorithm is always I/O efficient:

Let the input be a matrix of N × P size. There are three cases:

1In all our experiments, ElementType was set to long.

68

log2N Naive CA CO
10 0.21 0.10 0.08
11 0.86 0.49 0.45
12 3.37 1.63 2.16
13 13.56 6.38 6.69

log2N Naive CA CO
10 0.14 0.12 0.09
11 0.87 0.42 0.47
12 3.36 1.46 2.03
13 13.46 5.74 6.86

Table 5.2: Running time of naive, cache aware (CA) and cache oblivious (CO) matrix
transposition for B = 32 and B = 128

Case I: max{N,P} ≤ αB In this case,

Q(N,P) ≤ NP

B
+O(1)

Case II: N ≤ αB < P In this case,

Q(N,P) ≤

{
O(1 +N) if αB

2
≤ P ≤ αB

2Q(N,P/2) +O(1) N ≤ αB < P

Case III: P ≤ αB < N Analogous to Case II.
Case IV: min{N,P} ≥ αB

Q(N,P) ≤

O(N + P + NP

B
) if αB

2
≤ N,P ≤ αB

2Q(N,P/2) +O(1) P ≥ N

2Q(N/2, P) +O(1) N ≥ P

The above recurrence solves to Q(N,P) = O(1 + NP
B

).

There is a simpler way to visualize the above mess. Once the recursion makes the
matrix small enough such that max(N,P) ≤ αB ≤ β

√
M (here β is a suitable constant),

or such that the submatrix (or the block) we need to transpose fits in memory, the number
of I/O faults is equal to the scan of the elements in the submatrix. A packing argument of
these not so small submatrices (blocks) in the large input matrix shows that we do not do
too many I/O faults compared to a linear scan of all the elements.

Table 5.2 shows the result of an experiment performed on a 300 MHz UltraSPARC-II
with 2 MB L2 cache, 16 KB L1 cache, page size 8 KB and 64 TLB entries. The (tuned)
cache aware implementation is slightly slower than the cache oblivious one, but both
outperform the naive implementation.

5.5.2 Searching Using Van Emde Boas Layout
In this section we report a method to speed up simple binary searches on a balanced
binary tree. This method could be used to optimize or speed up any kind of search on

69

Figure 5.8: memory layout of cache oblivious search trees

Figure 5.9: BFS structre of cache oblivious search trees

a tree as long as the tree is static and balanced. It is easy to code, uses the fact that
the memory consists of a cache hierarchy, and could be exploited to speed up tree based
search structures on most current machines. Experimental results show that this method
could speed up searches by a factor of 5 or more in certain cases!

It turns out that a balanced binary tree has a very simple layout that is cache-oblivious.
By layout here, we mean the mapping of the nodes of a binary tree to the indices of an
array where the nodes are actually stored. The nodes should be stored in the bottom array
in the order shown for searches to be fast and use the cache hierarchy.

Given a complete binary tree, we describe a mapping from the nodes of the tree to
positions of an array in memory. Suppose the tree has N items and has height h =
logN + 1. Split the tree in the middle, at height h/2. This breaks the tree into a top
recursive subtree of height bh/2c and several bottom subtrees B1, B2, ..., Bk of height
dh/2e. There are

√
N bottom recursive subtrees, each of size

√
N . The top subtree

occupies the top part in the array of allocated nodes, and then the Bi’s are laid out. Every
subtree is recursively laid out.

Another way to see the algorithm is to run a breadth first search on the top node of

70

the tree and run it till
√
N nodes are in the BFS, see Fig. 5.9. The figure shows the run

of the algorithm for the first BFS when the tree size is
√
N . Then the tree consists of the

part that is covered by the BFS and trees hanging out. BFS can now be recursively run
on each tree, including the covered part. Note that in the second level of recursion, the
tree size is

√
N and the BFS will cover only N

1
4 nodes since the same algorithm is run on

each subtree of
√
N . The main idea behind the algorithm is to store recursive sub-trees in

contiguous blocks of memory.
Lets now try to analyze the number of cache misses when a search is performed. We

can conceptually stop the recursion at the level of detail where the size of the subtrees has
size ≤ B. Since these subtrees are stored contiguously, they at most fit in two blocks. (A
block can not span three blocks of memory when stored). The height of these subtrees is
logB. A search path from root to leaf crosses O

(
logN
logB

)
= O(logB N) subtrees. So the

total number of cache misses is bounded by O(logB N).
We did a very simple experiment to see how in real life, this kind of layout would help.

A vector was sorted and a binary search tree was built on it. A query vector was generated
with random numbers and searched on this BST which was laid out in pre-order. Why
we chose pre-order compared to random layout was because most people code a BST in
either pre/post/in-order compared to randomly laying it (Which incidentally is very bad
for cache health). Once this query was done, we laid the BST using Van Emde Boas
Layout and gave it the same query vector. The experiment reported in Fig. 5.10 were
done on a Itanium dual processor system with 2GB RAM. (Only one processor was being
used)

5.5.3 Funnel sorting
Funnel sorting is a cache oblivious sorting strategy. We will describe a simplifcation
called lazy funnelsort, which was introduced by Brodal and Fagerberg [18]. Funnelsort,
in turn, is a sort of lazy mergesort. This algorithm will be our first application of the
tall-cache assumption (see 5.5. For simplicity, we assume that M = Ω(B2). The same
results can be obtained whenM = Ω(B1+γ) by increasing the constant 3; refer to [18] for
details. Interestingly, optimal cache-oblivious sorting is not achievable without the tall-
cache assumption. The heart of the funnelsort algorithm is a static data structure which
we call a funnel. For now, we treat a K-Funnel as a black box that merges K sorted lists
of total size K3 using O

(
K3

B
logM/B

K3

B
+K

)
memory transfers. The space occupied by

a K-Funnel is Θ(K2).
Once we have such a fast merging procedure, we can sort using a K-way mergesort.

How should we choose K? The larger the K, the faster the algorithm, because we cannot
predict the optimal (M/B) multiplicity of the merge. This property suggests choosing
K = N , in which case the entire sorting algorithm is in the merge. In fact, however, a

71

Figure 5.10: Comparison of Van Emde Boas searches with pre-order searches on a bal-
anced binary tree. Similar to the last experiment, this experiment was performed on a
Itanium with 48 byte node size.

K-Funnel is fast only if it is fed at least K3 elements. Also, a K-Funnel occupies Θ(K2)
space, and we want a linear-space algorithm. Thus, we choose K = N1/3.
Now the sorting algorithm proceeds as follows:

1. Split the array into K = N1/3 contiguous segments each of size N/K = N2/3.

2. Recursively sort each segment.

3. Apply the K-Funnel to merge the sorted segments.

Memory transfers are made just in Steps 2 and 3, leading to the recurrence:
T (N) = N1/3T (N2/3) +O

(
N
B

logM/B N/B +N1/3
)

72

����'����������8����
�������������	�����
2/3k

R

k 2

3

2k

2k

3k
k

L

1L

2L

�������������������������	���B����

4'�!������������������1��!�������
)���������'���������	�����2

2/3k

Figure 5.11: Example of a funnel merger

The base case is T (O(B2)) = O(B) because the tall-cache assumption says that M ≥
B2. Above the base case, N = Ω(B2), so B =

√
N , and the N/B log . . . cost dominates

the N1/3 cost.
The recursion tree has N/B2 leaves, each costing O

(
B logM/B B +B1/3

)
= O(B)

memory transfers, for a total leaf cost of O(N/B). The root divide-and-merge cost is
O
(
N
B

logM/B N/B
)
, which dominates the recurrence. Thus, modulo the details of the

funnel, we have proved the following theorem:

Theorem 3 Assuming M = Ω(B2), funnelsort sorts N comparable elements in
O
(
N
B

logM/B N/B
)

memory transfers.

It can also be shown that the number of comparisons is O(N logN); see [18] for details.
Now, how do K-Funnels look like? Our goal is to develop a K-Funnel which merges

K sorted lists of total size K3 usingO
(
K3

B
logM/B

K3

B
+K

)
memory transfers and Ω(K2)

space.
A K-Funnel is a complete binary tree with K leaves, stored according to the van

Emde Boas layout we saw in 5.5.2. Thus, each of the recursive subtrees of a K-Funnel is
a
√
K-funnel. In addition to the nodes, edges in a K-Funnel store buffers; see figure 5.11.

The edges at the middle level of a K-Funnel, partitioning the funnel into two recursive√
K-subfunnels, have size K3/2 each, for a total buffer size of K2 at that level. Buffers

within the subfunnels are recursively smaller. We store these buffers of size K3/2 in the

73

recursive layout alongside the recursive pK-subfunnels within the K-Funnel. The buffers
can be stored in an arbitrary order along with the recursive subtrees.

For consistency in describing the algorithms, we view a K-Funnel as having an ad-
ditional buffer of size K3 along the edge connecting the root of the tree to its imaginary
parent. To maintain the lemma above that the storage isO(K2), this buffer is not actually
stored; rather, it can be viewed as the output mechanism. The algorithm to fill this buffer
above the root node, thereby merging the entire input, is a simple recursion. We merge
the elements in the buffers along the left and right children edges of the node, as long as
those two buffers remain nonempty. (Initially, all buffers are empty.) Whenever either of
the buffers be- comes empty, we recursively fill it. At the bottom of the tree, a leaf buffer
(a buffer immediately below a leaf) corresponds to one of the input lists.

For the analysis on K-Funnels, we refer to [18].

5.5.4 Is the Model an Oversimplification?
In theory, both the cache oblivious and the external memory models are nice to work with,
because of their simplicity. A lot of the work done in the external memory model has been
turned into practical results as well. Before one makes his hand “dirty” with implementing
an algorithm in the cache oblivious or the external memory model, one should be aware of
practical things that might become detrimental to the speed of the code but are not caught
in the theoretical setup.

Here we list a few practical glitches that are shared by both the cache oblivious and
the external memory model. The ones that are not shared are marked2 accordingly. A
reader that wants to use these models to design practical algorithms and especially one
who wants to write code, should keep these issues in mind. Code written and algorithms
designed keeping the following things in mind, could be a lot faster than just directly
coding an algorithm that is optimal in either the cache oblivious or the external memory
model.
TLBo: TLBs are caches on page tables, are usually small with 128-256 entries and are
like just any other cache. They can be implemented as fully associative. The model does
not take into account the fact that TLBs are not tall.
Concurrency: The model does not talk about I/O and CPU concurrency, which automat-
ically looses it a 2x factor in terms of constants. The need for speed might drive future
uniprocessor systems to diversify and look for alternative solutions in terms of concur-
rency on a single chip, for instance the hyper-threading3 introduced by Intel in its latest
Xeons is a glaring example. On these kind of systems and other multiprocessor systems,

2A superscript ’o’ means this issue only applies to the cache oblivious model.
3One physical processor Intel Xeon MP forms two logical processors which share CPU computational

resources The software sees two CPUs and can distribute work load between them as a normal dual proces-
sor system.

74

coherence misses might become an issue. This is hard to capture in the cache oblivious
model and for most algorithms that have been devised in this model already, concurrency
is still an open problem. A parallel cache oblivious model would be really welcome for
practitioners who would like to apply cache oblivious algorithms to multiprocessor sys-
tems.
Associativityo: The assumption of the fully associative cache is not so nice. In reality
caches are either direct mapped or k-way associative (typically k = 2, 4, 8). If two ob-
jects map to the same location in the cache and are referenced in temporal proximity, the
accesses will become costlier than they are assumed in the model (also known as cache
interference problem). Also, k−way set associative caches are implemented by using
more comparators.
Instruction/Unified Caches: Rarely executed, special case code disrupts locality. Loops
with few iterations that call other routines make loop locality hard to exploit and plenty
of loopless code hampers temporal locality. Issues related to instruction caches are not
modeled in the cache oblivious model. Unified caches (e.g. the latest Intel Itanium chips
L2 and L3 caches) are used in some machines where instruction and data caches are
merged(e.g. Intel PIII, Itaniums). These are another challenge to handle in the model.
Replacement Policyo: Current operating systems do not page more than 4GB of memory
because of address space limitations. That means one would have to use legacy code on
these systems for paging. This problem makes portability of cache oblivious code for big
problems a myth! In the experiments reported in this chapter, we could not do external
memory experimentation because the OS did not allow us to allocate array sizes of more
than a GB or so. One can overcome this problem by writing one’s own paging system
over the OS to do experimentation of cache oblivious algorithms on huge data sizes. But
then its not so clear if writing a paging system is easier or handling disks explicitly in an
application. This problem does not exist on 64-bit operating systems and should go away
with time.
Multiple Diskso: For “most” applications where data is huge and external memory al-
gorithms are required, using Multiple disks is an option to increase I/O efficiency. As of
now, the cache oblivious model does not take into account the existence of multiple disks
in a system.
Write-through cacheso: L1 caches in many new CPUs is write through, i.e. it transmits
a written value to L2 cache immediately. Write through caches are simpler to manage
and can always discard cache data without any bookkeeping (Read misses can not result
in writes). With write through caches (e.g. DECStation 3100, Intel Itanium), one can no
longer argue that there are no misses once the problem size fits into cache! Victim Caches
implemented in HP and Alpha machines are caches that are implemented as small buffers
to reduce the effect of conflicts in set-associative caches. These also should be kept in
mind when designing code for these machines.
Complicated Algorithmso and Asymptotics: For non-trivial problems the algorithms

75

can become quite complicated and impractical, a glaring instance of which is sorting.
The speed by which different levels of memory differ in data transfer are constants! For
instance the speed difference between L1 and L2 caches on a typical Intel pentium can
be around 10. Using an O() notation for an algorithm that is trying to beat a constant
of 10, and sometimes not even talking about those constants while designing algorithms
can show up in practice). For instance there are “constants” involved in simulating a fully
associative cache on a k-way associative cache. Not using I/O concurrently with CPU can
make an algorithm loose another constant. Can one really afford to hide these constants
in the design of a cache oblivious algorithm in real code?

Despite these limitations the model does perform very well for some applications, but
might be outperformed by more coding effort combined with cache aware algorithms.
Here’s an intercept from an experimental paper by Chatterjee and Sen:

Our major conclusion are as follows: Limited associativity in the mapping
from main memory addresses to cache sets can significantly degrade run-
ning time; the limited number of TLB entries can easily lead to thrashing;
the fanciest optimal algorithms are not competitive on real machines even at
fairly large problem sizes unless cache miss penalties are quite high; low level
performance tuning “hacks”, such as register tiling and array alignment, can
significantly distort the effect of improved algorithms, ...

5.6 External BFS
The material of this section was taken from [12].

5.6.1 Introduction
Large graphs arise naturally in many applications and very often we need to traverse these
graphs for solving optimization problems. Breadth first search (BFS) is a fundamental
graph traversal strategy. It decomposes the input graph G = (V,E) of n nodes and m
edges into at most n levels where level i comprises all nodes that can be reached from a
designated source s via a path of i edges, but cannot be reached using less than i edges.
Typical real-world applications of BFS on large graphs (and some of its generalizations
like shortest paths or A∗) include crawling and analyzing the WWW, route planning using
small navigation devices with flash memory cards and state space exploration.

BFS is well-understood in the RAM model. There exists a simple linear time algo-
rithm (hereafter refered as IM BFS) for the BFS traversal in a graph. IM BFS keeps a
set of appropriate candidate nodes for the next vertex to be visited in a FIFO queue Q.
Furthermore, in order to find out the unvisited neighbours of a node from its adjacency
list, it marks the nodes as either visited or unvisited. Unfortunately, even when half of the

76

N(b)

N(c)

L(t−2) L(t−1) L(t)

b

c e

d f

s a

a
c
d

a
b
d
e

a
c
d

b

e

a

d

e

d

e

− dupl.N(L(t−1)) − L(t−1) − L(t−2)

Figure 5.12: A phase in the BFS algorithm of Munagala and Ranade. Level L(t) is
composed out of the disjoint neighbor vertices of level L(t− 1) excluding those vertices
already existing in either L(t− 2) or L(t− 1).

graph fits in the main memory, the running time of this algorithm deviates significantly
from the predicted RAM performance (hours as compared to minutes) and for massive
graphs, such approaches are simply non-viable. As discussed before, the main cause for
such a poor performance of this algorithm on massive graphs is the number of I/Os it in-
curs. Remembering visited nodes needs Θ(m) I/Os in the worst case and the unstructured
indexed access to adjacency lists may result in Θ(n) I/Os.

5.6.2 Algorithm of Munagala and Ranade
We turn to the basic BFS algorithm of Munagala and Ranade [14], MR BFS for short.

Let L(t) denote the set of nodes in BFS level t, and let |L(t)| be the number of nodes
in L(t). MR BFS builds L(t) as follows: let A(t) := N(L(t − 1)) be the multi-set of
neighbor vertices of nodes in L(t−1); N(L(t−1)) is created by |L(t−1)| accesses to the
adjacency lists, one for each node in L(t− 1). Since the graph is stored in adjacency-list
representation, this takesO (|L(t− 1)|+ |N(L(t− 1))|/B) I/Os. Then the algorithm re-
moves duplicates from the multi-set A. This can be done by sorting A(t) according to the
node indices, followed by a scan and compaction phase; hence, the duplicate elimination
takes O(sort(|A(t)|) I/Os. The resulting set A′(t) is still sorted.

Now the algorithm computes L(t) := A′(t)\{L(t−1)∪L(t−2)}. Fig. 5.12 provides
an example. Filtering out the nodes already contained in the sorted listsL(t−1) orL(t−2)
is possible by parallel scanning. Therefore, this step can be done using

O
(

sort
(
|N(L(t− 1))|

)
+ scan

(
|L(t− 1)|+ |L(t− 2)|

))
I/Os.

Since
∑

t |N(L(t))| = O(|E|) and
∑

t |L(t)| = O(|V |), the whole execution of
MR BFS requires O(|V |+ sort(|E|)) I/Os.

The correctness of this BFS algorithm crucially depends on the fact that the input
graph is undirected. Assume that the levels L(0), . . . , L(t − 1) have already been com-
puted correctly. We consider a neighbor v of a node u ∈ L(t − 1): the distance from s

77

to v is at least t − 2 because otherwise the distance of u would be less than t − 1. Thus
v ∈ L(t − 2) ∪ L(t − 1) ∪ L(t) and hence it is correct to assign precisely the nodes in
A′(t) \ {L(t− 1) ∪ L(t− 2)} to L(t).

Theorem 4 BFS on arbitrary undirected graphs can be solved using
O(|V |+ sort(|V |+ |E|)) I/Os.

5.6.3 An Improved BFS Algorithm with sublinear I/O
The MM BFS algorithm of Mehlhorn and Meyer [15] refines the approach of Munagala
and Ranade [14]. It trades-off unstructured I/Os with increasing the number of iterations
in which an edge may be involved. MM BFS operates in two phases: in a first phase
it preprocesses the graph and in a second phase it performs BFS using the information
gathered in the first phase. We first sketch a variant with a randomized preprocessing.
Then we outline a deterministic version.

The Randomized Partitioning Phase

The preprocessing step partitions the graph into disjoint connected subgraphs Si, 0 ≤ i ≤
K, with small expected diameter. It also partitions the adjacency lists accordingly, i.e.,
it constructs an external file F = F0F1 . . .Fi . . .FK−1 where Fi contains the adjacency
lists of all nodes in Si. The partition is built by choosing master nodes independently and
uniformly at random with probability µ = min{1,

√
(|V |+ |E|)/(B · |V |)} and running

a local BFS from all master nodes “in parallel” (for technical reasons, the source node s
is made the master node of S0): in each round, each master node si tries to capture all
unvisited neighbors of its current sub-graph Si; this is done by first sorting the nodes of the
active fringes of all Si (the nodes that have been captured in the previous round) and then
scanning the dynamically shrinking adjacency-lists representation of the yet unexplored
graph. If several master nodes want to include a certain node v into their partitions then
an arbitrary master node among them succeeds. The selection can be done by sorting and
scanning the created set of neighbor nodes.

The expected number of master nodes is K := O(1+µ ·n) and the expected shortest-
path distance (number of edges) between any two nodes of a subgraph is at most 2/µ.
Hence, the expected total amount of data being scanned from the adjacency-lists repre-
sentation during the “parallel partition growing” is bounded by

X := O(
∑
v∈V

1/µ · (1 + degree(v))) = O((|V |+ |E|)/µ).

The total number of fringe nodes and neighbor nodes sorted and scanned during the par-
titioning is at most Y := O(|V |+ |E|). Therefore, the partitioning requires

O(scan(X) + sort(Y)) = O(scan(|V |+ |E|)/µ+ sort(|V |+ |E|))

78

expected I/Os.
After the partitioning phase each node knows the (index of the) subgraph to which it

belongs. With a constant number of sort and scan operations MM BFS can reorganize
the adjacency lists into the formatF0F1 . . .Fi . . .F|S|−1, whereFi contains the adjacency
lists of the nodes in partition Si; an entry (v, w,S(w), fS(w)) from the adjacency list of
v ∈ Fi stands for the edge (v, w) and provides the additional information that w belongs
to subgraph S(w) whose subfile FS(w) starts at position fS(w) within F . The edge entries
of each Fi are lexicographically sorted. In total, F occupies O((|V |+ |E|)/B) blocks of
external storage.

The BFS Phase

In the second phase the algorithm performs BFS as described by Munagala and Ranade
(Section 5.6.2) with one crucial difference: MM BFS maintains an external fileH (= hot
adjacency lists); it comprises unused parts of subfiles Fi that contain a node in the current
level L(t− 1). MM BFS initializesH with F0. Thus, initially,H contains the adjacency
list of the root node s of level L(0). The nodes of each created BFS level will also carry
identifiers for the subfiles Fi of their respective subgraphs Si.

When creating level L(t) based on L(t − 1) and L(t − 2), MM BFS does not ac-
cess single adjacency lists like MR BFS does. Instead, it performs a parallel scan of
the sorted lists L(t − 1) and H and extracts N(L(t − 1)); In order to maintain the in-
variant that H contains the adjacency lists of all vertices on the current level, the sub-
files Fi of nodes whose adjacency lists are not yet included in H will be merged with
H. This can be done by first sorting the respective subfiles and then merging the sorted
set with H using one scan. Each subfile Fi is added to H at most once. After an ad-
jacency list was copied to H, it will be used only for O(1/µ) expected steps; after-
wards it can be discarded from H. Thus, the expected total data volume for scanning
H is O(1/µ · (|V | + |E|)), and the expected total number of I/Os to handle H and Fi
is O (µ · |V |+ sort(|V |+ |E|) + 1/µ · scan(|V |+ |E|)). The final result follows with
µ = min{1,

√
scan(|V |+ |E|)/|V |}.

Theorem 5 ([15]) External memory BFS on undirected graphs can be solved using
O
(√
|V | · scan(|V |+ |E|) + sort(|V |+ |E|)

)
expected I/Os.

The Deterministic Variant

In order to obtain the result of Theorem 5 in the worst case, too, it is sufficient to modify
the preprocessing phase as follows: instead of growing subgraphs around randomly se-
lected master nodes, the deterministic variant extracts the subfiles Fi from an Euler Tour
around a spanning tree for the connected component Cs that contains the source node s.

79

2/µ
s

1 8 1 5

1 8 5

0 4 2 4

0 4 2

7 4 0 6

7 6

01 3 1 6

3

0

4 6

1

8 3

2 7

5

Figure 5.13: Using an Euler tour around a spanning tree of the input graph in order to
obtain a partition for the deterministic BFS algorithm.

Observe that Cs can be obtained with the deterministic connected-components algorithm
of [14] using
O((1 + log log(B · |V |/|E|)) · sort(|V |+ |E|)) =
O(
√
|V | · scan(|V |+ |E|) + sort(|V |+ |E|)) I/Os. The same number of I/Os suffices to

compute a (minimum) spanning tree Ts for Cs [20].
After Ts has been built, the preprocessing constructs an Euler tour around Ts using a

constant number of sort- and scan-steps [16]. Then the tour is broken at the root node s;
the elements of the resulting list can be stored in consecutive order using the deterministic
list ranking algorithm of [16]. This takesO(sort(|V |)) I/Os. Subsequently, the Euler tour
can be cut into pieces of size 2/µ in a single scan. These Euler tour pieces account for
subgraphs Si with the property that the distance between any two nodes of Si in G is at
most 2/µ − 1. See Fig. 5.13 for an example. Observe that a node v of degree d may be
part of Θ(d) different subgraphs Si. However, with a constant number of sorting steps it
is possible to remove multiple node appearances and make sure that each node of Cs is
part of exactly one subgraph Si. Eventually, the reduced subgraphs Si are used to create
the reordered adjacency-list files Fi; this is done as in the randomized preprocessing and
takes another O(sort(|V | + |E|)) I/Os. Note that the reduced subgraphs Si may not be
connected any more; however, this does not matter as our approach only requires that any
two nodes in a subgraph are relatively close in the original input graph.

The BFS-phase of the algorithm remains unchanged; the modified preprocessing,
however, guarantees that each adjacency-list will be part of the external setH for at most
2/µ BFS levels: if a subfile Fi is merged with H for BFS level L(t), then the BFS level
of any node v in Si is at most L(t) + 2/µ− 1. Therefore, the adjacency list of v in Fi will
be kept inH for at most 2/µ BFS levels.

Theorem 6 ([15]) External memory BFS on undirected graphs can be solved using
O
(√
|V | · scan(|V |+ |E|) + sort(|V |+ |E|)

)
I/Os in the worst case.

80

5.6.4 Improvements in the previous implementat-
ions of MR BFS and MM BFS R

The computation of each level of MR BFS involves sorting and scanning of neighbours
of the nodes in the previous level. Even if there are very few elements to be sorted, there is
a certain overhead associated with initializing the external sorters. In particular, while the
Stxxl stream sorter (with the flag DStxxl SMALL INPUT PSORT OPT) does not incur
an I/O for sorting less than B elements, it still requires to allocate some memory and does
some computation for initialization. This overhead accumulates over all levels and for
large diameter graphs, it dominates the running time. This problem is also inherited by
the BFS phase of MM BFS4. Since in the pipelined implementation of [17], we do not
know in advance the exact number of elements to be sorted, we can’t switch between the
external and the internal sorter so easily. In order to get around this problem, we first
buffer the first B elements and initialize the external sorter only when the buffer is full.
Otherwise, we sort it internally.

In addition to this, we make the graph representation for MR BFS more compact.
Except the source and the destination node pair, no other information is stored with the
edges.

Designing MM BFS D

Graph class n m Long clusters Random clusters
Grid(214 × 214) 228 229 51 28

Table 5.3: Time taken (in hours) by the BFS phase of MM BFS D with long and random
clustering

As for list ranking, we found Sibeyn’s algorithm (we talk about in 5.9) promising as
it has low constant factors in its I/O complexity. Sibeyn’s implementation relies on the
operating system for I/Os and does not guarantee that the top blocks of all the stacks re-
main in the internal memory, which is a necessary assumption for the asymptotic analysis
of the algorithm. Besides, its reliance on internal arrays and swap space puts a restriction
on the size of the lists it can rank. The deeper integration of the algorithm in the Stxxl
framework, using the Stxxl stacks and vectors in particular, made it possible to obtain a
scalable solution, which could handle graph instances of the size we require while keeping
the theoretical worst case bounds.

4We use MM BFS R to refer to the randomized variant and MM BFS D for the deterministic variant of
MM BFS

81

Figure 5.14: Schema depicting the implementation of our heuristic

To summarize, our Stxxl based implementation of MM BFS D uses our adaptation
of Sibeyn’s algorithm for list ranking the Euler tour around the minimum spanning tree
computed by EM MST. The Euler tour is then chopped into sets of

√
B consecutive nodes

which after duplicate removal gives the requisite graph partitioning. The BFS phase re-
mains similar to MM BFS R.
Quality of the spanning tree The quality of the spanning tree computed can have a
significant impact on the clustering and the disk layout of the adjacency list after the
deterministic preprocessing, and consequently on the BFS phase. For instance, in the
case of grid graph, a spanning tree containing a list with elements in a snake-like row
major order produces long and narrow clusters, while a “random” spanning tree is likely
to result in clusters with low diameters. Such a “random” spanning tree can be attained
by assigning random weights to the edges of the graph and then computing a minimum
spanning tree or by randomly permuting the indices of the nodes. The nodes in the long
and narrow clusters tend to stay longer in the pool and therefore, their adjacency lists
are scanned more often. This causes the pool to grow external and results in larger I/O
volume. On the other hand, low diameter clusters are evicted from the pool sooner and are
scanned less often reducing the I/O volume of the BFS phase. Consequently as Table 5.3
shows, the BFS phase of MM BFS D takes only 28 hours with clusters produced by
“random” spanning tree, while it takes 51 hours with long and narrow clusters.

5.6.5 A Heuristic for maintaining the pool
As noted above, the asymptotic improvement and the performance gain in MM BFS over
MR BFS is obtained by decomposing the graph into low diameter clusters and maintain-
ing an efficiently accessible pool of adjacency lists which will be required in the next few
levels. Whenever the first node of a cluster is visited during the BFS, the remaining nodes

82

of this cluster will be reached soon after and hence, this cluster is loaded into the pool. For
computing the neighbours of the nodes in the current level, we just need to scan the pool
and not the entire graph. Efficient management of this pool is thus, crucial for the perfor-
mance of MM BFS. In this section, we propose a heuristic for efficient management of
the pool, while keeping the worst case I/O bounds of MM BFS.

For many large diameter graphs, the pool fits into the internal memory most of the
time. However, even if the number of edges in the pool is not so large, scanning all the
edges in the pool for each level can be computationally quite expensive. Hence, we keep
a portion of the pool that fits in the internal memory as a multi-map hash table. Given
a node as a key, it returns all the nodes adjacent to the current node. Thus, to get the
neighbours of a set of nodes we just query the hash function for those nodes and delete
them from the hash table. For loading the cluster, we just insert all the adjacency lists of
the cluster in the hash table, unless the hash table has already O(M) elements.

Recall that after the deterministic preprocessing, the elements are stored on the disk in
the order in which they appear on the Euler tour around a spanning tree of the input graph.
The Euler tour is then chopped into clusters with

√
B elements (before the duplicate

removal) ensuring that the maximum distance between any two nodes in the cluster is at
most

√
B − 1. However, the fact that the contiguous elements on the disk are also closer

in terms of BFS levels is not restricted to intra-cluster adjacency lists. The adjacency
lists that come alongside the requisite cluster will also be required soon and by caching
these other adjacency lists, we can save the I/Os in the future. This caching is particularly
beneficial when the pool fits in the internal memory. Note that we still load the

√
B

node clusters in the pool, but keep the remaining elements of the block in the pool-cache.
For the line graphs, this means that we load the

√
B nodes in the internal pool, while

keeping the remaining O(B) adjacency lists which we get in the same block, in the pool-
cache, thereby reducing the I/O complexity for the BFS traversal on line graphs to the
computation of a spanning tree.

We represent the adjacency lists of nodes in the graph as a Stxxl vector. Stxxl al-
ready provides a fully associative vector-cache with every vector. Before doing an I/O for
loading a block of elements from the vector, it first checks if the block is already there
in the vector-cache. If so, it avoids the I/O loading the elements from the cache instead.
Increasing the vector-cache size of the adjacency list vector with a layout computed by
the deterministic preprocessing and choosing the replacement policy to be LRU provides
us with an implementation of the pool-cache. Figure 5.14 depicts the implementation of
our heuristic.

83

5.7 Maximal Independent Set
In this section we describe a simple technique proposed in [21] that can be used to make
internal memory graph algorithms of a sufficiently simple structure I/O-efficient. For this
technique to be applicable, the algorithm has to compute a labelling of the vertices of the
graph, and it has to do so in a particular way. We call a vertex labelling algorithm A
single-pass if it computes the desired labelling λ of the vertices of the graph by visiting
every vertex exactly once and assigns label λ(v) to v during this visit. We call A local
if label λ(v) can be computed in O(sort(k)) I/Os from labels λ(u1), . . . , λ(uk), where
u1, . . . , uk are the neighbors of v whose labels are computed before λ(v). Finally, al-
gorithm A is presortable if there is an algorithm that takes O(sort(|V |+ |E|)) I/Os to
compute an order of the vertices of the graph so thatA produces a correct result if it visits
the vertices of the graph in this order. The technique we describe here is applicable if
algorithm A is presortable, local, and single-pass.

So letA be a presortable local single-pass vertex-labelling algorithm computing some
labelling λ of the vertices of a graph G = (V,E). In order to make algorithm A I/O-
efficient, the two main problems are to determine an order in which algorithm A should
visit the vertices of G and devise a mechanism that provides every vertex v with the
labels of its previously visited neighbors u1, . . . , uk. Since algorithm A is presortable,
there exists an algorithm A′ that takes O(sort(|V |+ |E|)) I/Os to compute an order of
the vertices of G so that algorithm A produces the correct result if it visits the vertices
of G in this order. Assume w.l.o.g. that this ordering of the vertices of G is expressed as a
numbering. We use algorithm A′ to number the vertices of G and then derive a DAG G′

from G by directing every edge of G from the vertex with smaller number to the vertex
with larger number. DAGG′ has the property that for every vertex v, the in-neighbors of v
in G′ are exactly those neighbors of v that are labelled before v. Hence, labelling λ can be
computed using time-forward processing. In particular, by the locality ofA, the label λ(v)
of every vertex can be computed in O(sort(k)) I/Os from the labels λ(u1), . . . , λ(uk) of
its in-neighbors u1, . . . , uk in G′, which is a simplified version of the condition for the
applicability of time-forward processing. This leads to the following result.

Theorem 7 [21] Every graph problemP that can be solved by a presortable local single-
pass vertex labelling algorithm can be solved in O(sort(|V |+ |E|)) I/Os.

An important observation to be made is that in this application of time-forward pro-
cessing, the restriction that the vertices of the DAG to be evaluated have to be given in
topologically sorted order does not pose a problem because the directions of the edges are
chosen only after fixing an order of the vertices that is to be the topological order.

In order to compute a maximal independent set S of a graph G = (V,E) in internal
memory, the following simple algorithm can be used: Process the vertices in an arbitrary
order. When a vertex v ∈ V is visited, add it to S if none of its neighbors is in S.

84

Translated into a labelling problem, the goal is to compute the characteristic function
χS : V → {0, 1} of S, where χS(v) = 1 if v ∈ S, and χS(v) = 0 if v 6∈ S. Also note
that if S is initially empty, then any neighbor w of v that is visited after v cannot be in S
at the time when v is visited, so that it is sufficient for v to inspect all its neighbors that
are visited before v to decide whether or not v should be added to S. The result of these
modifications is a vertex-labelling algorithm that is presortable (since the order in which
the vertices are visited is unimportant), local (since only previously visited neighbors
of v are inspected to decide whether v should be added to S, and a single scan of labels
χS(u1), . . . , χS(uk) suffices to do so), and single-pass. This leads to the following result.

Theorem 8 Given an undirected graphG = (V,E), a maximal independent set of G can
be found in O(sort(|V |+ |E|)) I/Os and linear space.

5.8 Euler Tours
An Euler tour of a tree T = (V,E) is a traversal of T that traverses every edge exactly
twice, once in each direction. Such a traversal is useful, as it produces a linear list of
vertices or edges that captures the structure of the tree. Hence, it allows standard parallel
or external memory algorithms to be applied to this list, in order to solve problems on
tree T that can be expressed as some function to be evaluated over the Euler tour.

Formally, the tour is represented as a linked list L whose elements are the edges in the
set {(v, w), (w, v) : {v, w} ∈ E} and so that for any two consecutive edges e1 and e2, the
target of e1 is the source of e2. In order to define an Euler tour, choose a circular order of
the edges incident to each vertex of T . Let {v, w1}, . . . , {v, wk} be the edges incident to
vertex v. Then let succ((wi, v)) = (v, wi+1), for 1 ≤ i < k, and succ((wk, v)) = (v, w1).
The result is a circular linked list of the edges in T . Now an Euler tour of T starting at
some vertex r and returning to that vertex can be obtained by choosing an edge (v, r) with
succ((v, r)) = (r, w), setting succ((v, r)) = null, and choosing (r, w) as the first edge of
the traversal.

List L can be computed from the edge set of T in O(sort(N)) I/Os: First scan set E
to replace every edge {v, w} with two directed edges (v, w) and (w, v). Then sort the
resulting set of directed edges by their target vertices. This stores the incoming edges of
every vertex consecutively. Hence, a scan of the sorted edge list now suffices to compute
the successor of every edge in L.

Theorem 9 An Euler tour L of a tree with N vertices can be computed in
O(sort(N)) I/Os.

Given an unrooted (and undirected) tree T , choosing one vertex of T as the root de-
fines a direction on the edges of T by requiring that every edge be directed from the

85

parent to the child. The process of rooting tree T is that of computing these directions
explicitly for all edges of T . To do this, we construct an Euler tour starting at an edge
(r, v) and compute the rank of every edge in the list. For every pair of opposite edges
(u, v) and (v, u), we call the edge with the lower rank a forward edge, and the other a
back edge. Now it suffices to observe that for any vertex x 6= r in T , edge (parent(x), x)
is traversed before edge (x, parent(x)) by any Euler tour starting at r. Hence, for ev-
ery pair of adjacent vertices x and parent(x), edge (parent(x), x) is a forward edge, and
edge (x, parent(x)) is a back edge. That is, the set of forward edges is the desired set of
edges directed from parents to children. Constructing and ranking an Euler tour starting
at the root r takesO(sort(N)) I/Os. Given the ranks of all edges, the set of forward edges
can be extracted by sorting all edges in L so that for any two adjacent vertices v and w,
edges (v, w) and (w, v) are stored consecutively and then scanning this sorted edge list to
discard the edge with higher rank from each of these edge pairs. Hence, a tree T can be
rooted in O(sort(N)) I/Os.

Instead of discarding back edges, it may be useful to keep them, but tag every edge of
the Euler tour L as either a forward or back edge. Using this information, well-known la-
bellings of the vertices of T can be computed by ranking list L after assigning appropriate
weights to the edges of L. For example, consider the weighted ranks of the edges in L af-
ter assigning weight one to every forward edge and weight zero to every back edge. Then
the preorder number of every vertex v 6= r in T is one more than the weighted rank of
the forward edge with target v; the preorder number of the root r is always one. The size
of the subtree rooted at v is one more than the difference between the weighted ranks of
the back edge with source v and the forward edge with target v. To compute a postorder
numbering, we assign weight zero to every forward edge and weight one to every back
edge. Then the postorder number of every vertex v 6= r is the weighted rank of the back
edge with source v. The postorder number of the root r is always N .

After labelling every edge in L as a forward or back edge, the appropriate weights for
computing the above labellings can be assigned in a single scan of list L. The weighted
ranks can then be computed inO(sort(N)) I/Os, by 10. Extracting preorder and postorder
numbers from these ranks takes a single scan of list L again. To extract the sizes of the
subtrees rooted at the vertices of T , we sort the edges in L so that opposite edges with
the same endpoints are stored consecutively. Then a single scan of this sorted edge list
suffices to compute the size of the subtree rooted at every vertex v. Hence, all these labels
can be computed in O(sort(N)) I/Os for a tree with N vertices.

5.9 List Ranking
List ranking and the Euler tour technique (5.8) are two techniques that have been applied
successfully in the design of PRAM algorithms for labelling problems on lists and rooted

86

(a)

(b)

Figure 5.15: Example input and output for the list ranking task

trees and problems that can be reduced efficiently to one of these problems. Given the
similarity of the issues to be addressed in parallel and external memory algorithms, it is
not surprising that the same two techniques can be applied in I/O-efficient algorithms as
well.

Let L be a linked list, i.e., a collection of vertices x1, . . . , xN such that each vertex xi,
except the tail of the list, stores a pointer succ(xi) to its successor in L, no two vertices
have the same successor, and every vertex can reach the tail of L by following successor
pointers. Given a pointer to the head of the list (i.e., the vertex that no other vertex in the
list points to), the list ranking problem is that of computing for every vertex xi of list L,
its distance from the head of L, i.e., the number of edges on the path from the head of L
to xi.

In internal memory this problem can easily be solved in linear time using the following
algorithm: Starting at the head of the list, follow successor pointers and number the
vertices of the list from 0 to N − 1 in the order they are visited. Often we use the term
“list ranking” to denote the following generalization of the list ranking problem, which
is solvable in linear time using a straightforward generalization of the above algorithm:
Given a function λ : {x1, . . . , xN} → X assigning labels to the vertices of list L and
a multiplication ⊗ : X × X → X defined over X , compute a label φ(xi) for each
vertex xi of L such that φ

(
xσ(1)

)
= λ

(
xσ(1)

)
and φ

(
xσ(i)

)
= φ

(
xσ(i−1)

)
⊗ λ

(
xσ(i)

)
, for

1 < i ≤ N , where σ : [1, N]→ [1, N] is a permutation so that xσ(1) is the head of L and
succ

(
xσ(i)

)
= xσ(i+1), for 1 ≤ i < N .

Unfortunately the simple internal memory algorithm is not I/O-efficient: Since we
have no control over the physical order of the vertices of L on disk, an adversary can
easily arrange the vertices of L in a manner that forces the internal memory algorithm

87

to perform one I/O per visited vertex, so that the algorithm performs Ω(N) I/Os in total.
On the other hand, the lower bound for list ranking shown in [16] is only Ω(perm(N)).
Next we sketch a list ranking algorithm proposed in [16] that takes O(sort(N)) I/Os and
thereby closes the gap between the lower and the upper bound.

We make the simplifying assumption that multiplication over X is associative. If this
is not the case, we determine the distance of every vertex from the head of L, sort the
vertices of L by increasing distances, and then compute the prefix product using the inter-
nal memory algorithm. After arranging the vertices by increasing distances from the head
of L, the internal memory algorithm takesO(scan(N)) I/Os. Hence, the whole procedure
still takes O(sort(N)) I/Os, and the associativity assumption is not a restriction.

Given that multiplication over X is associative, the algorithm of [16] uses graph
contraction to rank list L as follows: First an independent set I of L is found so that
|I| = Ω(N). Then the elements in I are removed from L. That is, for every element
x ∈ I with predecessor y and successor z in L, the successor pointer of y is updated
to succ(y) = z. The label of x is multiplied with the label of z, and the result is assigned
to z as its new label in the compressed list. It is not hard to see that the weighted ranks of
the elements in L − I remain the same after adjusting the labels in this manner. Hence,
their ranks can be computed by applying the list ranking algorithm recursively to the com-
pressed list. Once the ranks of all elements in L− I are known, the ranks of the elements
in I are computed by multiplying their labels with the ranks of their predecessors in L.

If the algorithm excluding the recursive invocation on the compressed list takes
O(sort(N)) I/Os, the total I/O-complexity of the algorithm is given by the recurrence
I(N) = I(cN) + O(sort(N)), for some constant 0 < c < 1. The solution of this re-
currence is O(sort(N)). Hence, we have to argue that every step, except the recursive
invocation, can be carried out in O(sort(N)) I/Os.

Given independent set I , it suffices to sort the vertices in I by their successors and the
vertices in L−I by their own IDs, and then scan the resulting two sorted lists to update the
weights of the successors of all elements in I . The successor pointers of the predecessors
of all elements in I can be updated in the same manner. In particular, it suffices to sort the
vertices in L− I by their successors and the vertices in I by their own IDs, and then scan
the two sorted lists to copy the successor pointer from each vertex in I to its predecessor.
Thus, the construction of the compressed list takes O(sort(N)) I/Os, once set I is given.

Theorem 10 A list of length N can be ranked in O(sort(N)) I/Os.

List ranking alone is of very limited use. However, combined with the Euler tour
technique, it becomes a very powerful tool for solving problems on trees that can be
expressed as functions over a traversal of the tree or problems on general graphs that
can be expressed in terms of a traversal of a spanning tree of the graph. An important
application is the rooting of an undirected tree T , which is the process of directing all
edges of T from parents to children after choosing one vertex of T as the root. Given a

88

rooted tree T (i.e., one where all edges are directed from parents to children), the Euler
tour technique and list ranking can be used to compute a preorder or postorder numbering
of the vertices of T , or the sizes of the subtrees rooted at the vertices of T . Such labellings
are used in many classical graph algorithms, so that the ability to compute them is a first
step towards solving more complicated graph problems.

89

Chapter 6

van Emde Boas Trees

The original description of this search tree was published in [22], the implementation
study can be found in [23].

6.1 From theory to practice
Sorted lists with an auxiliary data structure that support the following operations on a
sorted sequence s:

build: Build the data structure from a set of elements

insert: Insert an element

remove: Delete an element specified by a key or by a reference to that element.

locate: Given a key k, find the smallest element e in s such that e ≥ k. If such an element
does not exist, return an indication of this fact, i.e., a handle to a dummy element
with key∞.

range query: Return alle elements in s with key in a specified range [k, k′].

Sorted sequences are one of the most versatile data structures. In current algorithm li-
braries, they are implemented using comparison based data structures such as ab-trees,
red-black trees, splay trees, or skip lists. These implementations support insertion, dele-
tion, and search in time O(log n) and range queries in time O(k + log n) where n is the
number of elements and k is the size of the output. For w bit integer keys, a theoretically
attractive alternative are van Emde Boas stratified trees (vEB-trees) that replace the log n
by a logw: A vEB tree T for storing subsets M of w = 2k+1 bit integers stores the set
directly if |M | = 1. Otherwise it contains a root (hash) table r such that r[i] points to a
vEB tree Ti for 2k bit integers. Ti represents the set Mi = {x mod 22k

: x ∈ M ∧ x �

90

2k = i}.1 Furthermore, T stores minM , maxM , and a top data structure t consisting of
a 2k bit vEB tree storing the setMt =

{
x� 2k : x ∈M

}
. This data structure takes space

O(|M | logw) and can be modified to consume only linear space. It can also be combined
with a doubly linked sorted list to support fast successor and predecessor queries.

However, for a long time there was no known implementation of vEB-trees that could
compete with comparison based data structures used in algorithm libraries. The following
describes a specialized and highly tuned version of vEB-trees for storing 32-bit integers
that can often outperform the classic data structures in terms of runtime.

Figure 6.1 outlines the transformation from a general vEB-tree to our specialized ver-
sion. The starting point were vEB search trees as described above but we arrive at a
nonrecursive data structure: We get a three level search tree. The root is represented by
an array of size 216 and the lower levels use hash tables of size up to 256. Due to this
small size, hash functions can be implemented by table lookup. Locating entries in these
tables is achieved using hierarchies of bit patterns.

The main operation we are interested in is locate(y). locate returns min(x ∈
M : y ≤ x). Note that for plain lookup, a hash table would be faster than every data
structure discussed here.

[todo: example figure with detailed explanation] ⇐=

6.2 Implementation
Root Table

The root-table r contains a plain array with one entry for each possible value of the 16
most significant bits of the keys. r[i] = null if there is no x ∈ M with x[16..31] = i. If
|Mi| = 1, it contains a pointer to the element list item corresponding to the unique element
of Mi. Otherwise, r[i] points to an L2-table containing Mi = {x ∈M : x[16..31] = i}.
The two latter cases can be distinguished using a flag stored in the least significant bit of
the pointer.2 Note that the root-table only uses 256kB memory and therefore easily fits
into the cache.

L2-table

An L2-table ri stores the elements in Mi. If |Mi| ≥ 2 it uses a hash table storing an entry
with key j if ∃x ∈Mi : x[8..15] = j.

Let Mij = {x ∈M : x[8..15] = j, x[16..31] = i}. If |Mij| = 1 the hash table entry
points to the element list and if |Mij| ≥ 2 it points to an L3-table representing Mij using

1We use the C-like shift operator ‘�’, i.e., x� i =
⌊
x/2i

⌋
.

2This is portable without further measures because all modern systems use addresses that are multiples
of four (except for strings).

91

(a) The abstract definition (b) Efficient inner-level lookup
structures

(c) Removed recursion (d) Replace large hash table with an
array

(e) Allow range queries

Figure 6.1: Evolution of the vEB data structure

92

a similar trick as in the root-table.

L3-table

An L3-table rij stores the elements in Mij . If |Mij| ≥ 2, it uses a hash table storing an
entry with key k if ∃x ∈Mij : x[0..7] = k. This entry points to an item in the element list
storing the element with x[0..7] = k, x[8..15] = j, x[16..31] = i.

Auxiliary data structures

To locate an element x in the data structure we first lookup i = x[16 . . . 31] in the
root-table. If r[i] 6= null and y ≤ maxMi, we can proceed to the next level of the
tree3. Otherwise, we have to find the subtree Mr with r = min {k : k ≥ i ∧Mk 6= null }
(If no such j exists, we return ∞). To do this efficiently, we need some additional data
structures. For every level L of the tree, we have some top data structures: t1 and t2 for
every level, t3 only for root level. We explain that concept for the root level. To find r,
we first use t1, which is a bit table containing a flag for every possible subtree of the root
table, indicating if Mi 6= null . Via i div n we find the machine word a (of length n) in
which i is located and check if it contains r by setting bits ≤ i to zero and checking for
the most significant bit4. Only if a = 0 we have to inspect another word. To do that, we
jump to t2 in which every entry is an logical or over 32 bits in t1. Analogously to t1 we
try to find the first nonnull word right of a. Again, we check only the word containing i
and switch to t3 (every entry is logical or over 32 bits in t2) if unsuccessful. t3 is 64 bit
small and can be searched efficiently.

If we need to access L2 (when the located subtree contains more than one element),
we calculate j = x[8..15]. j is our key for an hash table to locate the entry corresponding
to x in L2. Repeat the procedure described above and possibly inspect L3 in the same
manner. Figure 6.2 gives pseudo code for locate.

Our hash tables use open addressing with linear probing. The table size is always a
power of two between 4 and 2565. The size is doubled when a table of size k contains
more than 3k/4 entries and k < 256. The table shrinks when it contains less than k/4
entries. Since all keys are between 0 and 255, we can afford to implement the hash
function as a full lookup table h that is shared between all tables. This lookup table is

3We have to store the maximum of every subtree to do this efficiently
4Finding the position of the most significant bit can be implemented in constant time by converting the

number to floating point and then inspecting the exponent. In our implementation, two 16-bit table lookups
turn out to be somewhat faster.

5Note that this is much smaller than for the original definition as we removed the large hash table from
the top layer

93

// return handle of minx ∈M : y ≤ x
Function locate(y : N) : ElementHandle

if y > maxM then return∞ // no larger element
i := y[16..31] // index into root table r
if r[i] = null ∨y > maxMi then return minMt1.locate(i)

if Mi = {x} then return x // single element case
j := y[8..15] // key for L2 hash table at Mi

if ri[j] = null ∨y > maxMij then return minMi,t1i .locate(j)

if Mij = {x} then return x // single element case
return rij[t1ij.locate(y[0..7])] // L3 Hash table access

//find the smallest j ≥ i such that tk[j] = 1
Method locate(i) for a bit array tk consisting of n bit words

//n = 32 for t1, t2, t1i , t
1
ij; n = 64 for t3; n = 8 for t2i , t

2
ij

//Assertion: some bit in tk to the right of i is nonzero
j := i div n // which n bit word in b contains bit i?
a := tk[nj..nj + n− 1] // get this word
set a[(i mod n) + 1..n− 1] to zero // erase the bits to the left of bit i
if a = 0 then // nothing here→ look in higher level bit array

j := tk+1.locate(j) // tk+1 stores the or of n-bit groups of tk

a := tk[nj..nj + n− 1] // get the corresponding word in tk

return nj + msbPos(a)

Figure 6.2: Pseudo code for locating the smallest x ∈M with y ≤ x.

initialized to a random permutation h : 0..255→ 0..255. Hash function values for a table
of size 256/2i are obtained by shifting h[x] i bits to the right. Note that for tables of size
256 we obtain a perfect hash function, i.e., there are no collisions between different table
entries.

The worst case for all input sizes is if there are pairs of elements that only differ in the
8 least significant bits and differ from all other elements in the 16 most significant bits. In
this case, hash tables and top data structures at levels two and three are allocated for each
such pair of elements. This example shows that the faster locate comes at the price of
potentially larger memory overhead.

94

 100

 1000

 256 1024 4096 16384 65536 218 220 222 223

T
im

e
fo

r
lo

ca
te

 [n
s]

n

orig-STree
LEDA-STree

STL map
(2,16)-tree

STree

Figure 6.3: Locating randomly distributed keys

6.3 Experiments
We now compare several implementations of search tree like data structures. As compar-
ison based data structures we use the STL std::map which is based on red-black trees
and ab tree from LEDA which is based on (a, b)-trees with a = 2, b = 16 which fared
best in a previous comparison of search tree data structures in LEDA.

The implementations run under Linux on a 2GHz Intel Xeon processor with 512
KByte of L2-cache using an Intel E7500 Chip set. The machine has 1GByte of RAM
and no swap space to exclude swapping effects. We use the g++ 2.95.4 compiler with
optimization level -O6. We report the average execution time per operation in nanosec-
onds on an otherwise unloaded machine. The average is taken over at least 100 000
executions of the operation. Elements are 32 bit unsigned integers plus a 32 bit integer as
associated information.

Figure 6.3 shows the time for the locate operation for random 32 bit integers and
independently drawn random 32 bit queries for locate. Already the comparison based

95

 100

 1000

 64 256 1024 4096 16384 216 218 220 222 223

T
im

e
fo

r
lo

ca
te

 [n
s]

n

STL map (hard)
(2,16)-tree (hard)

STree (hard)
STree (random)

Figure 6.4: Locating on a hard instance

96

data structures show some interesting effects. For small n, when the data structures fit
in cache, red-black trees outperform (2, 16)-trees indicating that red-black trees execute
less instructions. For larger n, this picture changes dramatically, presumably because
(2, 16)-trees are more cache efficient.

Our vEB tree (called STree here) is fastest over the entire range of inputs. For small n,
it is much faster than comparison based structures up to a factor of 4.1. For random inputs
of this size, locate mostly accesses the root-top data structure which fits in cache and
hence is very fast. It even gets faster with increasing n because then locate rarely has
to go to the second or even third level t2 and t3 of the root-top data structure. For medium
size inputs there is a range of steep increase of execution time because the L2 and L3 data
structures get used more heavily and the memory consumption quickly exceeds the cache
size. But the speedup over (2, 16)-trees is always at least 1.5. For large n the advantage
over comparison based data structures is growing again reaching a factor of 2.9 for the
largest inputs.

Figures 6.3 shows the result for an attempt to obtain close to worst case in-
puts for our vEB tree. For a given set size |M | = n, we store Mhard =
{28i∆, 28i∆ + 255 : i = 0..n/2− 1} where ∆ = b225/nc. Mhard maximizes space con-
sumption of our implementation. Furthermore, locate queries of the form 28j∆ + 128 for
random j ∈ 0..n/2− 1 force the vEB tree to go through the root table, the L2-table, both
levels of the L3-top data structure, and the L3-table. As to be expected, the comparison
based implementations are not affected by this change of input. For n ≤ 218, the vEB tree
is now slower than its comparison based competitors. However, for large n we still have
a similar speedup as for random inputs.

97

Chapter 7

Shortest Path Search

The overview of classical algorithms was taken from [30]. The section on highway
hierarchies is mainly based on material from [31] and [32]. The material on transit
node routing was taken from [33] and the section on dynamic highway routing is
from [34]. More and newer material can be found on Dominik Schultes’ website:
http://algo2.iti.uni-karlsruhe.de/schultes/hwy/.

Some material from this chapter (especially on Highway Hierarchies) was not covered
during the lecture in 2007. For self-containment, we include these paragraphs for further
studies. In the following chapter, these supplemental sections are marked with an asterisk:
*.

7.1 Introduction
Computing shortest paths in graphs (networks) with nonnegative edge weights is a classi-
cal problem of computer science. From a worst case perspective, the problem has largely
been solved by Dijkstra in 1959 who gave an algorithm that finds all shortest paths from
a starting node s using at most m + n priority queue operations for a graph G = (V,E)
with n nodes and m edges.

However, motivated by important applications (e.g., in transportation networks), there
has recently been considerable interest in the problem of accelerating shortest path
queries, i.e., the problem to find a shortest path between a source node s and a target
node t. In this case, Dijkstra’s algorithm can stop as soon as the shortest path to t is
found.

A classical technique that gives a constant factor speedup is bidirectional search which
simultaneously searches forward from s and backwards from t until the search frontiers
meet. All further speedup techniques either need additional information (e.g., geometry
information for goal directed search) or precomputation. There is a trade-off between the

98

time needed for precomputation, the space needed for storing the precomputed informa-
tion, and the resulting query time.

In particular, from now on we focus on shortest paths in large road networks where
we use ‘shortest’ as a synomym for ‘fastest’. The graphs used for North America or
Western Europe already have around 20 000 000 nodes so that significantly superlinear
preprocessing time or even slightly superlinear space is prohibitive. To our best knowl-
edge, all commercial applications currently only compute paths heuristically that are not
always shortest possible. The basic idea of these heuristics is the observation that shortest
paths “usually” use small roads only locally, i.e., at the beginning and at the end of a
path. Hence the heuristic algorithm only performs some kind of local search from s and t
and then switches to search in a highway network that is much smaller than the complete
graph. Typically, an edge is put into the highway network if the information supplied on
its road type indicates that it represents an important road.

7.2 “Classical” and other Results
The following section gives a short review of older speedup techniques.

Dijkstra’s Algorithm
The classical algorithm for route planning—maintains an array of tentative distances
D[u] ≥ d(s, u) for each node. The algorithm visits (or settles) the nodes of the road
network in the order of their distance to the source node and maintains the invariant that
D[u] = d(s, u) for visited nodes. We call the rank of node u in this order its Dijkstra
rank rs(u) = r. When a node u is visited, its outgoing edges (u, v) are relaxed, i.e., D[v]
is set to min(D[v], d(s, u) + w(u, v)). Dijkstra’s algorithm terminates when the target
node is visited. The size of the search space is O(n) and n/2 (nodes) on the average.
We will assess the quality of route planning algorithms by looking at their speedup com-
pared to Dijkstra’s algorithm, i.e., how many times faster they can compute shortest-path
distances.

Priority Queues.
Dijkstra’s algorithm can be implemented using O(n) priority queue operations. In the
comparison based model this leads to O(n log n) execution time. In other models of
computation and on the average, better bounds exist. However, in practice the impact of
priority queues on performance for large road networks is rather limited since cache faults
for accessing the graph are usually the main bottleneck. In addition, our experiments indi-
cate that the impact of priority queue implementations diminishes with advanced speedup

99

techniques since these techniques at the same time introduce additional overheads and
dramatically reduce the queue sizes.

Bidirectional Search
Bidirectional Search executes Dijkstra’s algorithm simultaneously forward from the
source and backwards from the target. Once some node has been visited from both direc-
tions, the shortest path can be derived from the information already gathered. In a road
network, where search spaces will take a roughly circular shape, we can expect a speedup
around two —one disk with radius d(s, t) has twice the area of two disks with half the ra-
dius. Bidirectional search is important since it can be combined with most other speedup
techniques and, more importantly, because it is a necessary ingredient of the most efficient
advanced techniques.

Geometric Goal Directed Search (A∗)
The intuition behind goal directed search is that shortest paths ‘should’ lead in the general
direction of the target. A∗ search achieves this by modifying the weight of edge (u, v) to
w(u, v) − π(u) + π(v) where π(v) is a lower bound on d(v, t). Note that this manipu-
lation shortens edges that lead towards the target. Since the added and subtracted vertex
potentials π(v) cancel along any path, this modification of edge weights preserves short-
est paths. Moreover, as long as all edge weights remain nonnegative, Dijkstra’s algorithm
can still be used. The classical way to use A∗ for route planning in road maps estimates
d(v, t) based on the Euclidean distance between v and t and the average speed of the
fastest road anywhere in the network. Since this is a very conservative estimation, the
speedup for finding quickest routes is rather small.

Heuristics
In the last decades, commercial navigation systems were developed which had to handle
ever more detailed descriptions of road networks on rather low-powered processors. Ven-
dors resolved to heuristics still used today that do not give any performance guarantees:
useA∗ search with estimates on d(u, t) rather than lower bounds; do not look at ‘unimpor-
tant’ streets, unless you are close to the source or target. The latter heuristic needs careful
hand tuning of road classifications to produce reasonable results but yields considerable
speedups.

100

Small Separators
Road networks are almost planar, i.e., most edges intersect only at nodes. Hence, tech-
niques developed for planar graphs will often also work for road networks. Using
O(n log2 n) space and preprocessing time, query time O(

√
n log n) can be achieved for

directed planar graphs without negative cycles. Queries accurate within a factor (1 + ε)
can be answered in near constant time usingO((n log n)/ε) space and preprocessing time.
Most of these theoretical approaches look difficult to use in practice since they are com-
plicated and need superlinear space.

The first published practical approach to fast route planning uses a set of nodes V1

whose removal partitions the graph G = G0 into small components. Now consider the
overlay graph G1 = (V1, E1) where edges in E1 are shortcuts corresponding to shortest
paths in G that do not contain nodes from V1 in their interior. Routing can now be re-
stricted to G1 and the components containing s and t respectively. This process can be
iterated yielding a multi-level method. A limitation of this approach is that the graphs at
higher levels become much more dense than the input graphs thus limiting the benefits
gained from the hierarchy. Also, computing small separators and shortcuts can become
quite costly for large graphs.

Reach-Based Routing
Let R(v) := maxs,t∈V Rst(v) denote the reach of node v where Rst(v) :=
min(d(s, v), d(v, t)). Gutman [35] observed that a shortest-path search can be stopped
at nodes with a reach too small to get to source or target from there. Variants of reach-
based routing work with the reach of edges or characterize reach in terms of geometric
distance rather than shortest-path distance. The first implementation had disappointing
speedups and preprocessing times that would be prohibitive for large networks.

Edge Labels
The idea behind edge labels is to precompute information for an edge e that specifies
a set of nodes M(e) with the property that M(e) is a superset of all nodes that lie on
a shortest path starting with e. In an s–t query, an edge e need not be relaxed if t 6∈
M(e). In [26], M(e) is specified by an angular range. More effective is information
that can distinguish between long range and short range edges. In [27] many geometric
containers are evaluated. Very good performance is observed for axis parallel rectangles.
A disadvantage of geometric containers is that they require a complete all-pairs shortest-
path computation. Faster precomputation is possible by partitioning the graph into k
regions that have similar size and only a small number of boundary nodes. Now M(e) is
represented as a k-vector of edge flags [29, 28] where flag i indicates whether there is a

101

shortest path containing e that leads to a node in region i. Edge flags can be computed
using a single-source shortest-path computation from all boundary nodes of the regions.

Landmark A∗

Using the triangle inequality, quite strong bounds on shortest-path distances can be ob-
tained by precomputing distances to a set of around 20 landmark nodes that are well
distributed over the far ends of the network [24]. Using reasonable space and much less
preprocessing time than for edge labels, these lower bounds yield considerable speedup
for route planning.

Precomputed Cluster Distances (PCD)
In [25], we give a different way to use precomputed distances for goal-directed search. We
partition the network into clusters and then precompute the shortest connection between
any pair of clusters U and V , i.e., minu∈U,v∈V d(u, v). PCDs cannot be used together with
A∗ search since reduced edge weights can become negative. However, PCDs yield upper
and lower bounds for distances that can be used to prune search. This gives speedup
comparable to landmark-A∗ using less space.

7.3 Highway Hierarchy

7.3.1 Introduction
Our first approach is based on the idea to compute exact shortest paths by defining the
notion of local search and highway network appropriately. This is very simple. We define
local search to be a search that visits theH closest nodes from s (or t) whereH is a tuning
parameter. This definition already fixes the highway network. An edge (u, v) ∈ E should
be a highway edge if there are nodes s and t such that (u, v) is on the shortest path from s
to t, v is not within the H closest nodes from s, and u is not within the H closest nodes
from t.

So far, the highway network still contains all the nodes of the original network. How-
ever, we can prune it significantly: Isolated nodes are not needed. Trees attached to a
biconnected component can only be traversed at the beginning and end of a path. Simi-
larly, paths consisting of nodes with degree two can be replaced by a single edge1. The
result is a contracted highway network that only contains nodes of degree at least three.
We can iterate the above approach, define local search on the highway network, find a

1note that this list of possible contractions was only used in an early version of the algorithm but still
gives a good idea where contraction might be useful.

102

“superhighway network”, contract it, . . . We arrive at a multi-level highway network — a
highway hierarchy.

The next section formalizes some of these ideas.

7.3.2 Hierarchies and Contraction
Graphs and Paths. We expect a directed graph G = (V,E) with n nodes and m
edges (u, v) with nonnegative weights w(u, v) as input. We assume w.l.o.g. that there
are no self-loops, parallel edges, and zero weight edges in the input—they could be dealt
with easily in a preprocessing step. The length w(P) of a path P is the sum of the weights
of the edges that belong to P . P ∗ = 〈s, . . . , t〉 is a shortest path if there is no path P ′

from s to t such that w(P ′) < w(P ∗). The distance d(s, t) between s and t is the length
of a shortest path from s to t. If P = 〈s, . . . , s′, u1, u2, . . . , uk, t

′, . . . , t〉 is a path from s
to t, then P |s′→t′ = 〈s′, u1, u2, . . . , uk, t

′〉 denotes the subpath of P from s′ to t′.

Dijkstra’s Algorithm. Dijkstra’s algorithm can be used to solve the single source short-
est path (SSSP) problem, i.e., to compute the shortest paths from a single source node s to
all other nodes in a given graph. It is covered by virtually any textbook on algorithms, so
that we confine ourselves to introducing our terminology: Starting with the source node
s as root, Dijkstra’s algorithm grows a shortest path tree that contains shortest paths from
s to all other nodes. During this process, each node of the graph is either unreached,
reached, or settled. A node that already belongs to the tree is settled. If a node u is set-
tled, a shortest path P ∗ from s to u has been found and the distance d(s, u) = w(P ∗) is
known. A node that is adjacent to a settled node is reached. Note that a settled node is
also reached. If a node u is reached, a path P from s to u, which might not be the shortest
one, has been found and a tentative distance δ(u) = w(P) is known. Nodes that are not
reached are unreached.

A bidirectional version of Dijkstra’s algorithm can be used to find a shortest path
from a given node s to a given node t. Two Dijkstra searches are executed in parallel: one
searches from the source node s in the original graph G = (V,E), also called forward
graph and denoted as

−→
G = (V,

−→
E); another searches from the target node t backwards,

i.e., it searches in the reverse graph
←−
G = (V,

←−
E),
←−
E := {(v, u) | (u, v) ∈ E}. The

reverse graph
←−
G is also called backward graph. When both search scopes meet, a shortest

path from s to t has been found.
A highway hierarchy of a graph G consists of several levels G0, G1, G2, . . . , GL,

where the number of levels L+ 1 is given. We provide an inductive definition:

• Base case (G′0, G0): level 0 (G0 = (V0, E0)) corresponds to the original graph G;
furthermore, we define G′0 := G0.

103

• First step (G′` → G`+1, 0 ≤ ` < L): for given neighbourhood radii, we will define
the highway network G`+1 of a graph G′`.

• Second step (G` → G′`, 1 ≤ ` ≤ L): for a given set B` ⊆ V` of bypassable nodes,
we will define the core G′` of level ` (This is the contraction step).

First step (highway network). For each node u, we choose a nonnegative neighbour-
hood radius r→` (u) for the forward graph and a radius r←` (u) ≥ 0 for the backward graph.
To avoid some case distinctions, for any direction �∈ {→,←}, we set the neighbour-
hood radius r�

` (u) to infinity for u 6∈ V ′` and for ` = L.
The level-` neighbourhood of a node u ∈ V ′` is N→` (u) :=

{v ∈ V ′` | d`(u, v) ≤ r→` (u)} with respect to the forward graph and, analogously,
N←` (u) := {v ∈ V ′` | d←` (u, v) ≤ r←` (u)} with respect to the backward graph, where
d`(u, v) denotes the distance from u to v in the forward graphG` and d←` (u, v) := d`(v, u)

in the backward graph
←−
G`.

The highway network G`+1 = (V`+1, E`+1) of a graph G′` is the subgraph of G′` in-
duced by the edge set E`+1: an edge (u, v) ∈ E ′` belongs to E`+1 iff there are nodes
s, t ∈ V ′` such that the edge (u, v) appears in some shortest path 〈s, . . . , u, v, . . . , t〉 from
s to t in G′` with the property that v 6∈ N→` (s) and u 6∈ N←` (t).

The definition of the highway network suggests that we need an all pairs shortest
path search to find all its edges, which would be very time-consuming. Fortunately, it
is possible to design an efficient algorithm that performs only ‘local search’ from each
node. The main idea is that it is not necessary to look at node pairs s, t that are very
far apart: Suppose that (u, v) ∈ E1 is witnessed by source and target nodes s and t. If
d(s, u)� r→` (s) and d(v, t)� r←` (t), then we may expect that there are other witnesses
s′ and t′ that are much closer to the edge (u, v).

For each node s0 ∈ V , we compute and store the values r→` (s0) and r←` (s0). This can
be easily done by a Dijkstra search from each node s0 that is aborted as soon as H nodes
have been settled. Then, we start with an empty set of highway edges E1. For each node
s0, two phases are performed: the forward construction of a partial shortest path tree B
and the backward evaluation of B. The construction is done by a single source shortest
path (SSSP) search from s0; during the evaluation phase, paths from the leaves of B to
the root s0 are traversed and for each edge on these paths, it is decided whether to add it
to E1 or not. The crucial part is the specification of an abort criterion for the SSSP search
in order to restrict it to a ‘local search’.

Phase 1: Construction of a Partial Shortest Path Tree* A Dijkstra search from s0 is
executed. During the search, a reached node is either in the state active or passive. The
source node s0 is active; each node that is reached for the first time (insert) and each
reached node that is updated (decreaseKey) adopts the activation state from its (tentative)
parent in the shortest path tree B. When a node p is settled using the path 〈s0, s1, . . . , p〉,

104

Figure 7.1: Instead of a complete all-to-all shortest path search, we can identify all high-
way edges by a local search for each node, visiting only its close neighbors.

N(p)

N(s1)

s0 s1 p

Figure 7.2: The abort criterion for finding highway edges ensures local search.

105

then p’s state is set to passive if |N(s1) ∩ N(p)| ≤ 1. When no active unsettled node is
left, the search is aborted and the growth of B stops.

Phase 2: Selection of the Highway Edges* During Phase 2, all edges (u, v) are added
to E1 that lie on paths 〈s0, . . . , u, v, . . . , t0〉 in B with the property that v 6∈ N(s0) and
u 6∈ N(t0), where t0 is a leaf of B. This can be done in time O(|B|).

Speeding Up Construction* An active node v is declared to be a maverick if d(s0, v) >
f · dH(s0), where f is a parameter. Normally, the search cannot be aborted before the
search radius reaches d(s0, v) because we have to proof that we found the shortest path.
Now, when all active nodes are mavericks, the search from passive nodes is no longer
continued. This way, the construction process is accelerated and E1 becomes a superset
of the highway network. Hence, queries will be slower, but still compute exact shortest
paths. The maverick factor f enables us to adjust the trade-off between construction and
query time. Long-distance ferries are a typical example of mavericks.

Second step (core)* For a given set B` ⊆ V` of bypassable nodes, we define the set
S` of shortcut edges that bypass the nodes in B`: for each path P = 〈u, b1, b2, . . . , bk, v〉
with u, v ∈ V` \ B` and bi ∈ B`, 1 ≤ i ≤ k, the set S` contains an edge (u, v) with
w(u, v) = w(P). The core G′` = (V ′` , E

′
`) of level ` is defined in the following way:

V ′` :=V` \B` and E ′` := (E` ∩ (V ′` × V ′`)) ∪ S`.

Contraction of a Graph In order to obtain the core of a highway network, we contract
it, which yields several advantages. The search space during the queries gets smaller
since bypassed nodes are not touched and the construction process gets faster since the
next iteration only deals with the nodes that have not been bypassed. Furthermore, a more
effective contraction allows us to use smaller neighbourhood sizes without compromising
the shrinking of the highway networks. This improves both construction and query times.
However, bypassing nodes involves the creation of shortcuts, i.e., edges that represent
the bypasses. Due to these shortcuts, the average degree of the graph is increased and
the memory consumption grows. In particular, more edges have to be relaxed during the
queries. Therefore, we have to carefully select nodes so that the benefits of bypassing
them outweigh the drawbacks.

An intuive justification for contraction is the following consideration, which was in
fact the basis of contraction in an earlier version of Highway Hierarchies: Imagine a long
path where the inner nodes have no other edges. It is possible to contract this path to
a single edge between the starting and the end node and still receive all shortest paths.
Another example of contractable structures are attached trees where every shortest path
to a node outside has to go through the root.

We give an iterative algorithm that combines the selection of the bypassable nodes
B` with the creation of the corresponding shortcuts. We manage a stack that contains

106

= non−bypassed nodes
contracted network

+ shortcuts

bypassed
nodes

Figure 7.3: Contraction a graph seperates bypassable components from the core.

all nodes that have to be considered, initially all nodes from V`. As long as the stack
is not empty, we deal with the topmost node u. We check the bypassability criterion
#shortcuts ≤ c · (degin(u) + degout(u)), which compares the number of shortcuts that
would be created when u was bypassed with the sum of the in- and outdegree of u. The
magnitude of the contraction is determined by the parameter c. If the criterion is fulfilled,
the node is bypassed, i.e., it is added to B` and the appropriate shortcuts are created. Note
that the creation of the shortcuts alters the degree of the corresponding endpoints so that
bypassing one node can influence the bypassability criterion of another node. Therefore,
all adjacent nodes that have been removed from the stack earlier, have not been bypassed,
yet, and are bypassable now are pushed on the stack once again. It happens that shortcuts
that were created once are discarded later when one of its endpoints is bypassed.

7.3.3 Query
Our highway query algorithm is a modification of the bidirectional version of Dijkstra’s
algorithm. For now, we assume that the search is not aborted when both search scopes
meet. We only describe the modifications of the forward search since forward and back-
ward search are symmetric. In addition to the distance from the source, the key of each
node includes the search level and the gap to the next applicable neighbourhood border.
The search starts at the source node s in level 0. First, a local search in the neighbourhood
of s is performed, i.e., the gap to the next border is set to the neighbourhood radius of s
in level 0. When a node v is settled, it adopts the gap of its parent u minus the length of
the edge (u, v). As long as we stay inside the current neighbourhood, everything works as
usual. However, if an edge (u, v) crosses the neighbourhood border (i.e., the length of the

107

level 0

level 1

N→1 (u)

N→0 (s)

s
u

entrance point to level 1

entrance point to level 0

entrance point to level 2

Figure 7.4: A schematic diagram of a highway query. Only the forward search is depicted.

edge is greater than the gap), we switch to a higher search level `. The node u becomes an
entrance point to the higher level. If the level of the edge (u, v) is less than the new search
level `, the edge is not relaxed—this is one of the two restrictions that cause the speedup
in comparison to Dijkstra’s algorithm (Restriction 1). Otherwise, the edge is relaxed. If
the relaxation is successful, v adopts the new search level ` and the gap to the border of
the neighbourhood of u in level ` since u is the corresponding entrance point to level `.
Figure 7.4 illustrates this process.

To increase the speedup and make use of the contracted graph, we introduce another
restriction (Restriction 2): when a node u ∈ V ′` is settled, all edges (u, v) that lead to a
bypassed node v ∈ B` in search level ` are not relaxed.

A detailed example* Figure 7.5 gives a detailed example of the forward search of a
highway query. The search starts at node s. The gap of s is initialised to the distance from
s to the border of the neighbourhood of s in level 0. Within the neighbourhood of s, the
search process corresponds to a standard Dijkstra search. The edge that leads to u leaves
the neighbourhood. It is not relaxed due to Restriction 1 since the edge belongs only to
level 0. In contrast, the edge that leaves s1 is relaxed since its level allows to switch to
level 1 in the search process. s1 and its direct successor are bypassed nodes in level 1.
Their neighbourhoods are unbounded, i.e., their neighbourhood radii are infinity so that
the gap is set to infinity as well. At s′1, we leave the component of bypassed nodes and
enter the core of level 1. Now, the search is continued in the core of level 1 within the
neighbourhood of s′1. The gap is set appropriately. Note that the edge to v is not relaxed
due to Restriction 2 since v is a bypassed node. Instead, the direct shortcut to s2 = s′2 is
used. Here, we switch to level 2. In this case, we do not enter the next level through a
component of bypassed nodes, but we get directly into the core. The search is continued
in the core of level 2 within the neighbourhood of s′2. And so on.

Despite of Restriction 1, we always find the optimal path since the construction of the

108

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

N→0 (s)

N→1 (s′1)

s s1 s′1

gap(s)

∞

Restriction 1 N→2 (s′2)

s2 =s′2

u

v

shortcut

Restriction 2

Figure 7.5: A detailed example of a highway query. Only the forward search is depicted.
Nodes in level 0, 1, and 2 are vertically striped, solid, and horizontally striped, respec-
tively. In level 1, dark shades represent core nodes, light shades bypassed nodes. Edges
in level 0, 1, and 2 are dashed, solid, and dotted, respectively.

highway hierarchy guarantees that the levels of the edges that belong to the optimal path
are sufficiently high so that these edges are not skipped. Restriction 2 does not invalidate
the correctness of the algorithm since we have introduced shortcuts that bypass the nodes
that do not belong to the core. Hence, we can use these shortcuts instead of the original
paths.

The Algorithm.* We use two priority queues
−→
Q and

←−
Q , one for the forward search

and one for the backward search. The key of a node u is a triple (δ(u), `(u), gap(u)),
the (tentative) distance δ(u) from s (or t) to u, the search level `(u), and the gap gap(u)
to the next applicable neighbourhood border. A key (δ, `, gap) is less than another key
(δ′, `′, gap′) iff δ < δ′ or δ = δ′ ∧ ` > `′ or δ = δ′ ∧ ` = `′ ∧ gap < gap′.

Figure 7.6 contains the pseudo-code of the highway query algorithm.

Speeding Up the Search in the Topmost Level. Let us assume that we have a distance
table that contains for any node pair s, t ∈ V ′L the optimal distance dL(s, t). Such a table
can be precomputed during the preprocessing phase by |V ′L| SSSP searches in V ′L. Using
the distance table, we do not have to search in level L. Instead, when we arrive at a
node u ∈ V ′L that ‘leads’ to level L, we add u to a set

−→
I or

←−
I depending on the search

direction; we do not relax the edge that leads to level L. After the sets
−→
I and

←−
I have

been determined, we consider all pairs (u, v), u ∈
−→
I , v ∈

←−
I , and compute the minimum

path length D := d0(s, u) + dL(u, v) + d0(v, t). Then, the length of the shortest s-t-path
is the minimum of D and the length of the tentative shortest path found so far (in case that
the search scopes have already met in a level < L).

109

input: source node s and target node t

1
−→
Q .insert(s, (0, 0, r→0 (s)));

←−
Q .insert(t, (0, 0, r←0 (t)));

2 while (
−→
Q ∪
←−
Q 6= ∅) do {

3 � ∈ {→,←}; // select direction

4 u :=
�
Q.deleteMin();

5 if gap(u) 6=∞ then gap′ := gap(u) else gap′ := r�
`(u)(u);

6 foreach e = (u, v) ∈
�
E do {

7 for (` := `(u), gap := gap′; w(e) > gap; `++)
gap := r�

`+1(u); // go “upwards”
8 if `(e) < ` then continue; // Restriction 1
9 if u ∈ V ′` ∧ v ∈ B` then continue; // Restriction 2
10 k := (δ(u) + w(e), `, gap− w(e));

11 if v ∈
�
Q then

�
Q.decreaseKey(v, k); else

�
Q.insert(v, k);

12 }
13 }

Figure 7.6: The highway query algorithm. Differences to the bidirectional version of
Dijkstra’s algorithm are marked: additional and modified lines have a framed line number;
in modified lines, the modifications are underlined.

110

7.3.4 Experiments
Environment and Instances. The experiments were done on one core of an AMD
Opteron Processor 270 clocked at 2.0 GHz with 4 GB main memory and 2 × 1 MB
L2 cache, running SuSE Linux 10.0 (kernel 2.6.13). The program was compiled by the
GNU C++ compiler 4.0.2 using optimisation level 3. We use 32 bits to store edge weights
and path lengths.

We deal with the road networks of Western Europe2 and of the USA (without Hawaii)
and Canada. Both networks have been made available for scientific use by the company
PTV AG. The original graphs contain for each edge a length and a road category, e.g.,
motorway, national road, regional road, urban street. We assign average speeds to the
road categories, compute for each edge the average travel time, and use it as weight.

We report only the times needed to compute the shortest path distance between two
nodes without outputting the actual route. In order to obtain the corresponding subpaths
in the original graph, we are able to extract the used shortcuts without using any extra
data. However, if a fast output routine is required, we might want to spend some addi-
tional space to accelerate the unpacking process. For details, we refer to the full paper.
Table 7.3.4 summarises the properties of the used road networks and key results of the
experiments.

Parameters. Unless otherwise stated, the following default settings apply. We use the
contraction rate c = 1.5 and the neighbourhood sizes H as stated in Tab. 7.3.4—the same
neighbourhood size is used for all levels of a hierarchy. First, we contract the original
graph. Then, we perform four iterations of our construction procedure, which determines
a highway network and its core. Finally, we compute the distance table between all level-4
core nodes.

In one test series (Fig. 7.7), we used all the default settings except for the neighbour-
hood size H , which we varied from 40 to 90. On the one hand, if H is too small, the
shrinking of the highway networks is less effective so that the level-4 core is still quite
big. Hence, we need much time and space to precompute and store the distance table. On
the other hand, if H gets bigger, the time needed to preprocess the lower levels increases
because the area covered by the local searches depends on the neighbourhood size. Fur-
thermore, during a query, it takes longer to leave the lower levels in order to get to the
topmost level where the distance table can be used. Thus, the query time increases as
well. We observe that we get good space-time tradeoffs for neighbourhood sizes around
60. In particular, we find that a good choice of the parameter H does not vary very much
from graph to graph.

In another test series (Tab. 7.3.4a), we did not use a distance table, but repeated the
construction process until the topmost level was empty or the hierarchy consisted of 15

214 countries: at, be, ch, de, dk, es, fr, it, lu, nl, no, pt, se, uk

111

Europe USA/CAN USA
(Tiger)

INPUT

#nodes 18 029 721 18 741 705 24 278 285
#directed edges 42 199 587 47 244 849 58 213 192
#road categories 13 13 4

PARAM.
average speeds [km/h] 10–130 16–112 40–100
H 50 60 60

PREPROC.
CPU time [min] 15 20 18
∅overhead/node [byte] 68 69 50

QUERY

CPU time [ms] 0.76 0.90 0.88
#settled nodes 884 951 1 076
#relaxed edges 3 182 3 630 4 638
speedup (CPU time) 8 320 7 232 7 642
speedup (#settled nodes) 10 196 9 840 11 080
worst case (#settled nodes) 8 543 3 561 5 141

Table 7.1: Overview of the used road networks and key results. ‘∅overhead/node’ ac-
counts for the additional memory that is needed by our highway hierarchy approach (di-
vided by the number of nodes). The amount of memory needed to store the original graph
is not included. Query times are average values based on 10 000 random s-t-queries.
‘Speedup’ refers to a comparison with Dijkstra’s algorithm (unidirectional). Worst case
is an upper bound for any possible query in the respective graph.

Figure 7.7: Preprocessing and query performance depending on the neighbourhood size
H .

levels. We varied the contraction rate c from 0.5 to 2. In case of c = 0.5 (and H = 50),
the shrinking of the highway networks does not work properly so that the topmost level
is still very big. This yields huge query times. In earlier implementations we used a
larger neighbourhood size to cope with this problem. Choosing larger contraction rates

112

contr.
PREPROCESSING QUERY

rate c
time over- ∅deg.

time #settled #relaxed
[min] head [ms] nodes edges

0.5 89 27 3.2 176.05 242 156 505 086
1 16 27 3.7 1.97 2 321 8 931

1.5 13 27 3.8 1.58 1 704 7 935
2 13 28 3.9 1.70 1 681 8 607

(a)

PREPROC. QUERY

time over- time #settled
levels [min] head [ms] nodes

5 16 68 0.77 884
7 13 28 1.19 1 290
9 13 27 1.51 1 574

11 13 27 1.62 1 694
(b)

Table 7.2: Preprocessing and query performance for the European road network depend-
ing on the contraction rate c (a) and the number of levels (b). ‘overhead’ denotes the
average memory overhead per node in bytes.

reduces the preprocessing and query times since the cores and search spaces get smaller.
However, the memory usage and the average degree are increased since more shortcuts
are introduced. Adding too many shortcuts (c = 2) further reduces the search space, but
the number of relaxed edges increases so that the query times get worse.

In a third test series (Tab. 7.3.4b), we used the default settings except for the number
of levels, which we varied from 5 to 11. In each test case, a distance table was used in
the topmost level. The construction of the higher levels of the hierarchy is very fast and
has no significant effect on the preprocessing times. In contrast, using only five levels
yields a rather large distance table, which somewhat slows down the preprocessing and
increases the memory usage. However, in terms of query times, ‘5 levels’ is the optimal
choice since using the distance table is faster than continuing the search in higher levels.

Fast vs. Precise Construction. During various experiments, we came to the conclusion
that it is a good idea not to take a fixed maverick factor f for all levels of the construction
process, but to start with a low value (i.e. fast construction) and increase it level by level
(i.e. more precise construction). For the following experiments, we used the sequence
0, 2, 4, 6,

Best Neighbourhood Sizes. For two levels ` and ` + 1 of a highway hierarchy, the
shrinking factor is the ratio between |E ′`| and |E ′`+1|. In our experiments, we observed
that the highway hierarchies of the USA and Europe were almost self-similar in the sense
that the shrinking factor remained nearly unchanged from level to level when we used
the same neighbourhood size H for all levels. We kept this approach and applied the
same H iteratively until the construction led to an empty highway network. Figure 7.8
demonstrates the shrinking process for Europe. For most levels, we observe an almost
constant shrinking factor (which appears as a straight line due to the logarithmic scale
of the y-axis). The greater the neighbourhood size, the greater the shrinking factor. The

113

Figure 7.8: Shrinking of the highway networks of Europe. For different neighbourhood
sizes H and for each level `, we plot |E ′`|, i.e., the number of edges that belong to the core
of level `.

first iteration (Level 0→1) and the last few iterations are exceptions: at the first iteration,
the construction works very well due to the characteristics of the real world road network
(there are many trees and lines that can be contracted); at the last iterations, the highway
network collapses, i.e., it shrinks very fast, because nodes that are close to the border of
the network usually do not belong to the next level of the highway hierarchy, and when
the network gets small, almost all nodes are close to the border.

Multilevel Queries. Table 7.3.4 contains average values for queries, where the source
and target nodes are chosen randomly. For the two large graphs we get a speedup of more
than 2 000 compared to Dijkstra’s algorithm both with respect to (query) time3 and with
respect to the number of settled nodes.

For our largest road network (USA), the number of nodes that are settled during the
search is less than the number of nodes that belong to the shortest paths that are found.
Thus, we get an efficiency that is greater than 100%. The reason is that edges at high
levels will often represent long paths containing many nodes.4

For use in applications it is unrealistic to assume a uniform distribution of queries in
large graphs such as Europe or the USA. On the other hand, it would be hardly more
realistic to arbitrarily cut the graph into smaller pieces. Therefore, we decided to measure

3It is likely that Dijkstra would profit more from a faster priority queue than our algorithm. Therefore,
the time-speedup could decrease by a small constant factor.

4The reported query times do not include the time for expanding these paths. We have made measure-
ments with a naive recursive expansion routine which never take more than 50% of the query time. Also
note that this process could be radically sped up by precomputing unpacked representations of edges.

114

Figure 7.9: Multilevel Queries. For each road network and each Dijkstra rank on the
x-axis, 1 000 queries from random source nodes were performed. The results are repre-
sented as box-and-whisker plot: each box spreads from the lower to the upper quartile and
contains the median, the whiskers extend to the minimum and maximum value omitting
outliers, which are plotted individually. It is important to note that a logarithmic scale is
used for the x-axis.

local queries within the big graphs: For each power of two r = 2k, we choose random
sample points s and then use Dijkstra’s algorithm to find the node t with Dijkstra rank
rs(t) = r. We then use our algorithm to make an s-t query. By plotting the resulting
statistics for each value r = 2k, we can see how the performance scales with a natural
measure of difficulty of the query. Figure 7.9 shows the query times. Note that the median
query times are scaling quite smoothly and the growth is much slower than the exponential
increase we would expect in a plot with logarithmic x axis, linear y axis, and any growth
rate of the form rρ for Dijkstra rank r and some constant power ρ. The curve is also not
the straight line one would expect from a query time logarithmic in r. Note that for the
largest rank, query times are actually decreasing. A possible explanation is that these
queries will have at least one of source or destination node at the border area of the map
where the road network is often not very dense (e.g. northern Norway). This plot was
done without using distance tables which would also cut the costs at some point where
every query will move to the highest level and then resort to the table.

Worst Case Upper Bounds. By executing a query from each node of a given graph to
an added isolated dummy node and a query from the dummy node to each actual node
in the backward graph, we obtain a distribution of the search spaces of the forward and
backward search, respectively. We can combine both distributions to get an upper bound
for the distribution of the search spaces of bidirectional queries: when F→(x) (F←(x))

115

1014

1012

1010

108

106

104

100

 0 500 1000 1500 2000 2500 3000

F
re

qu
en

cy

Search Space

Europe

Figure 7.10: Histogram of upper bounds for the search spaces of s-t-queries.

denotes the number of source (target) nodes whose search space consists of x nodes in a
forward (backward) search, we define F↔(z) :=

∑
x+y=z F→(x) · F←(y), i.e., F↔(z) is

the number of s-t-pairs such that the upper bound of the search space size of a query from
s to t is z. In particular, we obtain the upper bound max {z | F↔(z) > 0} for the worst
case without performing all n2 possible queries. Figure 7.10 visualises the distribution
F↔(z) as a histogram.

7.4 Transit Node Routing
When you drive to somewhere ‘far away’, you will leave your current location via one
of only a few ‘important’ traffic junctions. For graphs representing road networks, this
means: First, there is a relatively small set of transit nodes, about 10 000 for the US road
network, with the property that for every pair of nodes that are ‘not too close’ to each
other, the shortest path between them passes through at least one of these transit nodes.
Second, for every node, the set of transit nodes encountered first when going far—we call
these access nodes—is small (about 10). We will now try to exploit this property.

To simplify notation we will present the approach for undirected graphs. However, the
method is easily generalised to directed graphs and our highway hierarchy implementa-
tion already handles directed graphs. Consider any set T ⊆ V of transit nodes, an access
mapping A : V → 2T , and a locality filter L : V × V → {true, false}. We require that

116

¬L(s, t) implies that the shortest path distance is

d(s, t) = min {d(s, u) + d(u, v) + d(v, t) : u ∈ A(s), v ∈ A(t)} . (7.1)

Equation 7.1 implies that the shortest path between nodes that are not near to each other
goes through transit nodes at both ends. In principle, we can pick any set of transit nodes,
any access mapping, and any locality filter fulfilling Equation (7.1) to obtain a transit node
query algorithm:
Assume we have precomputed all distances between nodes in T . If ¬L(s, t) then compute
d(s, t) using Equation (7.1). Else, use any other routing algorithm.

Of course, we want a good choice of (T , A, L). T should be small but allow many
global queries, L should efficiently identify as many of these global query pairs as possi-
ble, and we should be able to store and evaluate A efficiently.

We can apply a second layer of generalised transit node routing to the remaining local
queries (that may dominate some real world applications). We have a node set T2 ⊃ T ,
an access mapping A2 : V → 2T2 , and a locality filter L2 such that ¬L2(s, t) implies that
the shortest path distance is defined by Equation 7.1 or by

d(s, t) = min {d(s, u) + d(u, v) + d(v, t) : u ∈ A2(s), v ∈ A2(t)} . (7.2)

In order to be able to evaluate Equation 7.2 efficiently we need to precompute the
local connections from {d(u, v) : u, v ∈ T2 ∧ L(u, v)} which cannot be obtained using
Equation 7.1.

In an analogous way we can add further layers.

7.4.1 Computing Transit Nodes
Computing Access Nodes: Backward Approach.

Start a Dijkstra search from each transit node v ∈ T . Run it until all paths leading to
nodes in the priority queue pass over another node w ∈ T . Record v as an access node
for any node u on a shortest path from v that does not lead over another node in T . Record
an edge (v, w) with weight d(v, w) for a transit graph G[T] = (T , ET). When this local
search has been performed from all transit nodes, we have found all access nodes and the
distance table can be computed using an all-pairs shortest path computation in G[T].

Layer 2 Information

is computed similarly to the top level information except that a search on the transit graph
G[T2] can be stopped when all paths in the priority queue pass over a top level transit
node w ∈ T . Level 2 distances from each node v ∈ T2 can be stored space efficiently in
a static hash table. We only need to store distances that actually improve on the distances
obtained going via the top level T .

117

Computing Access Nodes: Forward Approach.

Start a Dijkstra search from each node u. Stop when all paths in the shortest path tree are
‘covered’ by transit nodes. Take these transit nodes as access points of u. Applied naively,
this approach is rather inefficient. However, we can use two tricks to make it efficient.
First, during the search we do not relax the edges leaving transit nodes. This leads to the
computation of a superset of the access points. Fortunately, this set can be easily reduced
if the distances between all transit nodes are already known: if an access point v′ can be
reached from u via another access point v on a shortest path, we can discard v′. Second,
we can only determine the access point sets A(v) for all nodes v ∈ T2 and the sets A2(u)
for all nodes u ∈ V . Then, for any node u, A(u) can be computed as

⋃
v∈A2(u) A(v).

Again, we can use the reduction technique to remove unnecessary elements from the set
union.

Locality Filters.

There seem to be two basic approaches to transit node routing. One that starts with a
locality filter L and then has to find a good set of transit nodes T for which L works. The
other approach starts with T and then has to find a locality filter that can be efficiently
evaluated and detects as accurately as possible whether local search is needed. One ap-
proach that we found very effective is to use the information gained when computing the
distance table for layer i + 1 to define a locality filter for layer i. For example, we can
compute the radius ri(u) of a circle around every node u ∈ Ti+1 that contains for each
entry d(u, v) in the layer-(i+ 1) table the meeting point of a bidirectional search between
u and v. We can use this information in several ways. We can (pre)compute conserva-
tive circle radii for arbitrary nodes v as ri(v) := max {||v − u||2 + ri(u) : u ∈ Ai+1(v)}.
Note that even if we are not able to store the information gathered during a precomputa-
tion at layer i + 1, it might still make sense to run it in order to gather the more compact
locality information.

Combining with Highway Hierachies

Nodes on high levels of a highway hierarchy have the property that they are used on short-
est paths far away from starting and target nodes. ‘Far away’ is defined with respect to
the Dijkstra rank. Hence, it is natural to use (the core of) some level K of the highway
hierarchy for the transit node set T . Note that we have quite good (though indirect) con-
trol over the resulting size of T by choosing the appropriate neighbourhood sizes and the
appropriate value for K =: K1. In our current implementation this is level 4, 5, or 6. In
addition, the highway hierarchy helps us to efficiently compute the required information.
Note that there is a difference between the level of the highway hierarchy and the layer of
transit node search.

118

ri(v)

ri(u)v u

Figure 7.11: Example for the extension of the geometric locality filter. The grey nodes
constitute the set Ai+1(v).

We can also combine the techniques of distance tables (many-to-many queries) with tran-
sit nodes. Roughly, this algorithm first performs independent backward searches from all
transit nodes and stores the gathered distance information in buckets associated with each
node. Then, a forward search from each transit node scans all buckets it encounters and
uses the resulting path length information to update a table of tentative distances. This
approach can be generalised for computing distances at layer i > 1. We use the for-
ward approach to compute the access point sets (In our case, we do not perform Dijkstra
searches, but highway searches).

7.4.2 Experiments
Environment, Instances, and Parameters

The experiments were done on one core of an AMD Opteron Processor 270 clocked at
2.0 GHz with 8 GB main memory and 2 × 1 MB L2 cache, running SuSE Linux 10.0
(kernel 2.6.13). The program was compiled by the GNU C++ compiler 4.0.2 using op-
timisation level 3. We deal with the same networks we already used for experiments on
Highway Hierarchies. We assign average speeds to the road categories, compute for each
edge the average travel time, and use it as weight. In addition to this travel time metric,
we perform experiments on variants of the European graph with a distance metric and the
unit metric.

We use two variants of the transit node approach: Variant economical aims at a good
compromise between space consumption, preprocessing time and query time. Economi-
cal uses two layers and reconstructs the access node set and the locality filter needed for
the layer-1 query using information only stored with nodes in T2, i.e., for a layer-1 query

119

with source node s, we build the union
⋃
u∈A2(s) A(u) of all layer-1 access nodes of all

layer-2 access nodes of s to determine on-the-fly a layer-1 access node set for s. Simi-
larly, a layer-1 locality filter for s is built using the locality filters of the layer-2 access
nodes. Variant generous accepts larger distance tables by choosing K = 4 (however us-
ing somewhat larger neighbourhoods for constructing the hierarchy). Generous stores all
information required for a query with every node. To obtain a high quality layer-2 filter
L2, the generous variant performs a complete layer-3 preprocessing based on the core of
level 1 and also stores a distance table for layer 3.

Since it has turned out that a better performance is obtained when the preprocessing
starts with a contraction phase, we practically skip the first construction step (by choosing
neighbourhood sets that contain only the node itself) so that the first highway network
virtually corresponds to the original graph. Then, the first real step is the contraction of
level 1 to get its core. Note that compared to numbers presented on Highway Hierar-
chies, we use a slightly improved contraction heuristic, which sorts the nodes according
to degree and then tries to bypass the node with the smallest degree first.

Main Results

Table 7.3 gives the preprocessing times for both road networks and both the travel time
and the distance metric; in case of the travel time metric, we distinguish between the
economical and the generous variant. In addition, some key facts on the results of the
preprocessing, e.g., the sizes of the transit node sets, are presented. It is interesting to
observe that for the travel time metric in layer 2 the actual distance table size is only
about 0.1% of the size a naive |T2| × |T2| table would have. As expected, the distance
metric yields more access points than the travel time metric (a factor 2–3) since not only
junctions on very fast roads (which are rare) qualify as access point. The fact that we
have to increase the neighbourhood size from level to level in order to achieve an effective
shrinking of the highway networks leads to comparatively high preprocessing times for
the distance metric.

Table 7.4 summarises the average case performance of transit node routing. For the
travel time metric, the generous variant achieves average query times more than two or-
ders of magnitude lower than highway hierarchies alone. At the cost of a factor 2.4 in
query time, the economical variant saves around a factor of two in space and a factor of
3.5 in preprocessing time.

Finding a good locality filter is one of the biggest challenges of a highway hierarchy
based implementation of transit node routing. The values in Tab. 7.4 indicate that our filter
is suboptimal: for instance, only 0.0064% of the queries performed by the economical
variant in the US network with the travel time metric would require a local search to
answer them correctly. However, the locality filter L2 forces us to perform local searches
in 0.278% of all cases. The high-quality layer-2 filter employed by the generous variant

120

layer 1 layer 2 layer 3
metric variant |T | |table| |A| |T2| |table2| |A2| |T3| |table3| space time

[× 106] [× 106] [× 106] [B/node] [h]

USAtime
eco 12 111 147 6.1 184 379 30 4.9 – – 111 0:59
gen 10 674 114 5.7 485 410 204 4.2 3 855 407 173 244 3:25

dist eco 15 399 237 17.0 102 352 41 10.9 – – 171 8:58

EURtime
eco 8 964 80 10.1 118 356 20 5.5 – – 110 0:46
gen 11 293 128 9.9 323 356 130 4.1 2 954 721 119 251 2:44

dist eco 11 610 135 20.3 69 775 31 13.1 – – 193 7:05

Table 7.3: Statistics on preprocessing for the highway hierarchy approach. For each layer,
we give the size (in terms of number of transit nodes), the number of entries in the distance
table, and the average number of access points to the layer. ‘Space’ is the total overhead
of our approach.

layer 1 [%] layer 2 [%] layer 3 [%]
metric variant correct stopped correct stopped correct stopped query time

USA time
eco 99.86 98.87 99.9936 99.7220 – – 11.5µs
gen 99.89 99.20 99.9986 99.9862 99.99986 99.99984 4.9µs

dist eco 98.43 91.90 99.9511 97.7648 – – 87.5µs

EUR time
eco 99.46 97.13 99.9908 99.4157 – – 13.4µs
gen 99.74 98.65 99.9985 99.9810 99.99981 99.99972 5.6µs

dist eco 95.32 81.68 99.8239 95.7236 – – 107.4µs

Table 7.4: Performance of transit node routing with respect to 10 000 000 randomly cho-
sen (s, t)-pairs. Each query is performed in a top-down fashion. For each layer i, we
report the percentage of the queries that is answered correctly in some layer ≤ i and the
percentage of the queries that is stopped after layer i (i.e., ¬Li(s, t)).

is considerably more effective, still the percentage of false positives is about 90%.
For the distance metric, the situation is worse. Only 92% and 82% of the queries

are stopped after the top layer has been searched (for the US and the European net-
work, respectively). This is due to the fact that we had to choose the cores of levels 6
and 4 as layers 1 and 2 since the shrinking of the highway networks is less effective so
that lower levels would be too big. It is important to note that we concentrated on the
travel time metric—since we consider the travel time metric more important for practical
applications—, and we spent comparatively little time to tune our approach for the dis-
tance metric. For example, a variant using a third layer (namely levels 6, 4, and 2 as layers
1, 2, and 3), which is not yet supported by our implementation, seems to be promising.
Nevertheless, the current version shows feasibility and still achieves an improvement of
a factor of 71 and 56 (for the US and the European network, respectively) over high-
way hierarchies alone. We use again a box-and-whisker plot to account for variance in

121

Dijkstra Rank

Q
ue

ry
 T

im
e

[µ
s]

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

5
10

20
40

10
0

30
0

10
00

5
10

20
40

10
0

30
0

10
00

economical
generous

Figure 7.12: Query times for the USA with the travel time metric as a function of Dijkstra
rank.

query times. For the generous approach, we can easily recognise the three layers of transit
node routing with small transition zones in between: For ranks 218–224 we usually have
¬L(s, t) and thus only require cheap distance table accesses in layer 1. For ranks 212–
216, we need additional look-ups in the table of layer 2 so that the queries get somewhat
more expensive. In this range, outliers can be considerably more costly, indicating that
occasional local searches are needed. For small ranks we usually need local searches and
additional look-ups in the table of layer 3. Still, the combination of a local search in a
very small area and table look-ups in all three layers usually results in query times of only
about 20µs.

In the economical approach, we observe a high variance in query times for ranks 215–
216. In this range, all types of queries occur and the difference between the layer-1 queries
and the local queries is rather big since the economical variant does not make use of a third
layer. For smaller ranks, we see a picture very similar to basic highway hierarchies with
query time growing logarithmically with Dijkstra rank.

7.4.3 Complete Description of the Shortest Path
For a given node pair (s, t), in order to get a complete description of the shortest s-t-path,
we first perform a transit node query and determine the layer i that is used to obtain the
shortest path distance. Then, we have to determine the path from s to the forward access
point u to layer i, the path from the backward access point v to t, and the path from u to

122

v. In case of a local query, we can fall back on a normal highway search.
Currently, we provide an efficient implementation only for the case that the path goes

through the top layer. In all other cases, we just perform a normal highway search. The
effect on the average times is very small since more than 99% of the queries are correctly
answered using only the top search (in case of the travel time metric; cp. Tab. 7.4).

When a node s and one of its access points u are given, we can determine the next node
on the shortest path from s to u by considering all adjacent nodes s′ of s and checking
whether d(s, s′) + d(s′, u) = d(s, u). In most cases, the distance d(s′, u) is directly
available since u is also an access point of s′. In a few cases—when u is not an access
point of s′—, we have to consider all access points u′ of s′ and check whether d(s, s′) +
d(s′, u′)+d(u′, u) = d(s, u). Note that d(u′, u) can be looked up in the top distance table.
Using this subroutine, we can determine the path from s to the forward access point u and
from the backward access point v to t.

A similar procedure can be used to find the path from u to v. However, in this case,
we consider only adjacent nodes u′ of u that belong to the top layer as well because
only for these nodes we can look up d(u′, v). Since there are shortest paths between top
layer nodes that leave the top layer—we call such paths hidden paths—, we execute an
additional preprocessing step that determines all hidden paths and stores them in a special
data structure (after the used shortcuts have been expanded). Whenever we cannot find
the next node on the path to v considering only adjacent nodes in the top layer, we look
for the right hidden path that leads to the next node in the top layer. In Tab. 7.5 we give
the additional preprocessing time and the additional disk space for the hidden paths and
the unpacking data structures. Furthermore, we report the additional time that is needed
to determine a complete description of the shortest path and to traverse5 it summing up
the weights of all edges as a sanity check—assuming that the distance query has already
been performed. That means that the total average time to determine a shortest path is the
time given in Tab. 7.5 plus the query time given in Tab. 7.4.

7.5 Dynamic Shortest Path Computation
The successful methods we saw until now are static, i.e., they assume that the network—
including its edge weights—does not change. This makes it possible to preprocess some
information once and for all that can be used to accelerate all subsequent point-to-point
queries. However, real road networks change all the time. In this section, we address
two such dynamic scenarios: individual edge weight updates, e.g., due to traffic jams,
and switching between different cost functions that take vehicle type, road restrictions, or
driver preferences into account.

5Note that we do not traverse the path in the original graph, but we directly scan the assembled descrip-
tion of the path.

123

preproc. space query # hops
[min] [MB] [µs] (avg.)

USA 4:04 193 258 4 537
EUR 7:43 188 155 1 373

Table 7.5: Additional preprocessing time, additional disk space and query time that is
needed to determine a complete description of the shortest path and to traverse it summing
up the weights of all edges—assuming that the query to determine its lengths has already
been performed. Moreover, the average number of hops—i.e., the average path length in
terms of number of nodes—is given. These figures refer to experiments on the graphs
with the travel time metric using the generous variant.

7.5.1 Covering Nodes
We now introduce the concept of “covering nodes”, which will be useful later.

Problem Definition.

During a Dijkstra search from s, we say that a settled node u is covered by a node set
V ′ if there is at least one node v ∈ V ′ on the path from the root s to u. A queued node
is covered if its tentative parent is covered. The current partial shortest-path tree T is
covered if all currently queued nodes are covered. All nodes v ∈ V ′ ∩ T that have no
parent in T that is covered are covering nodes, forming the set CG(V ′, s).

The crucial subroutine of all algorithms in the subsequent sections takes a graph G,
a node set V ′, and a root s and determines all covering nodes CG(V ′, s). We distinguish
between four different ways of doing this.

Conservative Approach.

The conservative variant (Fig. 7.13 (a)) works in the obvious way: a search from s is
stopped as soon as the current partial shortest-path tree T is covered. Then, it is straight-
forward to read off all covering nodes. However, if the partial shortest-path tree contains
one path that is not covered for a long time, the tree can get very big even though all other
branches might have been covered very early. In our application, this is a critical issue
due to long-distance ferry connections.

Aggressive Approach.

As an overreaction to the above observation, we might want to define an aggressive vari-
ant that does not continue the search from any covering node, i.e., some branches might

124

s v w x yu s u v w x y

(a) conservative (b) aggressive

s u v w x y
stall

wake
s u v w x y

(c) stall-in-advance (d) stall-on-demand

Figure 7.13: Simple example for the computation of covering nodes. We assume that
all edges have weight 1 except for the edges (s, v) and (s, x), which have weight 10. In
each case, the search process is started from s. The set V ′ consists of all nodes that are
represented by a square. Thick edges belong to the search tree T . Nodes that belong to
the computed superset CG(V ′, s) of the covering nodes are highlighted in grey. Note that
the actual covering node set contains only one node, namely u.

be terminated early, while only the non-covered paths are followed further on. Unfortu-
nately, this provokes two problems. First, we can no longer guarantee that T contains
only shortest paths. As a consequence, we get a superset CG(V ′, s) of the covering nodes,
which still can be used to obtain correct results. However, the performance will be im-
paired. In Section 7.5.2, we will explain how to reduce a given superset rather efficiently
in order to obtain the exact covering node set. Second, the tree T can get even bigger since
the search might continue around the covering nodes where we pruned the search.6 In our
example (Fig. 7.13 (b)), the search is pruned at u so that v is reached using a much longer
path that leads around u. As a consequence, w is superfluously marked as a covering
node.

Stall-in-Advance Technique.

If we decide not to prune the search immediately, but to go on ‘for a while’ in order to
stall other branches, we obtain a compromise between the conservative and the aggressive
variant, which we call stall-in-advance. One heuristic we use prunes the search at node z
when the path explored from s to z contains p nodes of V ′ for some tuning parameter p.
Note that for p := 1, the stall-in-advance variant corresponds to the aggressive variant. In
our example (Fig. 7.13 (c)), we use p := 2. Therefore, the search is pruned not until w is
settled. This stalls the edge (s, v) and, in contrast to (b), the node v is covered. Still, the
search is pruned too early so that the edge (s, x) is used to settle x.

6Note that the query algorithm of the separator-based approach virtually uses the aggressive variant to
compute covering nodes. This is reasonable since the search can never ‘escape’ the component where it
started.

125

Stall-on-Demand Technique.

In the stall-in-advance variant, relaxing an edge leaving a covered node is based on the
‘hope’ that this might stall another branch. However, our heuristic is not perfect, i.e.,
some edges are relaxed in vain, while other edges which would have been able to stall
other branches, are not relaxed. Since we are not able to make the perfect decision in
advance, we introduce a fourth variant, namely stall-on-demand. It is an extension of the
aggressive variant, i.e., at first, edges leaving a covered node are not relaxed. However, if
such a node u is reached later via another path, it is woken up and a breadth-first search
(BFS) is performed from that node: an adjacent node v that has already been reached
by the main search is inserted into the BFS queue if we can prove that the best path P
found so far is suboptimal. This is certainly the case if the path from s via u to v is
shorter than P . All nodes encountered during the BFS are marked as stalled. The main
search is pruned at stalled nodes. Furthermore, stalled nodes are never marked as covering
nodes. The stalling process cannot invalidate the correctness since only nodes are stalled
that otherwise would contribute to suboptimal paths. In our example (Fig. 7.13 (d)), the
search is pruned at u. When v is settled, we assume that the edge (v, w) is relaxed first.
Then, the edge (v, u) wakes the node u up. A stalling process (a BFS search) is started
from u. The nodes v and w are marked as stalled. When w is settled, its outgoing edges
are not relaxed. Similarly, the edge (x,w) wakes the stalled node w and another stalling
process is performed.

7.5.2 Static Highway-Node Routing
Multi-Level Overlay Graph.

For given highway-node sets V =: V0 ⊇ V1 ⊇ ... ⊇ VL, we
give a definition of the multi-level overlay graph G = (G0, G1, ..., GL):
G0 := G and for each ` > 0, we have G` := (V`, E`) with E` :=
{(s, t) ∈ V` × V` | ∃ shortest path P = 〈s, u1, u2, . . . , uk, t〉 in G`−1 s.t. ∀i : ui 6∈ V`}.

Node Selection

We can choose any highway node sets to get a correct procedure. However, the efficiency
of both the preprocessing and the query very much depends on the highway node sets.
Roughly speaking, a node that lies on a lot of shortest paths should belong to the node
set of a high level. In a first implementation, we use the set of level-` core nodes of the
highway hierarchy of G as highway node set V`. In other words, we let the construction
procedure of the highway hierarchies decide the importance of the nodes.

126

7.5.3 Construction
The multi-level overlay graph is constructed in a bottom-up fashion. In order to con-
struct level ` > 0, we perform for each node s ∈ V` a Dijkstra search in G`−1 that is
stopped as soon as the partial shortest-path tree is covered by V` \ {s}. For each path
P = 〈s, u1, u2, . . . , uk, t〉 in T with the property that ∀i : ui 6∈ V`, we add an edge (s, t)
with weight w(P) to E`.

Theorem 11 The construction algorithm yields the multi-level overlay graph.

Faster Construction Heuristics. Using the above construction procedure, we en-
counter the same performance problems and provide similar solutions than for the High-
way Hierarchies: if the partial shortest-path tree contains a path that is not covered by a
highway node for a long time, the tree can get very big even though all other branches
might have been covered very early. In particular, we observed this behaviour in the Euro-
pean road network for long-distance ferry connections and for some long dead-end streets
in the Alps. It is possible to prune the search at any settled node that is covered by V`\{s}.
However, applying this aggressive pruning technique has two disadvantages. First, we can
no longer guarantee that T contains only shortest paths. As a consequence, we obtain a
superset of E`, which does not invalidate the correctness of the query, but which slows it
down. Second, the tree T can get even bigger since the search might continue on slower
roads around the nodes where we pruned the search.

It turns out that a good compromise is to prune only some edges at some nodes. We
use two heuristic pruning rules. First, if for the current covered node u and some constant
∆, we have d(s, u) + ∆ < min {δ(v) | v reached, not settled, not covered by V` \ {s}},
then u’s edges are not relaxed. Second, if on the path from s to the current node u, there
are at least p nodes in some level ` (for some constant p), then all edges (u, v) in levels
< ` are pruned.

After efficiently computing a superset of an overlay edge set E`, we can apply a fast
reduction step to get rid of the superfluous edges: for each node u ∈ V`, we perform a
search in G` (instead of G`−1) till all adjacent nodes have been settled. For any node v
that has been settled via a path that consists of more than one edge, we can remove the
edge (u, v) since a (better) alternative that does not require this edge has been found.

7.5.4 Query
The query algorithm is a bidirectional procedure: the backward search works completely
analogously to the forward search so that it is sufficient to describe only the forward
search. The search is performed in a bottom-up fashion. We perform a Dijkstra search
from s in G0 and stop the search as soon as the search tree is covered by V1. From all
covering nodes, the search is continued in G1 until it is covered by V2, and so on. In

127

the topmost level, we can abort when forward and backward search meet. Figure 7.14
contains the pseudo-code of the query algorithm for the forward direction.

input: source node s;
VL+1 := ∅; // to avoid case distinctions
S0 := {s}; δ0(s) := 0;
for ` := 0 to L do

V ′` := V` ∪ {s′}; // s′ is a new artificial node
E ′` := E` ∪ {(s′, u) | u ∈ S`}; w(s′, u) := δ`(u);
perform Dijkstra search from s′ in G′` := (V ′` , E

′
`),

stop when search tree is covered by V`+1;
S`+1 := ∅;
foreach covering node u do

add u to S`+1;
δ`+1(u) := d(s′, u);

Figure 7.14: The query algorithm for the forward direction.

Theorem 12 The query algorithm always finds a shortest path.

7.5.5 Analogies To and Differences From Related Techniques
Transit Node Routing. Let us consider a Dijkstra search from some node in a road
network. We observe that some branches are very important—they extend through the
whole road network—, while other branches are stalled by the more important branches
at some point. For instance, there might be all types of roads (motorways, national roads,
rural roads) that leave a certain region around the source node, but usually the branches
that leave the region via rural roads end at some point since all further nodes are reached
on a faster path using motorways or national roads. The transit node routing exploits this
observation: not all nodes that separate different regions are selected as transit nodes, but
only the nodes on the important branches.

Multi-level highway node routing uses the same argument to select the highway nodes.
However, the distances from each node to the neighbouring highway nodes are not pre-
calculated but computed during the query (using an algorithm very similar to the prepro-
cessing algorithm for transit node routing). Moreover, the distances between all highway
nodes are not represented by tables, but by overlay graphs. The algorithms to construct
the overlay graphs and to compute the distance tables for transit node routing (except for
the topmost table) are very similar. The fact that multi-level highway node routing relies
on less precomputed data allows the implementation of an efficient update operation.

128

Multi-Level Overlay Graphs. In contrast to transit node and multi-level highway node
routing, in the original multi-level approach all nodes that separate different regions are
selected, which leads to a comparatively high average node degree. This has a negative
impact on the performance. Let us consider the original approach with the new selection
strategy, i.e., only ‘important’ nodes are selected. Then, the graph is typically not decom-
posed into many small components so that the following performance problem arises in
the query algorithm. From the highway/separator nodes, only edges of the overlay graph
are relaxed. As a consequence, the unimportant branches are not stalled by the important
branches. Thus, since the separator nodes on the unimportant branches have not been
selected, the search might extend through large parts of the road network.

To sum up, there are two major steps to get from the original to the new multi-level
approach: first, select only ‘important’ nodes and second, at highway/separator nodes, do
not switch immediately to the next level, but keep relaxing low-level edges ‘for a while’
until you can be sure that slow branches have been stalled.

Highway Hierarchies. We use the preprocessing of the highway hierarchies in order to
select the highway nodes for our new approach. However, this is not the sole connection
between both methods. In fact, we can interpret multi-level highway node routing as a
modification of the highway hierarchy approach. (In particular, our actual implementation
is a modification of the highway hierarchy program code.) An overlay graph can be
represented by shortcut edges that belong to the appropriate level of the hierarchy. There
are two main differences.

First, the neighbourhood of a node is defined in different ways. In case of the highway
hierarchies, for a given parameter H , the H closest nodes belong to the neighbourhood.
In case of multi-level highway node routing, all nodes belong to the neighbourhood that
are settled by a search that is stopped when the search tree is covered by the highway node
set.

Second, in case of the highway hierarchies, we decide locally when to switch to the
next level, namely when the neighbourhood is left at some node. In case of multi-level
highway node routing, we decide globally when to switch to the next level, namely when
the complete search tree (not only the current branch) is covered by the highway node
set7. By this modification, important branches can stall slow branches.

7.5.6 Dynamic Multi-Level Highway Node Routing
Various Scenarios

We could consider several types of changes in road networks, e.g.,

7This is a simplified description. As mentioned in Section 7.5.4, we enhance the query algorithm by
some rules in order to deal with special cases like long-distance ferry connections more efficiently.

129

a) The structure of the road network changes: new roads are built, old roads are de-
molished. That means, edges can be added and removed.

b) A different cost function is used, which means that potentially all edge weights
change. For example, a cost function can take into account different weightings of travel
time, distance, and fuel consumption. With respect to travel time, we can think of dif-
ferent profiles of average speeds for each road category. In addition, for certain vehicle
types there might be restrictions on some roads (e.g., bridges and tunnels). For many
‘reasonable’ cost functions, properties of the road network (like the inherent hierarchy)
are possibly weakened, but not completely destroyed or even inverted. For instance, both
a truck and a sports car—despite going different speeds—drive faster on a motorway than
on an urban street.

c) An unexpected incident occurs: the travel time of a certain road or several roads in
some area changes, e.g., due to a traffic jam. That means, a single or a few edge weights
change. While a traffic jam causes a slow-down, the cancellation of a traffic jam causes a
speed-up so that we have to deal with both increasing and decreasing edge weights.

d) The edge weights depend on the time of day according to some function known in
advance. For example, such a function takes into account the rush hours.

The following paragraphs deal with type b) and c), respectively. We do not (explicitly)
handle type a) since the addition of a new edge is a comparatively rare event in practical
applications and the removal can be emulated by an edge weight change to infinity. Type
d) is not (yet) covered by our work.

In case of type c), we can think of a server and mobile scenario: in the former, a
server has to react to incoming events by updating its data structures so that any point-
to-point query can be answered correctly; in the latter, a mobile device has to react to
incoming events by (re)computing a single point-to-point query taking into account the
new situation. In the server scenario, it pays to invest some time to perform the update
operation since a lot of queries depend on it. In the mobile scenario however, we do not
want to waste time for updating parts of the graph that are irrelevant to the current query.
In this paper, we concentrate on the server scenario.

Complete Recomputation

The more time-consuming part of the preprocessing is the determination of the highway
node sets. As stated above, we assume that the application of a different profile of average
speeds will not completely invalidate the hierarchical properties of the road network, i.e.,
a node that has been very important usually will not get completely unimportant and vice
versa when a different vehicle type is used. Thus, we can still expect a good query per-
formance when keeping the highway node sets and recomputing only the overlay graphs.
In order to do so, we do not need any additional data structures. We can directly use the
static approach omitting the first preprocessing step (the determination of the highway

130

input: set of edges Em with modified weight;
define set of modified nodes: V m

0 := {u | (u, v) ∈ Em};
foreach level ` ≥ 1 do

V m
` := ∅;

foreach node v ∈
⋃
u∈Vm

`−1
A`u do

repeat construction step from v;
if something changes, put v to V m

` ;

Figure 7.15: The update algorithm that deals with a set of edge weight changes.

node sets).

Updating a Few Edge Weights

Similar to the previous paragraph, when a single or a few edge weights change, we keep
the highway node sets and update only the overlay graphs. In contrast to the previous sce-
nario, we do not have to repeat the complete construction from scratch, but it is sufficient
to perform the construction step only from nodes that might be affected by the change.
Certainly, a node v whose partial shortest-path tree of the initial construction did not con-
tain any node u of a modified edge (u, x) is not affected: if we repeated the construction
step from v, we would get exactly the same partial shortest-path tree and, consequently,
the same result.

During the first construction (and all subsequent update operations), we manage sets
A`u of nodes whose level-` preprocessing might be affected when an outgoing edge of u
changes: when a level-` construction step from some node v is performed, for each node
u in the partial shortest-path tree, we add v to A`u. Note that these sets can be stored
explicitly (as we do it in our current implementation) or we could store a superset, e.g.,
by some kind of geometric container (a disk, for instance). Figure 7.15 contains the
pseudo-code of the update algorithm.

Theorem 13 After the update operation, we have the same situation as if we had repeated
the complete construction procedure from scratch.

7.5.7 Experiments
Environment and Instances.

The experiments were done on one core of a single AMD Opteron Processor 270 clocked
at 2.0 GHz with 8 GB main memory and 2 × 1 MB L2 cache, running SuSE Linux

131

10.0 (kernel 2.6.13). The program was compiled by the GNU C++ compiler 4.0.2 using
optimisation level 3.

We deal with the road network of Western Europe which was already used in the last
sections. It consists of 18 029 721 nodes and 42 199 587 directed edges. The original
graph contains for each edge a length and a road category. There are four major road
categories (motorway, national road, regional road, urban street), which are divided into
three subcategories each. In addition, there is one category for forest and gravel roads. We
assign average speeds (130, 120, . . ., 10 km/h)8 to the road categories, compute for each
edge the average travel time, and use it as weight. We call this our default speed profile.
Experiments which we did on a US and Canadian road network of roughly the same size
(provided by PTV as well) show exactly the same relative behaviour as in section 7.3.4,
namely that it is slightly more difficult to handle North America than Europe (e.g., 20%
slower query times). We give detailed results only for Europe.

For now, we report the times needed to compute the shortest-path distance between
two nodes without outputting the actual route. Note that we could also output full path
descriptions. The query times are averages based on 10 000 randomly chosen (s, t)-pairs.
In addition to providing average values, we use the methodology from 7.9 in order to plot
query times against the ‘distance’ of the target from the source, where in this context, the
Dijkstra rank is used as a measure of distance: for a fixed source s, the Dijkstra rank of
a node t is the rank w.r.t. the order which Dijkstra’s algorithm settles the nodes in. Such
plots are based on 1 000 random source nodes. After performing a lot of preliminary
experiments, we decided to apply the stall-in-advance technique to the construction and
update process (with p := 1 for the construction of level 1 and p := 5 for all other levels)
and the stall-on-demand technique to the query.

Highway Hierarchy Construction.

In order to determine the highway node sets, we construct seven levels of the highway
hierarchy using our default speed profile and neighbourhood size H = 70. This can be
done in 16 minutes. For all further experiments, these highway-node sets are used.

Static Scenario.

The first data column of Tab. 7.6 contains the construction time of the multi-level overlay
graph and the average query performance for the default speed profile. Figure 7.16 shows
the query performance against the Dijkstra rank. The disk space overhead of the
static variant is 8 bytes per node to store the additional edges of the multi-level overlay
graph and the level data associated with the nodes. Note that this overhead can be further
reduced to as little as 2.0 bytes per node yielding query times of 1.55 ms (Tab. 7.9). The

8we call this our speed profile

132

speed profile default (reduced) fast car slow car slow truck distance
constr. [min] 1:40 (3:04) 1:41 1:39 1:36 3:56
query [ms] 1.17 (1.12) 1.20 1.28 1.50 35.62
#settled nodes 1 414 (1 382) 1 444 1 507 1 667 7 057

Table 7.6: Construction time of the overlay graphs and query performance for different
speed profiles using the same highway-node sets. For the default speed profile, we also
give results for the case that the edge reduction step (Section 7.5.2) is applied.

any road type motorway national regional urban
|change set| + − ∞ × + − ∞ × + ∞ + ∞ + ∞

1 2.7 2.5 2.8 2.6 40.0 40.0 40.1 37.3 19.9 20.3 8.4 8.6 2.1 2.1
1000 2.4 2.3 2.4 2.4 8.4 8.1 8.3 8.1 7.1 7.1 5.3 5.3 2.0 2.0

Table 7.7: Update times per changed edge [ms] for different road types and different
update types: add a traffic jam (+), cancel a traffic jam (−), block a road (∞), and
multiply the weight by 10 (×). Due to space constraints, some columns are omitted.

affected #settled nodes query time [ms]
|change set| queries absolute relative init search total

1 0.6 % 2 347 (1.7) 0.3 2.0 2.3
10 6.3 % 8 294 (5.9) 1.9 7.2 9.1

100 41.3 % 43 042 (30.4) 10.6 36.9 47.5
1 000 82.6 % 200 465 (141.8) 62.0 181.9 243.9

10 000 97.5 % 645 579 (456.6) 309.9 627.1 937.0

Table 7.8: Query performance depending on the number of edge weight changes (select
only motorways, multiply weight by 10). For ≤ 100 changes, 100 different edge sets are
considered; for ≥ 1 000 changes, we deal only with one set. For each set, 1 000 queries
are performed. We give the average percentage of queries whose shortest-path length
is affected by the changes, the average number of settled nodes (also relative to zero
changes), and the average query time, broken down into the init phase where the reliable
levels are determined and the search phase.

133

preprocessing static queries updates dynamic queries
time space time #settled compl. single #settled nodes

method [min] [B/node] [ms] nodes [min] [ms] 10 chgs. 1000 chgs.
HH pure 17 28 1.16 1 662 17 – – –
StHNR 19 8 1.12 1 382 3 – – –
StHNR mem 24 2 1.55 2 453 8 – – –
DynHNR 18 32 1.17 1 414 2 37 8 294 200 465
DynALT-16 (85) 128 (53.6) 74 441 (6) (2 036) 75 501 255 754

Table 7.9: Comparison between pure highway hierarchies, three variants of highway-
node routing (HNR), and dynamic ALT-16 [36]. ‘Space’ denotes the average disk space
overhead. We give execution times for both a complete recomputation using a similar
cost function and an update of a single motorway edge multiplying its weight by 10. Fur-
thermore, we give search space sizes after 10 and 1 000 edge weight changes (motorway,
×10) for the mobile scenario. Time measurements in parentheses have been obtained on
a similar, but not identical machine.

Q
ue

ry
 T

im
e

[m
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0
1

2

0
1

2

Figure 7.16: Query performance against Dijkstra rank for the default speed profile, with
edge reduction. Each box represents the three quartiles box-and-whisker plot

134

total disk space9 of 32 bytes per node also includes the original edges and a mapping from
original to internal node IDs (that is needed since the nodes are reordered by level).

Changing the Cost Function.

In addition to our default speed profile, Tab. 7.6 also gives the construction and query
times for a few other selected speed profiles (which have been provided by the company
PTV AG) using the same highway-node sets. Note that for most road categories, our
profile is slightly faster than PTV’s fast car profile. The last speed profile (‘distance’) vir-
tually corresponds to a distance metric since for each road type the same constant speed
is assumed. The performance in case of the three PTV travel time profiles is quite close
to the performance for the default profile. Hence, we can switch between these profiles
without recomputing the highway-node sets. The constant speed profile is a rather diffi-
cult case. Still, it would not completely fail, although the performance gets considerably
worse. We assume that any other ‘reasonable’ cost function would rank somewhere be-
tween our default and the constant profile.

Updating a Few Edge Weights (Server Scenario).

In the dynamic scenario, we need additional space to manage the affected node sets A`u.
Furthermore, the edge reduction step is not yet supported in the dynamic case so that the
total disk space usage increases to 56 bytes per node. In contrast to the static variant, the
main memory usage is considerably higher than the disk space usage (around a factor of
two) mainly because the dynamic data structures maintain vacancies that might be filled
during future update operations.

We can expect different performances when updating very important roads (like mo-
torways) or very unimportant ones (like urban streets, which are usually only relevant
to very few connections). Therefore, for each of the four major road categories, we pick
1 000 edges at random. In addition, we randomly pick 1 000 edges irrespective of the road
type. For each of these edge sets, we consider four types of updates: first, we add a traffic
jam to each edge (by increasing the weight by 30 minutes); second, we cancel all traffic
jams (by setting the original weights); third, we block all edges (by increasing the weights
by 100 hours, which virtually corresponds to ‘infinity’ in our scenario); fourth, we mul-
tiply the weights by 10 in order to allow comparisons to [36]. For each of these cases,
Tab. 7.7 gives the average update time per changed edge. We distinguish between two
change set sizes: dealing with only one change at a time and processing 1 000 changes
simultaneously.

9The main memory usage is somewhat higher. However, we cannot give exact numbers for the static
variant since our implementation does not allow to switch off the dynamic data structures.

135

As expected, the performance depends mainly on the selected edge and hardly on the
type of update. The average execution times for a single update operation range between
40 ms (for motorways) and 2 ms (for urban streets). Usually, an update of a motorway
edge requires updates of most levels of the overlay graph, while the effects of an urban-
street update are limited to the lowest levels. We get a better performance when several
changes are processed at once: for example, 1 000 random motorway segments can be
updated in about 8 seconds. Note that such an update operation will be even more efficient
when the involved edges belong to the same local area (instead of being randomly spread),
which might be a common case in real-world applications.

Updating a Few Edge Weights (Mobile Scenario).

Table 7.8 shows for the most difficult case (updating motorways) that using our modified
query algorithm we can omit the comparatively expensive update operation and still get
acceptable execution times, at least if only a moderate amount of edge weight changes
occur. Additional experiments have confirmed that, similar to the results in Tab. 7.7, the
performance does not depend on the update type (add 30 minutes, multiply by 10, . . .), but
on the edge type (motorway, urban street, . . .) and, of course, on the number of updates.

Comparisons.

Highway-node routing has similar preprocessing and query times as pure highway hier-
archies, but (in the static case) a significantly smaller memory overhead. Table 7.9 gives
detailed numbers, and it also contains a comparison to the dynamic ALT approach [36]
with 16 landmarks. We can conclude that as a stand-alone method, highway-node routing
is (clearly) superior to dynamic ALT w.r.t. all studied aspects.10

10Note that our comparison concentrates on only one variant of dynamic ALT: different landmark sets
can yield different tradeoffs. Also, better results can be expected when a lot of very small changes are
involved. Moreover, dynamic ALT can turn out to be very useful in combination with other dynamic
speedup techniques yet to come.

136

Chapter 8

Minimum Spanning Trees

The section on the I-Max-Filteralgorithm is based on [37]. The external memory algo-
rithm is described in [38] and the addition on connected components was taken from [6].

8.1 Definition & Basic Remarks
Consider a connected1 undirected graph G = (V,E) with positive edge weights c : E →
R+. A minimum spanning tree (MST) of G is defined by a set T ⊆ E of edges such that
the graph (V, T) is connected and c(T) :=

∑
e∈T c(e) is minimized. It is not difficult to

see that T forms a tree2 and hence contains n− 1 edges.
Because MSTs are such a simple concept, they also show up in many seemingly unre-

lated problems such as clustering, finding paths that minimize the maximum edge weight
used, or finding approximations for harder problems like TSP.

8.1.1 Two important properties
The following two properties are the base for nearly every MST algorithm. On an abstract
level they even suffice to formulate the algorithms by Kruskal and Prim presented later.

Cut Property: Consider a proper subset S of V and an edge e ∈ {(s, t) : (s, t) ∈
E, s ∈ S, t ∈ V \ S} with minimal weight. Then there is an MST T of G that contains e.

Proof: Consider any MST T ′ of G. Since T ′ is a tree, T ′ contains a unique edge
e′ ∈ T ′ connecting a node from S with a node from V \S. Furthermore, T ′ \ {e′} defines
a spanning trees for S and V \ S and hence T = (T ′ \ {e′}) ∪ {e} defines a spanning

1IfG is not connected, we may ask for a minimum spanning forest — a set of edges that defines an MST
for each connected component of G.

2In this chapter we often identify a set of edges T with a subgraph of (V, T).

137

4

2

3

1

7
2

5
9

Figure 8.1: The cut property

4

2

3

1

79
2

5

Figure 8.2: The cycle property

tree. By our assumption, c(e) ≤ c(e′) and therefore c(T) ≤ c(T ′). Since T ′ is an MST,
we have c(T) = c(T ′) and hence T is also an MST.

Cycle Property: Consider any cycle C ⊆ E and an edge e ∈ C with maximal weight.
Then any MST of G′ = (V,E \ {e}) is also an MST of G.

Proof: Consider any MST T of G. Since trees contain no cycles, there must be some
edge e′ ∈ C \ T . If e = e′ then T is also an MST of G′ and we are done. Otherwise,
T ′ = {e′}∪T \ {e} forms another tree and since c(e′) ≤ c(e), T ′ must also form an MST
of G.

8.2 Classic Algorithms
The well known Jarnik-Prim algorithm starts from an (arbitrary) source node s and grows
a minimum spanning tree by adding one node after the other, using the cut property. The
set S is the set of nodes already added to the tree. This choice guarantees that the smallest
edge leaving S is not in the tree yet.

This high-level description is of course not suited for implementation. The main chal-
lenge is to find (u, v) from the cut property efficiently. To this end, the algorithm 8.4
maintains the shortest connection between any node v ∈ V \ S to S in an (adresseable)
priority queue q. The smallest element in q gives the desired edge. To add a new node to
S, we have to check its incident edges whether they give improved connections to nodes
in V \ S. Note that by setting the distance of nodes in S to zero, edges connecting s with
a node v ∈ S will be ignored as required by the cut property. This small trick saves a
comparison in the innermost loop.

It may be interesting to study the form of graph representation we need for the Jarnik-
Prim algorithm. The graph is accessed when we add a new node to the tree and scan

138

T:= ∅
S:= {s} for arbitrary start node s
repeat n− 1 times

find (u, v) fulfilling the cut property for S
S:= S ∪ {v}
T := T ∪ {(u, v)}

Figure 8.3: Abstract description of the Jarnik-Prim algorithm

Function jpMST(V, E, w) : Set of Edge
dist=[∞, . . . ,∞] : Array [1..n] // dist [v] is distance of v from the tree
pred : Array of Edge // pred[v] is shortest edge between S and v
q : PriorityQueue of Node with dist[·] as priority
dist[s] := 0; q.insert(s) for any s ∈ V
for i := 1 to n− 1 do do

u := q.deleteMin() // new node for S
dist[u] := 0
foreach (u, v) ∈ E do

if c((u, v)) < dist [v] then
dist[v] := c((u, v)); pred[v] := (u, v)
if v ∈ q then q.decreaseKey(v) else q.insert(v)

return {pred [v] : v ∈ V \ {s}}

Figure 8.4: The Jarnik-Prim algorithm using priority queues

139

4

2

3

1

79
2

5

m 8=m+1

V

E

1 3 5 7 9
1 n 5=n+1

4 1 3 2 4 1 3
c 9 5 7 7 2 2 95

2

1

Figure 8.5: Adjacency Array

T := ∅ // subforest of the MST
foreach (u, v) ∈ E in ascending order of weight do

if u and v are in different subtrees of T then
T := T ∪ {(u, v)} // Join two subtrees

return T

Figure 8.6: An abstract description of Kruskal’s algorithm

its edges for new or cheaper connections to nodes outside the tree. An adjacency array
(a static variant of the well-known adjacency list) supports this mapping from nodes to
incident edges: We maintain the edges in a sorted array, first listing all neighbors of node 1
(and the costs to reach them), then all neighbors of node 2, etc. A second array maintains
a pointer for every node leading to the first incident edge.

This representation is very cache efficient for our application (in contrast to e.g. a
linked list). On the downside, we have to store every edge twice and receive a very static
data structure.

For analysing the algorithm’s runtime, we have to study the number of priority queue
operations (all other instructions run in O(n+m)). We obviously have n deleteMin
operations, costing O(log n) each. As every node is regarded exactly once, every edge is
regarded exactly once resulting in O(m) decreaseKey operations. The latter can be
implemented in amortized time O(1) using Fibonacci Heaps. In total, we have costs of
O(m+ n log n). This result is partly theoretical as practical implementations will often
resort to simpler pairing heaps for which the analysis is still open.

Another classic algorithm is due to Kruskal:
Again, correctness follows from from the cut property (set S as one of the subtrees

connected by (u, v)).
For an efficient implementation of this algorithm we need a fast way to determine

whether two nodes are in the same subtree. We use the Union-Find data structure for this
task: It maintains disjoint sets (in our case containing the subtrees of T) whose union is
V . It allows near-constant operations to identify the subtree a node is in (via the find-
operaton) and to merge two subtrees using link. A more general overview over Union-

140

T : UnionFind(n)
sort E in ascending order of weight
kruskal(E)

Procedure kruskal(E)
foreach (u, v) ∈ E do

u′:= T.find(u)
v′:= T.find(v)
if u′ 6= v′ then

output (u, v)
T.link(u′, v′)

Figure 8.7: Kruskal’s algorithm using union-find

Find is given in 8.2.1.
Using Union-Find, we have a running time of O(sort(m) +mα(m,n)) =

O(m logm) where α is the inverse Ackermann function.
The necessary graph representation is very simple: An array of edges is enough and

can be sorted and scanned very cache efficiently. Every edge is represented only once.
Which of these two algorithms is better? As often, there is no easy answer to this

question. Kruskal wins for very sparse graphs while Prim’s algorithm is more suited
for dense graphs. The switching point is unclear and is heavily dependant on the input
representation, the structure of the graphs, etc. Systematic experimental evaluation is
required.

8.2.1 Excursus: The Union-Find Data Structure
A partition of a set M into subsets M1, . . . , Mk has the property that the subsets are
disjoint and cover M , i.e., Mi ∪ Mj = ∅ for i 6= j and M = M1 ∪ · · · ∪ Mk. For
example, in Kruskal’s algorithm the forest T partitions V into subtrees — including trivial
subsets of size one for isolated nodes. Kruskal’s algorithms performs two operations on
the partition: Testing whether two elements are in the same subset (subtree) and joining
two subsets into one (inserting an edge into T).

The union-find data structure maintains a partition of the set 1..n and supports these
two operations. Initially, each element is in its own subset. Each subset is assigned a
leader element (or representative). The function find(i) finds the leader of the subset
containing i; link(i, j) applied to leaders of different partitions joins these two subsets.
Figure 8.8 gives an efficient implementation of this idea. The most important part of
the data structure is the array parent . Leaders are their own parents. Following parent

141

Class UnionFind(n : N) // Maintain a partition of 1..n
parent=〈1, 2, . . . , n〉 : Array [1..n] of 1..n
gen=〈0, . . . , 0〉 : Array [1..n] of 0.. log n // generation of leaders

Function find(i : 1..n) : 1..n // picture ‘before’
if parent[i] = i then return i
else i′ := find(parent[i])

parent[i] := i′ // path compression
return i′ // picture ‘after’

Procedure link(i, j : 1..n) // picture ‘before’
assert i and j are leaders of different subsets
if gen[i] < gen[j] then parent[i] := j // balance
else

parent[j] := i
if gen[i] = gen[j] then gen[i]++

Procedure union(i, j : 1..n)
if find(i) 6= find(j) then link(find(i), find(j))

Figure 8.8: An efficient Union-Find data structure maintaining a partition of the set
{1, . . . , n}.

references leads to the leaders. The parent references of a subset form a rooted tree,
i.e., a tree with all edges directed towards the root.3 Additionally, each root has a self-
loop. Hence, find is easy to implement by following the parent references until a
self-loop is encountered.

Linking two leaders i and j is also easy to implement by promoting one of the leaders
to overall leader and making it the parent of the other. What we have said so far yields a
correct but inefficient union-find data structure. The parent references could form long
chains that are traversed again and again during find operations.

Therefore, Figure 8.8 makes two optimizations. The link operation uses the array
gen to limit the depth of the parent trees. Promotion in leadership is based on the
seniority principle. The older generation is always promoted. It can be shown that this
measure alone limits the time for find to O(log n). The second optimization is path
compression. A long chain of parent references is never traversed twice. Rather, find
redirects all nodes it traverses directly to the leader. It is possible to prove that these two
optimizations together make the union-find data structure “breath-takingly” efficient —

3Note that this tree may have very different structure compared to the corresponding subtree in Kruskal’s
algorithm.

142

Procedure quickKruskal(E : Sequence of Edge)
if m ≤ βn then kruskal(E) // for some constant β
else

pick a pivot p ∈ E
E≤:= 〈e ∈ E : e ≤ E〉 // partitioning a la
E>:= 〈e ∈ E : e > E〉 // quicksort
quickKruskal(E≤)
E ′>:= filter(E>)
quickKruskal(E ′>)

Function filter(E)
make sure that leader[i] gives the leader of node i // O(n)!
return 〈(u, v) ∈ E : leader [u] 6= leader [v]〉

Figure 8.9: The QuickKruskal algorithm

the amortized cost of any operation is almost constant.

8.3 QuickKruskal
As Kruskal’s algorithm becomes less attractive for dense graphs, we propose a variant
that uses a quicksort-like recursion to deal with those instances:

When the average degree is bounded by some constant β (i.e. the graph is sparse) we
know that Kruskal’s algorithm performs well. Else, we determine a MST recursively on
the smallest edges of the graph, resulting in a set of connected components. Now the sec-
ond recursion only has to regard those heavy edges connecting two different components,
the others are filtered out. The filtering subroutine makes again use of the Union-Find
data structure: We have leader[v] := find(v) to determine the connected component
node v is in. Note that n find operations have a running time of O(n)4.

We can now attempt an average-case analysis of QuickKruskal: We assume that the
weights are unique and randomly chosen, the pivot has median weight. Let T (m) denote
the expected execution time for m edges. For m ≤ βn, our base case, we have T (m) =
O(m logm) = O(n log n). In the general case, we have costs of O(m+ n) = Ω (m) for
partitioning and filtering. E≤ has a size of m/2 for an optimal pivot. The key observation
here is that the number of edges surviving the filtering is only linear in n.

4this can be shown using amortized analysis: Every element accessed once during a find operation will
be a direct successor of its root node, resulting in constant costs for subsequent requests. O(n) is less than
the general bound on n union-find operations

143

R:= random sample of r edges from E
F :=MST(R) // Wlog assume that F spans V
L:= ∅ // “light edges” with respect to R
foreach e ∈ E do // Filter

C := the unique cycle in {e} ∪ F
if e is not heaviest in C then

L:= L ∪ {e}
return MST((L ∪ F))

Figure 8.10: A simplified filtering algorithm using random samples

This leads to T (m) = Ω (m)+T (m/2)+T (2n). Since for β ≥ 2, the second recursion
will already fall back to the base case, we have the linear recurrence T (m) = Ω (m) +
n log n+ T (m/2) which solves (using stanard techniques) to O

(
m+ n log n log m

n

)
.

A hard instance for QuickKruskal would consist of several very dense components
consisting of light edges which are connected by heavy edges which would not be sorted
out during filtering as the first recursion will concentrate on local MSTs within the
components. More concrete: Consider the fully connected graph Kx2 (for x ∈ N) where
every node is replaced with another Kx. This graph has O(2x4) edges. Let the “outer“
edges have weight 2 whereas the “inner“ edges have weight 1. The first recursion of
QuickKruskal will only regard edges within the Kx components but completely ignore
the heavy edges so none of them is filtered out.

8.4 The I-Max-Filter algorithm
A similar approach also resorts to filtering, but the subgraph does not consist of the lightest
edges but of a random sample:

While Kruskal’s and Prim’s algorithms make use of the Cut Property, this code’s cor-
rectness is guaranteed by the Cycle Property. Its performance depends on the size of L
and F . It can be shown that if r edges are chosen, we expect only mn

r
edges to survive the

filtering5.
The tricky part in implementing this algorithm is how to determine the heaviest edge

in C. We exploit that by renumbering nodes according to the order in which they are
added to the MST by the Jarnik-Prim algorithm, heaviest edge queries can be reduced

5this is because for every edge not to be filtered has to be in MST ({e} ∪R), which has ≤ n elements.
The probability of survival therefore is ≤ n

r , as r edges are regarded

144

56 98 41 745688 7677347515 8062526530

77 80

98 98 15 75 77 80

76745275659830

65 75 77 62 767498

7452

417798

88 65 75 77

Level 0

Level 1

Level 2

98 75 34 52 77 8098 7777779898 75 75 56 77 Level 3

56

Figure 8.11: Example of a layers array for interval maxima. The suffix sections are
marked by an extra surrounding box.

to simple interval maximum queries. A proof for this claim can be found in 12.5. We
therefore reduced the problem to efficiently compute interval maxima:

Given an array a[0] . . . a[n− 1], we explain how max a[i..j] can be computed in con-
stant time using preprocessing time and spaceO(n log n). The emphasis is on very simple
and fast queries since we are looking at applications where many more than n log n queries
are made. This algorithm might be of independent interest for other applications. Slight
modifications of this basic algorithm are necessary in order to use it in the I-Max-Filter
algorithm. They will be described later. In the following, we assume that n is a power of
two. Adaption to the general case is simple by either rounding up to the next power of two
and filling the array with −∞ or by introducing a few case distinctions while initializing
the data structure.

Consider a complete binary tree built on top of a so that the entries of a are the leaves
(see level 0 in Figure 8.11). The idea is to store an array of prefix or suffix maxima with
every internal node of the tree. Left successors store suffix maxima. Right successors
store prefix maxima. The size of an array is proportional to the size of the subtree rooted
at the corresponding node. To compute the interval maximum max a[i..j], let v denote
the least common ancestor of a[i] and a[j]. Let u denote the left successor of v and let
w denote the right successor of v. Let u[i] denote the suffix maximum corresponding
to leaf i in the suffix maxima array stored in u. Correspondingly, let w[j] denote the
prefix maximum corresponding to leaf j in the prefix maxima array stored in w. Then
max a[i..j] = max(u[i], w[j]).

We observed that this approach can be implemented in a very simple way using a
log(n)×n array preSuf. As can be seen in Figure 8.11, all suffix and prefix arrays in one
layer can be assembled in one array as follows

preSuf[`][i] =

{
max(a[2`b..i]) if b is odd
max(a[i..(2` + 1)b− 1]) otherwise

where b =
⌊
i/2`

⌋
.

145

//Compute MST of G = ({0, . . . , n− 1} , E)
Function I-Max-Filter-MST(E) : set of Edge

E ′ := random sample from E of size
√
mn

E ′′ := JP-MST(E ′)
Let jpNum[0..n− 1] denote the order in which JP-MST added the nodes
Initialize the table preSuf[0.. log n][0..n− 1]
//Filtering loop
forall edges e = (u, v) ∈ E do

` := msbPos(jpNum[u]⊕jpNum[v])
if we < preSuf[`][jpNum[u]] and we < preSuf[`][jpNum[v]] then add e to E ′′

return JP-MST(E ′′)

Figure 8.12: The I-Max-Filter algorithm.

Furthermore, the interval boundaries can be used to index the arrays. We simply have
max a[i..j] = max(preSuf[`][i], preSuf[`][j]) where ` = msbPos(i ⊕ j); ⊕ is the bit-
wise exclusive-or operation and msbPos(x) = blog2 xc is equal to the position of the
most significant nonzero bit of x (starting at 0). Some architectures have this operation
in hardware6; if not, msbPos(x) can be stored in a table (of size n) and found by table
lookup. Layer 0 is identical to a. A further optimization stores a pointer to the array
preSuf[`] in the layer table. As the computation is symmetric, we can conduct a table
lookup with indices i, j without knowing whether i < j or j < i.

To use this data structure for the I-Max-Filter algorithm we need a small modification
since we are interested in maxima of the form max a[min(i, j) + 1..max(i, j)] without
knowing which of two endpoints is the smaller. Here we simply note that the approach
still works if we redefine the suffix maxima to exclude the first entry, i.e., preSuf[`][i] =
max(a[i+ 1..(2` + 1)

⌊
i/2`

⌋
− 1]) if

⌊
i/2`

⌋
is even.

We can now return to the original problem of finding an MST. Figure 8.12 gives a
detailed implementation of the I-Max-Filteralgorithm:

The I-Max-Filter algorithm computes MSTs in expected time
mTfilter + O(n log n+

√
nm) where Tfilter is the time required to query the filter about

one edge.
The algorithms we saw until now all had specific requirements for the graph repre-

sentation. The I-Max-Filter algorithm can be implemented to work well with any rep-
resentation that allows sampling edges in time linear in the sample size and that allows
fast iteration over all edges. In particular, it is sufficient to store each edge once. Our
implementation for I-Max-Filter uses an array in which each edge appears once as (u, v)
with u < v and the edges are sorted by source node (u).7

6One trick is to use the exponent in a floating point representation of x.
7These requirements could be dropped at very small cost. In particular, I-Max-Filter can work efficiently

146

Experiments

I-Max-Filter should work well for dense graphs where m� n log n. We try to prove this
claim in experiments.

Both algorithms, JP and I-Max-Filter were implemented in C++ and compiled using
GNU g++ version 3.0.4 with optimization level -O6. We use a SUN-Fire-15000
server with 900 MHz UltraSPARC-III+ processors.

We performed measurements with four different families of graphs, each with ad-
justable edge density ρ = 2m/n(n − 1). A test instance is defined by three parameters:
the graph type, the number of nodes and the density of edges (the number of edges is
computed from these parameters). Each reported result is the average of ten executions
of the relevant algorithm; each on a different randomly generated graph with the given
parameters. Furthermore, the I-Max-Filter algorithm is randomized because the sample
graph is selected at random. Despite the randomization, the variance of the execution
times within one test was consistently very small (less than 1 percent), hence we only plot
the averages.
Worst-Case: ρ · n(n − 1)/2 edges are selected at random and the edges are assigned
weights that cause JP to perform as many Decrease Key operations as possible.
Linear-Random: ρ·n(n−1)/2 edges are selected at random. Each edge (u, v) is assigned
the weight w(u, v) = |u− v| where u and v are the integer IDs of the nodes.
Uniform-Random: ρ · n(n− 1)/2 edges are selected at random and each is assigned an
edge weight which is selected uniformly at random.
Random-Geometric: Nodes are random 2D points in a 1× y rectangle for some stretch
factor y > 0. Edges are between nodes with Euclidean distance at most α and the weight
of an edge is equal to the distance between its endpoints. The parameter α indirectly
controls density whereas the stretch factor y allows us to interpolate between behavior
similar to class Uniform-Random and behavior similar to class Linear-Random.

Fig. 8.13 shows execution times per edge on the SUN for two graph families Worst-
Caseand Uniform-Random for n = 10000 nodes and varying density. We can see that I-
Max-Filter is up to 2.46 times faster than JP. The speedup is smaller for Uniform-Random
graphs. The reason is that for “average” inputs JP needs to perform only a sublinear num-
ber of decrease-key operations so that the part of code dominating the execution time of
JP is scanning adjacency lists and comparing the weight of each edge with the distance of
the target node from the current MST. There is no hope to be significantly faster than that.
Hence, when we say that I-Max-Filter outperforms JP this is with respect to space con-
sumption, simplicity of input conventions and worst-case performance guarantees rather
than average case execution time.

On very sparse graphs, I-Max-Filter is up to two times slower than JP, because

with a completely unsorted edge array or with an adjacency array representation that stores each edge only
in one direction. The latter only needs space for m+ n node indices and m edge weights.

147

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
Filter

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
Filter

Figure 8.13: Worst-Case and Uniform-Random graphs, 10000 nodes on a SUN machine.

148

4

1

4 3

1

4

1

79
2

5
9

2

7 (was {2,3})

output {2,3}

2

3 7
output {1,2}

5

9 2 (was {4,3})

Figure 8.14: Example for node contraction

√
mn = Θ(m) and as a result both the sample graph and the graph that remains after

the filtering stage are not much smaller than the original graph. The runtime is therefore
comparable to two runs of JP on the input.

8.5 External MST
After studying and extending some classic algorithms for graphs in main memory, we
now consider another approach. We start with a simple randomized algorithm using a
graph contraction operation, develop an even simpler variant and step by step generate an
external algorithm for huge graphs.

Contracting is defined as follows: If e = (u, v) ∈ E is known to be an MST edge, we
can remove u from the problem by outputting e and identifying u and v, e.g., by removing
node u and renaming an edge of the form (u,w) to a new edge (v, w). By remembering
where (v, w) came from, we can reconstruct the MST of the original graph from the MST
of the smaller graph.

With this operation, we can use Boruvka’s Algorithm which consists of repeated ex-
ecution of Boruvka Phases: In each phase, find the lightest incident edge for each node.
The set C of these edges can be output as part of the MST (because of the Cut property).
Now contract these edges, i.e., find a representative node for each connected component
of (V,C) and rename an edge {u, v} to {componentId(u), componentId(v)}. This rou-
tine at least halves the number of nodes (as every edge is picked at most twice) and runs
in O(m)8. In total, if we contract our graph until only one node is left, we have a runtime
of O(m log n).

On our way to an external MST algorithm we will use a simpler variant of Boruvka’s
Algorithm which does not use phases — Sibeyn’s algorithm:

In the iteration when i nodes are left (note that i = n in the first iteration), the expected
degree of a random node is at most 2m/i. Hence, the expected number of edges, Xi,
inspected in iteration i is at most 2m/i. By the linearity of expectation, the total expected

8We can use Union-Find again: m operations to construct all components by merging and another m
operations to find the edges between different components

149

for i := n downto n′ + 1 do
pick a random node v
find the lightest edge (u, v) out of v and output it
contract (u, v)

Figure 8.15: High level version of Sibeyn’s MST algorithm.

Factor 8 node reduction (3× Boruvka or sweep algorithm) // O(m+ n)
R⇐ m/2 random edges
F ⇐MST (R) [Recursively]
Find light edges L (edge reduction) // O(m+ n), E[|L|] ≤ mn/8

m/2
= n/4

T ⇐MST (L ∪ F) [Recursively]

Figure 8.16: Outline of a randomized linear time MST algorithm.

number of edges processed is

E[
∑

n′<i≤n

Xi] =
∑

n′<i≤n

E[Xi] ≤
∑

n′<i≤n

2m

i
= 2m

∑
n′<i≤n

1

i
= 2m

(∑
1≤i≤n

1

i
−
∑

1≤i≤n′

1

i

)

= 2m(Hn −Hn′) ≤ 2m(lnn− lnn′) = 2m ln
n

n′

where Hn = lnn+ 0.577 · · ·+O(1/n) is the n-th harmonic number.
The techniques of sampling and contraction can lead to a (impractical) randomized

linear time algorithm, developed by Karger, Klein and Tarjan. It is presented in 8.16 but
not studied in detail. Its analysis depends again on the observation that clever sampling
will lead to an expected number of unfiltered (light) edges linear in n. The complicated
step is the fourth, done in linear time using table lookups. The expected runtime for this
algorithm is given by T (n,m) ≤ T (n/8,m/2) + T (n/8, n/4) + c(n + m), which is
fulfilled by T (n,m) = 2c(n+m).

8.5.1 Semiexternal Algorithm
A first step for an algorithm that can cope with huge graphs stored on disk is a semiexter-
nal algorithm: We use Kruskal’s Algorithm but incorporate an external sorting algorithm.
We then just have to scan the edges and maintain the union-find array in main memory.

150

π : random permutation V → V
sort edges (u, v) by min(π(u), π(v))
for i := n downto n′ + 1 do

pick the node v with π(v) = i
find the lightest edge (u, v) out of v and output it
contract (u, v)

Figure 8.17: High level implementation for graph contraction with sweeping

u v...

relink

relink

outputsweep line

Figure 8.18: Sweeping scans through the randomly ordered nodes, removes one, outputs
its lightest edge and relinks the others

This only requires one 32 bit word per node to store up to 0..232 − 32 = 4 294 967 264
nodes. There exist asymptotically better algorithms but these come with discouraging
constant factors and significantly larger data structures.

8.5.2 External Sweeping Algorithm
We can use the semiexternal algorithm while n < M − 2B. For larger inputs, we cannot
store the additional data structures in main memory. To deal with those graphs, we use
again the technique of node reduction via contraction until we can resort to our semiex-
ternal algorithm.

This algorithm is a more concrete implementation of Sibeyn’s algorithm from Fig-
ure 8.5. We replace random selection of nodes by sweeping the nodes in an order fixed in
advance. We assume that nodes are numbered 0..n− 1. We first rename the node indices
using a random permutation π : 0..n− 1→ 0..n− 1 and then remove renamed nodes in
the order n−1, n−2,. . . , n′. This way, we replace random access by sorting and scanning
the nodes once. The appendix (in section 12.6) describes a procedure to create a random
permutation on the fly without additional I/Os.

There is a very simple external realization of the sweeping algorithm based on priority
queues of edges. Edges are stored in the form ((u, v), c, eold) where (u, v) is the edge in
the current graph, c is the edge weight, and eold identifies the edge in the original graph.

151

Q: priority queue // Order: max node, then min edge weight
foreach ({u, v} , c) ∈ E do Q.insert(({π(u), π(v)} , c, {u, v}))
current := n+ 1
loop

({u, v} , c, {u0, v0}) := Q.deleteMin()
if current6= max {u, v}then

if current= M + 1 then return
output {u0, v0} , c
current := max {u, v}
connect := min {u, v}

else Q.insert(({min {u, v} , connect} , c, {u0, v0}))

Figure 8.19: Sweeping algorithm implementation using Priority Queues

The queue normalizes edges (u, v) in such a way that u ≥ v. We define a priority order
((u, v), c, eold) < ((u′, v′), c′, e′old) iff u > u′ or u = u′ and c < c′. With these conventions
in place, the algorithm can be described using the simple pseudocode in Figure 8.19. If
eold is just an edge identifier, e.g. a position in the input, an additional sorting step at the
end can extract the actual MST edges. If eold stores both incident vertices, the MST edge
and its weight can be output directly.

With optimal external priority queues, this implementation performs
≈ sort(10m log n

M
) I/Os.

The priority queue implementation unnecessarily sorts the edges adjacent to a node
where we really only care about the smallest edge coming first. We now describe an
implementation of the sweeping algorithm that has internal work linear in the total I/O
volume. We first make a few simplifying assumptions to get closer to our implementation.

The representation of edges and the renaming of nodes works as in the priority queue
implementation. As before, in iteration i, node i is removed by outputting the lightest
edge incident to it and relinking all the other edges. We split the node range n′..n − 1
into k = O(M/B) equal sized external buckets, i.e., subranges of size (n − n′)/k and
we define a special external bucket for the range 0..n′ − 1. An edge (u, v) with u > v
is always stored in the bucket for u. We assume that the current bucket (that contains i)
completely fits into main memory. The other buckets are stored externally with only a
write buffer block to accommodate recently relinked edges.

When i reaches a new external bucket, it is distributed to internal buckets — one for
each node in the external bucket. The internal bucket for i is scanned twice. Once for
finding the lightest edge and once for relinking. Relinked edges destined for the current
external bucket are immediately put into the appropriate internal bucket. The remaining
edges are put into the write buffer of their external bucket. Write buffers are flushed to

152

...

externalexternal

internal

current semiexternal

Figure 8.20: Sweeping with buckets

disk when they become full.
When only n′ nodes are left, the bucket for range 0..n′ − 1 is used as input for the

semi-external Kruskal algorithm.
Nodes with very high degree (> M) can be moved to the bucket for the semiexternal

case directly. These nodes can be assigned the numbers n′ + 1, n′ + 2,. . . without danger
of confusing them with nodes with the same index in other buckets. To accomodate these
additional nodes in the semiexternal case, n′ has to be reduced by at mostO(M/B) since
for m = O(M2/B) there can be at most O(M/B) nodes with degree Ω (M).

8.5.3 Implementation & Experiments
Our external implementation makes extensive use of the Stxxl9 and uses many techniques
and data structures we already saw in earlier chapters. The semiexternal Kruskal and
the priority queue based sweeping algorithm become almost trivial using external sorting
and external priority queues. The bucket based implementation uses external stacks to
represent external buckets. The stacks have a single private output buffer and they share
a common pool of additional output buffers that facilitates overlapping of output and
internal computation. When a stack is switched to reading, it is assigned additional private
buffers to facilitate prefetching.

The internal aspects of the bucket implementation are also crucial. In particular, we
need a representation of internal buckets that is space efficient, cache efficient, and can
grow adaptively. Therefore, internal buckets are represented as linked lists of small blocks
that can hold several edges each. Edges in internal buckets do not store their source node
because this information is redundant.

For experiments we use three families of graphs: Instance families for random graphs
with random edge weights and random geometric graphs where random points in the unit

9see chapter 5

153

PCI−Busses

Controller

Channels

2x64x66 Mb/s

4 Threads
2x Xeon

12
8

E7500
1 GB
DDR
RAM

8x45

4x2x100
MB/s

400x64 Mb/s

8x80
GBMB/s

Chipset

Intel

Figure 8.21: Setup for experiments on external MST

square are connected to their d closest neighbors. In order to obtain a simple family of
planar graphs, we use grid graphs with random edge weights where the nodes are arranged
in a grid and are connected to their (up to) four direct neighbors10.

The experiments have been performed on a low cost PC-server (around 3000 Euro in
July 2002) with two 2 GHz Intel Xeon processors, 1 GByte RAM and 4×80 GByte disks
(IBM 120GXP) that are connected to the machine in a bottleneck-free way. This machine
runs Linux 2.4.20 using the XFS file system. Swapping was disabled. All programs were
compiled with g++ version 3.2 and optimization level -O6. The total computer time
spend for the experiments was about 25 days producing a total I/O volume of several
dozen Terabytes.

Figure 8.22 summarizes the results for the bucket implementation. The curves only
show the internal results for random graphs — at least Kruskal’s algorithm shows very
similar behavior for the other graph classes.

Our implementation can handle up to 20 million edges. Kruskal’s algorithm is best
for very sparse graphs (m ≤ 4n) whereas the Jarnı́k-Prim algorithm (with a fast imple-
mentation of pairing heaps) is fastest for denser graphs but requires more memory. For
n ≤ 160 000 000, we can run the semiexternal algorithm and get execution times within
a factor of two of the internal algorithm.11 The curves are almost flat and very similar
for all three graph families. This is not astonishing since Kruskal’s algorithm is not very
dependent on the structure of the graph. Beyond 160 000 000 nodes, the full external al-

10Note that for planar graphs we can give a bound of O(sort(n)) if we deal with parallel edges: When
scanning the internal bucket for node i, the edges (i, v) are put into a hash table using v as a key. The
corresponding table entry only keeps the lightest edge connecting i and v seen so far.

11Both the internal and the semiexternal algorithm have a number of possibilities for further tuning (e.g.,
using integer sorting or a better external sorter for small elements). But none of these measures is likely to
yield more than a factor of 2.

154

Figure 8.22: Execution time per edge for m ≈ 2 · n (top),m ≈ 4 · n (center), m ≈ 8 · n
(bottom). “Kruskal“ and “Prim“ denote the results of these internal algorithms on the
“random“ input.

155

gorithm is needed. This immediately costs us another factor of two in execution time: We
have additional costs for random renaming, node reduction, and a blowup of the size of
an edge from 12 bytes to 20 bytes (for renamed nodes). For random graphs, the execution
time keeps growing with n/M .

The behavior for grid graphs is much better than predicted. It is interesting that sim-
ilar effects can be observed for geometric graphs. This is an indication that it is worth
removing parallel edges for many nonplanar graphs.12 Interestingly, the time per edge de-
creases with m for grid graphs and geometric graphs. The reason is that the time for the
semiexternal base case does not increase proportionally to the number of input edges. For
example, 5.6 · 108 edges of a grid graph with 640 · 106 nodes survive the node reduction,
and 6.3 · 108 edges of a grid graph with twice the number of edges.

Another observation is that for m = 2560 · 106 and random or geometric graphs we
get the worst time per edge for m ≈ 4n. For m ≈ 8n, we do not need to run the node
reduction very long. For m ≈ 2n we process less edges than predicted even for random
graphs simply because one MST edge is removed for each node.

8.6 Connected Components
We modify and extend the bucket version of the bucket algorithm to get the connected
components of an exernal graph. As in the spanning forest algorithm, the input is an
unweighted graph represented as a list of edges. The output of the algorithm is a list
of entries (v, c), v ∈ V , where c is the connected component id of node v, at the same
time c is the id of a node belonging to the connected component. This special node
c is sometimes called the representative node of a component. The algorithm makes
two passes over adjacency lists of nodes (left-to-right pass v = n − 1..0 and right-to-
left v = 0..n − 1, v ∈ V), relinking the edges such that they connect node v with the
representative node of its connected component.

If there are k = O(M/B)) external memory buckets then bucket i ∈ {0..k − 1}
contains the adjacent edges (u, v), u > v of nodes ui−1 < u < ui, where ui is the upper
(lower) bound of node ids in bucket i(i+1). Additionally, there are k question buckets and
k answer buckets with the same bounds. A question is a tuple (v, r(v)) that represents the
assignment of node v to a preliminary representative node r(v). An answer is a tuple
(v, r(v)) that represents the assignment of node v to an ultimate representative node.
Function b : V → {0..k − 1} maps a node id to the coresponding bucket id according
to the bucket bounds. The bucket implementation is complemented with the following
steps. During the processing of node v, the algorithm assigns r(v) tentatively the id of
its neighbor with the smallest id. If no neighbor exists then r(v) := v. After processing

12Very few parallel edges are generated for random graphs. Therefore, switching off duplicate removal
gives about 13 % speedup for random graphs compared to the numbers given.

156

the bucket i we post the preliminary assignments (v, r(v)) of nodes v, ui−1 < v . ui to
question bucket b(r(v)) if r(v) does not belong to bucket i. Otherwise we can update r(v)
with r(r(v)). If the new r(v) belongs to bucket i than it is the ultimate representative node
of v and (v, r(v)) can be written to the answer bucket b(v), otherwise we post question
(v, r(v)) to the appropriate question bucket. Note that the first answer bucket is handled
differently as it is implemented as the union-find data structure in the base case. For v in
the union-data structure r(v) is the id of the leader node of the union where v belongs to.
The connected component algorithm needs an additional right-to-left scan to determine
the ultimate representatives which have not been determined in the previous left-to-right
scan. The buckets are read in the order 0..k − 1. For each (v, r(v)) in question bucket
i we update r(v) with the ultimate representative r(r(v)) looking up values in answer
bucket i. The final value (v, r(v)) is appended to answer bucket b(v). After answering
all questions in bucket i, the content of answer bucket i is added to the output of the
connected component algorithm. If one only needs to compute the component ids and
no spanning tree edges then the implementation does not keep the original edge id in the
edge data structure. It is sufficient to invert randomization for the node ids in the output,
which can be done with the chosen randomization scheme without additional I/Os. Due
to this measure the total I/O volume and the memory requirements of the internal buckets
are reduced such that the block size of the external memory buckets can be made larger.
All this leads to an overall performance improvement.

157

Chapter 9

String Sorting

This chapter is based on [39].

9.1 Introduction
The task is to sort a set R = {s1, s2, . . . , sn} of n (non-empty) strings into the lexico-
graphic order. N is the total length of strings,D the total length of distinguishing prefixes.
The distinguishing prefix of a string s in R is the shortest prefix of s that is not a prefix
of another string (or s if s is a prefix of another string). It is the shortest prefix of s that
determines the rank of s in R. A sorting algorithm needs to access every character in the
distinguishing prefixes, but no character outside the distinguishing prefixes.

We can evaluate algorithms using different alphabet models: In an ordered alphabet,
only comparisons of characters are allowed. In an ordered alphabet of constant size, a
multiset of characters can be sorted in linear time using counting sort. An integer alphabet
is {1, . . . , σ} for integer σ ≥ 2. Here, sorting a multiset of k characters can be done in
O(k + σ) time with the same algorithm.
We have the following simple lower bounds for sorting using these models:

If we use a standard sorting algorithm for strings, the worst case requires Θ(n log n)
string comparisons. Let si = αβi, where |α| = |βi| = log n. This meansD = Θ(n log n).

alignment
all

allocate
alphabet
alternate

alternative

Figure 9.1: Example on distinguishing prefixes.

158

alphabet lower bound
ordered Ω(D + n log n)
constant Ω(D)
integer Ω(D)

Table 9.1: Simple lower bounds for string sorting using different alphabet models

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

al i gnment
al g orithm
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

Figure 9.2: One partitioning step in multikey quicksort, with pivot ’l’ in ’allocate’

Our lower bound is Ω(D + n log n) = Ω(n log n), but standard sorting has costs of
Θ(n log n) · Θ(log n) = Θ(n log2 n). In the next sections, we try to approach the lower
bound for string sorting.

9.2 Multikey Quicksort
Multikey Quicksort [40] performs in every recursion level a ternary partitioning of the
data elements. In contrast to the standard algorithm, the pivot is not a whole key (which
would be a complete word), but only the first character following the common prefix
shared by all elements.

We will now analyse the algorithm given in pseudo code in figure 9.3. The running
time is dominated by the comparisons done in the partitioning step. We will use amortized
analysis to count these comparisons. If s[`+ 1] 6= p[`+ 1], we charge the comparison on
s. Assuming a perfect choice for the pivot element, we see that the total charge on s for
this type of comparison is ≤ log n, as the parition containing s is at least halved.
If we have s[`+ 1] = p[`+ 1], we charge the comparison on s[`+ 1]. After that, s[`+ 1]
becomes part of the common prefix in its partition and will never again be chosen as pivot
character. Therefore, the charge on s[` + 1] is ≤ 1 and the total charge on all characters
is ≤ D. Combining this with the above result, we get a total runtime of O(D + n log n).
The only flaw in the above analysis is the assumption of a perfect pivot. Like in the
analysis of standard quicksort, we can show that the expected number of 6= comparisons
is 2n lnn when using a random pivot character.

159

Function Multikey-quicksort(R : Sequenceof String, ` : Integer) : Sequence of String
//` is the length of the common prefix in R
if |R| ≤ 1 then return R
choose pivot p ∈ R
R< := {s ∈ R | s[`+ 1] < p[`+ 1]}
R= := {s ∈ R | s[`+ 1] = p[`+ 1]}
R> := {s ∈ R | s[`+ 1] > p[`+ 1]}
Multikey-quicksort(R<, `)
Multikey-quicksort(R=, `+1)
Multikey-quicksort(R>, `)
return concatenation of R<, R=, and R>

Figure 9.3: Pseudocode for Multikey Quicksort

9.3 Radix Sort
Another classic string sorting algorithm is radix sort. There exist two main variants: LSD-
first radix sort starts from the end of the strings (Least Significant Digit first) and moves
backward by one position in each step, until the first character is reached. In every phase,
it partitions all strings according to the character at the current position (one group for
every possible character). When this is done, the strings are recollected, starting with the
group corresponding to the “smallest” character. For correct sorting, this has to be done
in a stable way within a group. The LSD variant accesses all characters (as we have to
reach the first character of each word for correct sorting), which implies costs of Ω(N)
time. This is poor when D � N .
MSD-first radix sort on the other hand starts from the beginning of the strings (Most
Significant Digit first). It distributes the strings (using counting sort) to groups according
to the character at the current position and sorts these groups recursively (increasing the
position of the relevant character by 1). Then, all groups are concatenated, in the order of
the corresponding characters1. This variant accesses only distinguishing prefixes.

What is the running time of MSD-first radix sort? Partitioning a group of k strings in
σ buckets takes O(k + σ) time. As the total size of the partitioned groups is D, we have
O(D) total time on constant alphabets.

The total number of times any string is assigned to a group is D (the total size of
all groups created while sorting). For every non-trivial partitioning step (where not all

1When implementing this algorithm, many ideas used for Super Scalar Sample Sort (e.g. the two-pass-
approach to determine the optimal bucket size) will also help for MSD-first radix sort. In fact, MSD-first
radix sort inspired the development of SSSS

160

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

a 0...
g 1...
i 2...
l 2...
p 1...
t 2...
z 0

=⇒

al g orithm
al i gnment
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

Figure 9.4: Example of one partitioning phase in MSD-first radix sort using counting sort
for allocation

alphabet lower bound upper bound algorithm

ordered Ω(D + n log n) O(()D + n log n)
multikey
quicksort

constant Ω(D) O(()D) radix sort

integer Ω(D) O(()D + n log σ)
radix sort +

multikey
quicksort

Figure 9.5: Overview on upper and lower bounds using different alphabet models

characters are equal), additional costs of O(σ) for creating groups occur. Obviously, the
number of non-trivial partitionings is≤ n. We therefore have costs ofO(D + nσ), which
becomes O(D) for constant alphabets. When dealing with integer alphabets, another
improvement helps lowering the running time: When k < σ, where k is the number of
strings to be partitioned in a certain step, switch to multikey quicksort. This results in a
running time of O(D + n log σ).

Table 9.5 gives an overview over the results of this chapter. Some gaps could be
closed, others require more elaborated techniques beyond this text.

161

Chapter 10

Suffix Array Construction

The description of the DC3 algorithm was taken from [41]. Material on external suffix
array construction is from [42].

10.1 Introduction
The suffix tree of a string is a compact trie of all the suffixes of the string. It is a powerful
data structure with numerous applications in computational biology and elsewhere. One
of the important properties of the suffix tree is that it can be constructed in linear time in
the length of the string. The classical linear time algorithms require a constant alphabet
size, but Farach’s algorithm works also for integer alphabets, i.e., when characters are
polynomially bounded integers.

The suffix array is a lexicographically sorted array of the suffixes of a string. For
several applications, a suffix array is a simpler and more compact alternative to suffix
trees. The suffix array can be constructed in linear time by a lexicographic traversal of
the suffix tree, but such a construction loses some of the advantage that the suffix array
has over the suffix tree. We introduce the DC3 algorithm, a linear-time direct suffix array
construction algorithm for integer alphabets. The DC3 algorithm is simpler than any
suffix tree construction algorithm. In particular, it is much simpler than linear time suffix
tree construction for integer alphabets.

10.2 The DC3 Algorithm
The DC3 algorithm has a following structure:

1. Recursively construct the suffix array of the suffixes starting at positions i mod 3 6=
0. This is done by reduction to the suffix array construction of a string of two thirds
the length, which is solved recursively.

162

2 567

11 8 6 2 1 9 7 4 5 3

i7

10 7 4 11 8 6 2 9 5 31 position in s

position

suffix array SA

merge

repr. for 0−1 compare
repr. for 2−1 comparei6

mi7 pi0 si5 si6 pp1 ss6 ss7

sorted suffixes mod 1

m4 p1 s2 s3 i0 i5

10

suffixes mod 0suffixes mod 2

SA

sorted suffixes mod 0, 2,

14 3

m

20

i s s si s i ip p

1
1 2 3 4 56 7 8

533

recursive call
3 5 45123

4

input s

triples
triple names512

s

7

p i 0 0 s s s s i p p ii

SA20

20

SA20

p

9

561234

0 1
1

i s s si s i

Figure 10.1: The DC3 algorithm applied to s = mississippi. First get all suffixes with
index mod 3 = 0, 2. Group their characters to triples and map these meta-characters
to an integer alphabet. Use the resulting string as input for a recursive call. The result
contains at position i the index of the suffix with rank i. Sort the suffixes with index
mod 3 = 1 (using the rank of the following suffix). Merge both results.

2. Construct the suffix array of the remaining suffixes using the result of the first step.

3. Merge the two suffix arrays into one.

If we would halve the string length for recursion, step three would be very difficult and
costly. Surprisingly, the use of two thirds instead of half of the suffixes in the recursion
makes the last step almost trivial: a simple comparison-based merging is sufficient. For
example, to compare suffixes starting at i and j with i mod 3 = 0 and j mod 3 = 1,
we first compare the initial characters, and if they are the same, we compare the suffixes
starting at i+ 1 and j + 1 whose relative order is already known from the first step.

Algorithm DC3

Input The input is a string T = T [0, n) = t0t1 · · · tn−1 over the alphabet [1, n], that is,
a sequence of n integers from the range [1, n]. For convenience, we assume that
tn = tn+1 = tn+2 = 0.

The restriction to the alphabet [1, n] is not a serious one. For a string T over any
alphabet, we can first sort the characters of T , remove duplicates, assign a rank to
each character, and construct a new string T ′ over the alphabet [1, n] by renaming

163

the characters of T with their ranks. Since the renaming is order preserving, the
order of the suffixes does not change.

Output For i ∈ [0, n], let Si denote the suffix T [i, n) = titi+1 · · · tn−1. We also extend
the notation to sets: for C ⊆ [0, n], SC = {Si | i ∈ C}. The goal is to sort the set
S[0,n] of suffixes of T lexicographically. The output is the suffix array SA[0, n] of
T , a permutation of [0, n] defined by

SA[i] = |{j ∈ [0, n] | Sj < Si}| .

Step 0: Construct a sample For k = 0, 1, 2, define

Bk = {i ∈ [0, n] | i mod 3 = k}.

Let C = B1 ∪B2 be the set of sample positions and SC the set of sample suffixes.

Step 1: Sort sample suffixes For k = 1, 2, construct the strings

Rk = [tktk+1tk+2][tk+3tk+4tk+5] . . . [tmaxBk
tmaxBk+1tmaxBk+2]

whose characters are triples [titi+1ti+2]. Note that the last character of Rk is always
unique because tmaxBk+2 = 0. Let R = R1 � R2 be the concatenation of R1 and
R2. Then the (nonempty) suffixes of R correspond to the set SC of sample suf-
fixes: [titi+1ti+2][ti+4ti+5ti+6] . . . corresponds to Si. The correspondence is order
preserving, i.e., by sorting the suffixes of R we get the order of the sample suffixes
SC .

To sort the suffixes of R, first radix sort the characters of R. If all characters are
different, the order of characters gives directly the order of suffixes. Otherwise,
we use the technique of renaming the characters with their ranks, and then sort the
suffixes of the resulting string using Algorithm DC3.

Once the sample suffixes are sorted, assign a rank to each suffix. For i ∈ C,
let rank(Si) denote the rank of Si in the sample set SC . Additionally, define
rank(Sn+1) = rank(Sn+2) = 0. For i ∈ B0, rank(Si) is undefined.

Step 2: Sort nonsample suffixes Represent each nonsample suffix Si ∈ SB0 with the
pair (ti, rank(Si+1)). Note that rank(Si+1) is always defined for i ∈ B0. Clearly
we have, for all i, j ∈ B0,

Si ≤ Sj ⇐⇒ (ti, rank(Si+1)) ≤ (tj, rank(Sj+1)).

The pairs (ti, rank(Si+1)) are then radix sorted.

164

Step 3: Merge The two sorted sets of suffixes are merged using a standard comparison-
based merging. To compare suffix Si ∈ SC with Sj ∈ SB0 , we distinguish two
cases:

i ∈ B1 : Si ≤ Sj ⇐⇒ (ti, rank(Si+1)) ≤ (tj, rank(Sj+1))

i ∈ B2 : Si ≤ Sj ⇐⇒ (ti, ti+1, rank(Si+2)) ≤ (tj, tj+1, rank(Sj+2))

Note that the ranks are defined in all cases.

Theorem 14 The time complexity of Algorithm DC3 is O(n).

Proof: Excluding the recursive call everything can clearly be done in linear time. The
recursion is on a string of length d2n/3e. Thus the time is given by the recurrence T (n) =
T (2n/3) +O(n), whose solution is O(n).

10.3 External Suffix Array Construction
In this section we are trying to engineer algorithms for suffix array construction that work
on huge inputs using the external memory model.

The Doubling Algorithm

Figure 10.2 gives pseudocode for the doubling algorithm. The basic idea is to replace
characters T [i] of the input by lexicographic names that respect the lexicographic order of
the length 2k substring T [i, i+ 2k) in the k-th iteration. In contrast to previous variants of
this algorithm, our formulation never actually builds the resulting string of names. Rather,
it manipulates a sequence P of pairs (c, i) where each name c is tagged with its position
i in the input. To obtain names for the next iteration k + 1, the names for T [i, i + 2k)
and T [i+ 2k, i+ 2k+1) together with the position i are stored in a sequence S and sorted.
The new names can now be obtained by scanning this sequence and comparing adjacent
tuples. Sequence S can be build using consecutive elements of P if we sort P using
the pair (imod 2k, i div 2k). Previous formulations of the algorithm use i as a sorting
criterion and therefore have to access elements that are 2k characters apart. Our approach
saves I/Os and simplifies the pipelining optimization described in Section 10.3.

The algorithm performs a constant number of sorting and scanning operations for
sequences of size n in each iteration. The number of iterations is determined by the
logarithm of the longest common prefix.

Theorem 15 The doubling algorithm computes a suffix array using
O(sort(n) dlog maxlcpe) I/Os where maxlcp := max0≤i<n lcp(i, i+ 1).

165

Function doubling(T)
S:= 〈((T [i], T [i+ 1]), i) : i ∈ [0, n)〉 1

for k := 1 to dlog ne do
sort S 2

P := name(S) 3

invariant ∀(c, i) ∈ P :
c is a lexicographic name for T [i, i+ 2k)

if the names in P are unique then
return 〈i : (c, i) ∈ P 〉 4

sort P by (imod 2k, i div 2k)) 5

S:= 〈((c, c′), i) : j ∈ [0, n), 6

(c, i) = P [j], (c′, i+ 2k) = P [j + 1]〉
Function name(S : Sequence of Pair)

q:= r:= 0; (`, `′):= ($, $)
result := 〈〉
foreach ((c, c′), i) ∈ S do

q++
if (c, c′) 6= (`, `′) then r:= q; (`, `′):= (c, c′)
append (r, i) to result

return result

Figure 10.2: The doubling algorithm.

Pipelining

The I/O volume of the doubling algorithm from Figure 10.2 can be reduced significantly
by observing that rather than writing the sequence S to external memory, we can directly
feed it to the sorter in Line (1). Similarly, the sorted tuples need not be written but can
be directly fed into the naming procedure in Line (2) which can in turn forward it to the
sorter in Line (4). The result of this sorting operation need not be written but can directly
yield tuples of S that can be fed into the next iteration of the doubling algorithm.

To motivate the idea of pipelining let us first analyze the constant factor in a naive
implementation of the doubling algorithm from Figure 10.2. For simplicity assume for
now that inputs are not too large so that sorting m words can be done in 4m/DB I/Os
using two passes over the data. For example, one run formation phase could build sorted
runs of size M and one multiway merging phase could merge the runs into a single sorted
sequence.

Line (1) sorts n triples and hence needs 12n/DB I/Os. Naming in Line (2) scans
the triples and writes name-index pairs using 3n/DB + 2n/DB = 5n/DB I/Os. The

166

naming procedure can also determine whether all names are unique now, hence the test in
Line (3) needs no I/Os. Sorting the pairs in P in Line (4) costs 8n/DB I/Os. Scanning
the pairs and producing triples in Line (5) costs another 5n/DB I/Os. Overall, we get
(12 + 5 + 8 + 5)n/DB = 30n/DB I/Os for each iteration.

This can be radically reduced by interpreting the sequences S and P not as files but as
pipelines similar to the pipes available in UNIX. In the beginning we explicitly scan the
input T and produce triples for S. We do not count these I/Os since they are not needed
for the subsequent iterations. The triples are not output directly but immediately fed into
the run formation phase of the sorting operation in Line (1). The runs are output to disk
(3n/DB I/Os). The multiway merging phase reads the runs (3n/DB I/Os) and directly
feeds the sorted triples into the naming procedure called in Line (2) which generates pairs
that are immediately fed into the run formation process of the next sorting operation in
Line (3) (2n/DB I/Os). The multiway merging phase (2n/DB I/Os) for Line (3) does
not write the sorted pairs but in Line (4) it generates triples for S that are fed into the
pipeline for the next iteration. We have eliminated all the I/Os for scanning and half of
the I/Os for sorting resulting in only 10n/DB I/Os per iteration — only one third of the
I/Os needed for the naive implementation.

Note that pipelining would have been more complicated in the more traditional
formulation where Line (3) sorts P directly by the index i. In that case, a pipelining
formulation would require a FIFO of size 2k to produce shifted sequences. When
2k > M this FIFO would have to be maintained externally causing 2n/DB additional
I/Os per iteration, i.e., our modification simplifies the algorithm and saves up to 20 % I/Os.

Let us discuss a more systematic model: The computations in many external memory
algorithms can be viewed as a data flow through a directed acyclic graph G = (V =
F ∪ S ∪ R,E). The file nodes F represent data that has to be stored physically on
disk. When a file node f ∈ F is accessed we need a buffer of size b(f) = Ω (BD).
The streaming nodes s ∈ S read zero, one or several sequences and output zero, one
or several new sequences using internal buffers of size b(s).1 The Sorting nodes r ∈ R
read a sequence and output it in sorted order. Sorting nodes have a buffer requirement of
b(r) = Θ(M) and outdegree one2. Edges are labeled with the number of machine words
w(e) flowing between two nodes.

Theorem 16 The doubling algorithm from Figure 10.2 can be implemented to run using
sort(5n) dlog(1 + maxlcp)e+O(sort(n)) I/Os.

Proof: The following flow graph shows that each iteration can be implemented using

1Streaming nodes may cause additional I/Os for internal processing, e.g., for large FIFO queues or
priority queues. These I/Os are not counted in our analysis.

2We could allow additional outgoing edges at an I/O cost n/DB. However, this would mean to perform
the last phase of the sorting algorithm several times.

167

2,10 3,11 4 5 6 71

P

98
3N 2N 2ninput

2n2n

output

Figure 10.3: Data flow graph for the doubling + discarding . The numbers refer to line
numbers in Figure 12.4. The edge weights are sums over the whole execution with N =
n log dps.

sort(2n) + sort(3n) ≤ sort(5n) I/Os. The numbers refer to the line numbers in Fig-
ure 10.2

1 2 54
3n 2n streaming node

sorting node

After dlog(1 + maxlcp)e iterations, the algorithm finishes. TheO(sort(n)) term accounts
for the I/Os needed in Line 0 and for computing the final result. Note that there is a small
technicality here: Although naming can find out “for free” whether all names are unique,
the result is known only when naming finishes. However, at this time, the first phase of
the sorting step in Line 4 has also finished and has already incurred some I/Os. Moreover,
the convenient arrangement of the pairs in P is destroyed now. However we can then
abort the sorting process, undo the wrong sorting, and compute the correct output.

Discarding

Let cki be the lexicographic name of T [i, i + 2k), i.e., the value paired with i at iteration
k in Figure 10.2. Since cki is the number of strictly smaller substrings of length 2k, it is a
non-decreasing function of k. More precisely, ck+1

i − cki is the number of positions j such
that ckj = cki but ck

j+2k < ck
i+2k . This provides an alternative way of computing the names

given in Figure 12.3.
Another consequence of the above observation is that if cki is unique, i.e., ckj 6= cki

for all j 6= i, then chi = cki for all h > k. The idea of the discarding algorithm is to
take advantage of this, i.e., discard pair (c, i) from further iterations once c is unique. A
key to this is the new naming procedure in Figure 12.3, because it works correctly even
if we exclude from S all tuples ((c, c′), i), where c is unique. Note, however, that we
cannot exclude ((c, c′), i) if c′ is unique but c is not. Therefore, we will partially discard
(c, i) when c is unique. We will fully discard (c, i) = (cki , i) when also either ck

i−2k or
ck
i−2k+1 is unique, because then in any iteration h > k, the first component of the tuple

((ch
i−2h , c

h
i), i− 2h) must be unique. The final algorithm is given in Figure 12.4.

168

Theorem 17 Doubling with discarding can be implemented to run using
sort(5n log dps) +O(sort(n)) I/Os.

The proof for theorem 17 and pseudocode can be found in 12.7 and 12.8 in the ap-
pendix.

169

Chapter 11

Presenting Data from Experiments

11.1 Introduction
A paper in experimental algorithmics will often start by describing the problem and the
experimental setup. Then a substantial part will be devoted to presenting the results to-
gether with their interpretation. Consequently, compiling the measured data into graphs
is a central part of writing such a paper. This problem is often rather difficult because
several competing factors are involved. First, the measurements can depend on many pa-
rameters: problem size and other quantities describing the problem instance; variables
like number of processors, available memory describing the machine configuration used;
and the algorithm variant together with tuning parameters such as the cooling rate in a
simulated annealing algorithm.

Furthermore, many quantities can be measured such as solution quality, execution
time, memory consumption and other more abstract complexity measures such as the
number of comparisons performed by a sorting algorithm. Mathematically speaking, we
sample function values of a mapping f : A → B where the domain A can be high-
dimensional. We hope to uncover properties of f from the measurements, e.g., an estimate
of the time complexity of an algorithm as a function of the input size. Measurement errors
may additionally complicate this task.

As a consequence of the the multitude of parameters, a meaningful experimental setup
will often produce large amounts of data and still cover only a tiny fraction of the pos-
sible measurements. This data has to be presented in a way that clearly demonstrates
the observed properties. The most important presentation usually takes place in confer-
ence proceedings or scientific journals where limited space and format restriction further
complicate the task.

This paper collects rules that have proven to be useful in designing good graphs. Al-
though the examples are drawn from the work of the author, this paper owes a lot to
discussions with colleagues and detailed feedback from several referees. Sections 11.3–

170

11.7 explains the rules. The stress is on Section 11.4 where two-dimensional figures are
discussed in detail.

Instead of an abstract conclusion, Section 11.8 collects all the rules in a check list that
can possibly be used when looking for teaching and as a source of ideas for improving
graphs.

11.2 The Process
In a simplified model of experimental algorithmics a paper might be written using a “wa-
terfall model”. The experimental design is followed by a description of the measurement
which is in turn followed by an interpretation. In reality, there are numerous feedbacks
involved and some might even remain visible in a presentation. After an algorithm has
been implemented, one typically builds a simple yet flexible tool that allows many kinds
of measurements. After some explorative measurements the researcher gets a basic idea
of interesting parameter settings. Hypotheses are formed which are tested using more ex-
tensive measurements using particular parameter ranges. This phase is the scientifically
most productive phase and often leads to new insights which lead to algorithmic changes
which influence the entire setup.

It should be noted that most algorithmic problems are so complex that one cannot
expect to arrive at an ultimate set of measurements that answers all conceivable ques-
tions. Rather, one is constantly facing a list of interesting open questions that require new
measurements. The process of selecting the measurements that are actually performed
is driven by risk and opportunity: The researcher will usually have a set of hypotheses
that have some support from measurements but more measurements might be important
to confirm them. For example, the hypothesis might be “my algorithm is better than all
the others” then a big risk might be that a promising other algorithm or important classes
of problem instances have not been tried yet. A small risk might be that a tuning param-
eter has so far been set in an ad hoc fashion where it is clear that it can only improve a
precomputation phase that takes 20 % of the execution time.

An opportunity might be a new idea of the authors’ that an algorithm might be useful
for a new application where it was not originally designed for. In that case, one might
consider to include problem instances from the new application into the measurements.

At some point, a group of researchers decides to cast the current state of results into a
paper. The explorative phase is then stopped for a while. To make the presentation concise
and convincing, alternative ways to display the data are designed that are compact enough
to meet space restrictions and make the conclusions evident. This might also require
additional measurements giving additional support to the hypotheses studied.

171

11.3 Tables
Tables are easier to produce than graphs and perhaps this advantage causes that they are
often overused. Tables are more difficult to interpret and too large for large data sets. A
more detailed explanation why tables are often a bad idea has been given by McGeoch
and Moret [51]. Nevertheless, tables have their place. Tufte [59] gives the rule of thumb
that “tables usually outperform a graph for small data sets of 20 numbers or less”. Tables
give very accurate values which make it easier to check whether some experiments can be
reproduced. Furthermore, one sometimes wants to present some quantities, e.g., solution
quality, as a function of problem instances which cannot be meaningfully arranged on
the axis of a graph. In that case, a graph or bar chart may look nicer but does not add
utility compared to a more accurate and compact table. Often a paper will contain small
tables with particularly important results and graphs giving results in an abstract yet less
accurate way. Furthermore, there may be an appendix or a link to a web page containing
larger tables for more detailed documentation of the results.

11.4 Two-dimensional Figures
As our standard example we will use the case that execution time should be displayed as a
function of input size. The same rules will usually apply for many other types of variables.
Sometimes we mention special examples which should be displayed differently.

The x-Axis
The first question one can ask oneself is what unit one chooses for the x-axis. For ex-
ample, assume we want to display the time it takes to broadcast a message of length k
in some network where transmitting k′ bytes of data from one processor to another takes
time t0 + k′. Then it makes sense to plot the execution time as a function of k/t0 because
for many implementations, the shape of the curve will then become independent of t0.
More generally, by choosing an appropriate unit, we can sometimes get rid of one degree
of freedom. Figure 11.1 gives an example.

The variable defining the x-axis can often vary over many orders of magnitude. There-
fore one should always consider whether a logarithmic scale is appropriate for the x-axis.
This is an accepted way to give a general idea of a function over a wide range of values.
One will then choose measurement values such that they are about evenly spaced on the
x-axis, e.g., powers of two or powers of

√
2. Figures 11.3, 11.5, and 11.6 all use powers

of two. In this case, one should also choose tic marks which are powers of two and not
powers of ten. Figures 11.1 and 11.4 use the “default” base ten because there is no choice
of input sizes involved here.

172

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

10 100 1000 10000 100000 1e+06

im
pr

ov
em

en
t m

in
(T

* 1,
T

* ∞
)/

T
* *

k/t0

P=64
P=1024
P=16384

Figure 11.1: Improvement of the fractional tree broadcasting algorithm [57] over the
best of pipelined binary tree and sequential pipeline algorithm as a function of message
transmission time k over startup overhead t0. P is the number of processors. (See also
Section 11.4 and 11.4)

173

Sometimes it is appropriate to give more measurements for small x-values because
they are easily obtained and particularly important. Conversely, it is not a good idea to
measures using constant offsets (x ∈ {x0 + i∆ : 0 ≤ i < imax}) as if one had a linear
scale and then to display the values on a logarithmic scale. This looks awkward because
points are crowded for large values. Often there will be too few values for small x and
one nevertheless wastes a lot of measurement time for large inputs.

A plain linear scale is adequate if the interesting range of x-values is relatively small,
for example if the x-axis is the number of processors used and one measures on a small
machine with only 8 processors. A linear scale is also good if one wants to point out
periodic behavior, for example if one wants to demonstrate that slow-down due to cache
conflicts get very large whenever the input size is a multiple of the cache size. However,
one should resist the temptation to use a linear scale when x-values over many orders of
magnitude are important but the own results look particularly good for large inputs.

Sometimes, transformations of the x-axis other than linear or logarithmic make sense.
For example, in queuing systems one is often interested in the delay of requests as the
system load approaches the maximum performance of the system. Figure 11.2 gives an
example. Assume we have a disk server with 64 disks. Data is placed randomly on these
disks using a hash function. Assume that retrieving a block from a disk takes one time unit
and that there is a periodic stream of requests — one every (1 + ε)/64 time units. Using
queuing theory one can show that the delay of a request is approximately proportional to
1/ε if only one copy of every block is available. Therefore, it makes sense to use 1/ε as the
x-value. First, this transformation makes it easy to check whether the system measured
also shows this behavior linear in 1/ε. Second, one gets high resolution for arrival rates
near the saturation point of the system. Such high arrival rates are often more interesting
than low arrival rates because they correspond to very efficient uses of the system.

The y-Axis
Given that the x-axis often has a logarithmic scale, we often seem to be forced to use a
logarithmic scale also for the y-axis. For example, if the execution time is approximately
some power of the problem size, such a double-logarithmic plot will yield a straight line.

However, plots of the execution time can be quite boring. Often, we already know the
general shape of the curve. For example, a theoretical analysis may tell us that the execu-
tion time is between T (n) = Ω (n) and T (n) = O(nPolylog(n)). A double-logarithmic
plot will show something very close to a diagonal and discerns very little about the Poly-
log term we are really interested in. In such a situation, we transform the y-axis so that a
priori information is factored out. In our example above we could better display T (n)/n
and then use a linear scale for the y-axis. A disadvantage of such transformations is that
they may be difficult to explain. However, often this problem can be solved by finding
a good term describing the quantity displayed. For example, “time per element” when

174

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

av
er

ag
e

de
la

y

1/ε

nonredundant
mirror
ring shortest queue
ring with matching
shortest queue

1

1.2

1.4

1.6

1.8

2

2 4 6 8 10 12 14 16 18 20

av
er

ag
e

de
la

y

1/ε

shortest queue
hybrid
lazy sharing
matching

Figure 11.2: Comparison of eight algorithms for scheduling accesses to parallel disks
using the model described in the text (note that “shortest queue” appears in both figures).
Only the two algorithms “nonredundant” and “mirror” exhibit a linear behavior of the
access delay predicted by queuing theory. The four best algorithms are based on random
duplicate allocation — every block is available on two randomly chosen disks and a
scheduling algorithm [55] decides which copy to retrieve. (See also Section 11.4)

175

0

50

100

150

200

1024 4096 16384 65536 218 220 222 223

(t
im

e
pe

r
op

er
at

io
n)

/lo
g

N
 [

ns
]

N

bottom up binary heap
bottom up aligned 4-ary heap

sequence heap

Figure 11.3: Comparison of three different priority queue algorithms [58] on a MIPS
R10000 processor. N is the size of the queue. All algorithms use Θ(logN) key com-
parisons per operation. The y-axis shows the total execution time for some particular
operation sequence divided by the number of deletion/insertion pairs and logN . Hence
the plotted value is proportional to the execution time per key comparison. This scaling
was chosen to expose cache effects which are now the main source of variation in the
y-value. (See also Sections 11.4 and 11.4.)

one divides by the input size, “competitive ratio” when one divides by a lower bound, or
“efficiency” when one displays the ratio between an upper performance bound and the
measured performance. Figure 11.3 gives an example for using such a ratio.

Another consideration is the range of y-values displayed. Assume ymin > 0 is the
minimal value observed and ymax is the maximal value observed. Then one will usually
choose [ymin, ymax] or (better) a somewhat larger interval as the displayed range. In this
case, one should be careful however with overinterpreting the resulting picture. A change
of the y-value by 1 % will look equal to a change of y-value of 400 %. If one wants to
support claims such as “for large x the improvements due to the new algorithm become
very large” using a graph, choosing the range [0, ymax] can be a more sound choice. (At
least if ymax/ymin is not too close to one. Some of the space “wasted” this way can often
be used for placing curve labels.) In Figure 11.2, using ymin = 1 is appropriate since no
request can get an access delay below one in the model used.

The choice of the the maximum y value displayed can also be nontrivial. In particular,
it may be appropriate to clip extreme values if they correspond to measurement points

176

which are clearly useless in practice. For example, in Figure 11.2 it is not very interesting
to see the entire curve for the algorithm “nonredundant” since it is clearly outclassed for
large 1/ε anyway and since we have a good theoretical understanding of this particular
curve.

A further degree of freedom is the vertical size of the graph. This parameter can be
used to achieve the above goals and the rule of “banking to 45◦”: The weighted average
of the slants of the line segments in the figure should be about 45◦.1 Refer to [47] for
a detailed discussion. The weight of a segment is the x-interval bridged. There is good
empirical and mathematical evidence that graphs using this rule make changes in slope
most easily visible.

If banking to 45◦ does not yield a clear insight regarding the graph size, a good rule of
thumb is to make the graph a bit wider than high [59]. A traditional choice is to use the
golden ratio, i.e., a graph that is 1.62 times wider than high.

Arranging Multiple Curves
An important feature of two-dimensional graphs is that we can place several curves in
a single graph as in Figures 11.1, 11.2, and 11.3. In this way we can obtain a high
information density without the disadvantages of three-dimensional plots. However, one
can easily overdo it resulting in a chaos of undecipherable points and lines. How many
curves fit into one pictures depends on the information density. When curves are very
smooth, and have few points where they cross each other, as in Figure 11.2, up to seven
curves may fit in one figure. If curves are very complicated, even three curves may be too
much. Often one will start with a straight-forward graph that turns out to be too ugly for
publication. Then one can use a number of techniques to improve it:

• Remove unnecessary curves. For example, Figure 11.2 from [55] compares only
eight algorithms out of eleven studied in this paper. The remaining three are clearly
outclassed or equivalent to other algorithms for the measurement considered.

• If several curves are too close together in an important range of x-values, consider
using another y range or scale. If the small differences persist and are important,
consider to use a separate graph with a magnification. For example, in Figure 11.2
the four fastest algorithms were put into a separate plot to show the differences
between them.

• Check whether several curves can be combined into one curve. For example, as-
sume we want to compare a new improved algorithm with several inferior old algo-
rithms for input sizes on the x-axis. Then it might be sufficient to plot the speedup

1This is one of the few things described here which are are not easy to do with gnuplot. But even keeping
the principle of banking to 45◦ in mind is helpful.

177

of the new algorithm over the best of the old algorithms; perhaps labeling the sec-
tions of the speedup curve so that the best of the old algorithms can be identified
for all x-values. Figure 11.1 gives an example where the speeup of one algorithm
over two other algorithms is shown.

• Decrease noise in the data as described in Section 11.4.

• Once noise is small, replace error bars with specifications of the accuracy in the
caption as in Figure 11.6.

• Connect points belonging to the same curves using straight lines.

• Choose different point styles and line styles for different curves.

• Arrange labels explaining point and line styles in the “same order”2 as they appear
in the graph. Sometimes one can also place the labels directly at the curves. But
even then the labels should not obscure the curves. Unfortunately, gnuplot does not
have this feature so that we could not use it in this paper.

• Choose the x-range and the density of x-values appropriately.

Sometimes we need so many curves that they cannot fit into one figure. For example,
when the cross-product of several parameter ranges defines the set of curves needed. Then
we may finally decide to use several figures. In this case, the same y-ranges should usually
be chosen so that the results remain comparable. Also one should choose the same point
styles and line styles for related curves in different figures, e.g., for curves belonging to
the same algorithm as for the “shortest queue” algorithm in Figure 11.2. Note that tools
such as gnuplot cannot do that automatically.

The explanations of point and line styles should avoid cryptic abbreviations whenever
possible and at the same time avoid overlapping the curves. Both requirements can be
reconciled by placing the explanations appropriately. For example, in computer science,
curves often go from the lower left corner to the upper right corner. In that case, the best
place for the definition of line and point styles is the upper left corner.

Arranging Instances
If measurements like execution time for a small set of problem instances are to be dis-
played, a bar chart is an appropriate tool. If other parameters such as the algorithm used,
or the time consumed by different parts of the algorithm should be differentiated, the bars
can be augmented to encode this. For example, several bars can be stacked in depth using
three-dimensional effects or different pieces of a bar can get different shadings.3

2For example, one could use the order of the y-values at the larges x-value as in Figure 11.3.
3Sophisticated fill styles give us additional opportunities for diversification but Tufte notes that they are

often too distracting [59].

178

If there are so many instances that bar charts consume too much space, a scatter
plot can be useful. The x-axis stands for a parameter like problem size and we plot
one point for every problem instance. Figure 11.4 gives a simple example. Point styles
and colors can be used to differentiate different types of instances or variations of other
parameters such as the algorithm used. Sometimes these points are falsely connected by
lines. This should be avoided. It not only looks confusing but also wrongly suggests a
relation between the data points that does not exist.

1

10

100

1000

1 10 100 1000

n
/ a

ct
iv

e
se

t s
iz

e

n/m

Figure 11.4: Each point gives the ratio between total problem size and “core” problem
size in a fast algorithm for solving set covering problems from air line crew scheduling
[43]. The larger this ratio, the larger the possible speedup for a new algorithm. The x-
axis is the ratio between the number of variables and number of constraints. This scale
was chosen to show that there is a correlation between these two ratios that is helpful
in understanding when the new algorithm is particularly useful. The deviating points at
n/m = 10 are artificial problems rather different from typical crew scheduling problems.
(See also Section 11.4.)

How to Connect Measurements
Tools such as gnuplot allow us to associate a measured value with a symbol like a cross or
a star that clearly specifies that point and encodes some additional information about the
measurement. For example, one will usually choose one point symbol for each displayed
curve. Additionally, points belonging to the same curve can be connected by a straight
line. Such lines should usually not be viewed as a claim that they present a good interpo-
lation of the curve but just as a visual aid to find points that belong together. In this case, it

179

is important that the points are large enough to stand out against the connecting lines. An
alternative is to plot measurements points plus curves stemming from an analytic model
as in Figure 11.5.

The situation is different if only lines and no points are plotted as in Figure 11.1. In
this case, it is often impossible to tell which points have been measured. Hence such
a lines-only plot implies the very strong claim that the points where we measured are
irrelevant and the plotted curve is an accurate representation of the true behavior for the
entire x-range. This only makes sense if very dense measurements have been performed
and they indeed form a smooth line. Sometimes one sees smooth lines that are weighted
averages over a neighborhood in the x-coordinates. Then one often uses very small points
for the actual measurements that form a cloud around this curve.

A related approach is connecting measured points with interpolated curves such as
splines which are more smooth than lines. Such curves should only be used if we actually
conjecture that the interpolation used is close to the truth.

Measurement Errors
Tools allow us to generalize measured points to ranges which are usually a point plus an
error bar specifying positive and negative deviations from the y-value.4 The main question
from the point of view of designing graphs is what kind of deviations should be displayed
or how one can avoid the necessity for error bars entirely.

Let us start with the well behaved case that we are simulating a randomized algo-
rithm or work with randomly generated problem instances. In this case, the results from
repeated runs are independent identically distributed random variables. In this case, pow-
erful methods from statistics can be invoked. For example, the point itself may be the
average of the measured values and the error bar could be the standard deviation or the
standard error [53]. Figure 11.5 gives an example. Note that the latter less well known
quantity is a better estimate for the difference between the average and the actual mean.
By monitoring the standard error during the simulation, we can even repeat the measure-
ment sufficiently often so that this error measure is below some prespecified value. In this
case, no error bars are needed and it suffices to state the bound on the error in the caption
of the graph. Figure 11.6 gives an example.

The situation is more complicated for measurements of actual running times of deter-
ministic algorithms, since this involves errors which are not of a statistical nature. Rather,
the errors can stem from hidden variables such as operating system interrupts, which we
cannot fully control. In this case, points and error bars based on order statistics might
be more robust. For example, the y value could be the median of the measured values
and the error bar could define the minimum and the maximum value measured or values

4Uncertainties in both x and y-values can also be specified but this case seems to be rare in Algorithmics.

180

0

5

10

15

20

32 1024 32768
n

Measurement
log n + log ln n + 1
log n

Figure 11.5: Number of iterations that the dynamic load balancing algorithm random
polling spends in its warmup phase until all processors are busy. Hypothesized upper
bound, lower bound and measured averages with standard deviation [54, 56]. (See also
Sections 11.4 and 11.4.)

exceeded in less than 5 % of the measurements. The caption should explain how many
measurements have been performed.

11.5 Grids and Ticks
Tools for drawing graphs give us a lot of control over how axes are decorated with num-
bers, tick marks and grid lines. The general rule that is often achieved automatically is to
use a few round numbers on each axis and perhaps additional tick marks without numbers.
The density of these numbers should not be too high. Not only should they appear well
separated but they also should be far from dominating the visual appearance of the graph.
When a very large range of values is displayed, we sometimes have to force the system
to use exponential notation on a part of the axis before numbers get too long. Figure 11.6
gives an example for the particularly important case of base two scales. Sometimes we
may decide that reading off values is so important in a particular graph that grid lines
should be added, i.e., horizontal and vertical lines that span the entire range of the graph.
Care must be taken that such grid lines to not dilute the visual impression of the data

181

0

0.5

1

1.5

2

2.5

3

16 64 256 1024 212 214 216 218 220 222 224

m
ax

 L
oa

d
-

m
/n

m

n=65536
n=256
n=16
n=4

Figure 11.6: m Balls are placed into n bins using balanced random allocation [44, 45].
The difference between maximal and average load is plotted for different values of m and
n. The experiments have been repeated at least sufficiently often to reduce the standard
error (σ/

√
repetitions [53]) below one percent. In order to minimize artifacts of the

random number generator, we have used a generator with good reputation and very long
period (219937 − 1) [49]. In addition, some experiments were repeated with the Unix
generator srand48 leading to almost identical results. (See also Section 11.4.)

points. Hence, grid lines should be avoided or at least made thin or, even better, light
gray. Sometimes grid lines can be avoided by plotting the values corresponding to some
particularly important data points also on the axes.

A principle behind many of the above considerations is called Data-Ink Maximization
by Tufte [59]. In particular, one should reduce non-data ink and redundant data ink from
the graph. The ratio of data ink to total ink used should be close to one. This principle
also explains more obvious sins like pseudo-3D bar charts, complex fill styles, etc.

11.6 Three-dimensional Figures
On the first glance, three-dimensional figures are attractive because they look sophisti-
cated and promise to present large amounts of data in a compact way. However there are
many drawbacks.

182

• It is almost impossible to read absolute values from the two-dimensional projection
of a function.

• In complicated functions interesting parts may be hidden from view.

• If several functions are to be compared, one is tempted to use a corresponding
number of three-dimensional figures. But in this case, it is more difficult to interpret
differences than in two-dimensional figures with cross-sections of all the functions.

It seems that three-dimensional figures only make sense if we want to present the general
shape of a single function. Perhaps three-dimensional figures become more interesting
using advanced interactive media where the user is free to choose viewpoints, read off
precise values, view subsets of curves, etc.

11.7 The Caption
Graphs are usually put into “floating figures” which are placed by the text formatter so that
page breaks are taken into account. These figures have a caption text at their bottom which
makes the figure sufficiently self contained. The captions explains what is displayed and
how the measurements have been obtained. This includes the instances measured, the
algorithms and their parameters used, and, if relevant the system configuration (hardware,
compiler,. . .). One should keep in mind that experiments in a scientific paper should be
reproducible, i.e., the information available should suffice to repeat a similar experiment
with similar results. Since the caption should not become too long it usually contains
explicit or implicit references to surrounding text, literature or web resources.

183

11.8 A Check List
In the following we summarize the rules discussed above. This list has the additional
beneficial effect to serve as a check list one can refer to for preparing graphs and for
teaching. The Section numbers containing a more detailed discussion are appended in
brackets. The order of the rules has been chosen so that in most cases they can be applied
in the order given.

• Should the experimental setup from the exploratory phase be redesigned to increase
conciseness or accuracy? (11.2)

• What parameters should be varied? What variables should be measured? How are
parameters chosen that cannot be varied? (11.2)

• Can tables be converted into curves, bar charts, scatter plots or any other useful
graphics? (11.3, 11.4)

• Should tables be added in an appendix or on a web page? (11.3)

• Should a 3D-plot be replaced by collections of 2D-curves? (11.6)

• Can we reduce the number of curves to be displayed? (11.4)

• How many figures are needed? (11.4)

• Scale the x-axis to make y-values independent of some parameters? (11.4)

• Should the x-axis have a logarithmic scale? If so, do the x-values used for measur-
ing have the same basis as the tick marks? (11.4)

• Should the x-axis be transformed to magnify interesting subranges? (11.4)

• Is the range of x-values adequate? (11.4)

• Do we have measurements for the right x-values, i.e., nowhere too dense or too
sparse? (11.4)

• Should the y-axis be transformed to make the interesting part of the data more
visible? (11.4)

• Should the y-axis have a logarithmic scale? (11.4)

• Is it be misleading to start the y-range at the smallest measured value? (11.4)

• Clip the range of y-values to exclude useless parts of curves? (11.4)

• Can we use banking to 45◦? (11.4)

• Are all curves sufficiently well separated? (11.4)

• Can noise be reduced using more accurate measurements? (11.4)

• Are error bars needed? If so, what should they indicate? Remember that measure-
ment errors are usually not random variables. (11.4, 11.4)

184

• Use points to indicate for which x-values actual data is available. (11.4)

• Connect points belonging to the same curve. (11.4,11.4)

• Only use splines for connecting points if interpolation is sensible. (11.4,11.4)

• Do not connect points belonging to unrelated problem instances. (11.4)

• Use different point and line styles for different curves. (11.4)

• Use the same styles for corresponding curves in different graphs. (11.4)

• Place labels defining point and line styles in the right order and without concealing
the curves. (11.4)

• Captions should make figures self contained. (11.7)

• Give enough information to make experiments reproducible. (11.7)

185

Chapter 12

Appendix

12.1 Used machine models
In 1945 John von Neumann introduced a basic architecture of a computer. The design
was very simple in order to make it possible to build it with the limited hardware tech-
nology of the time. Hardware design has grown out of this in most aspects. However,
the resulting programming model was so simple and powerful, that it is still the basis for
most programming. Usually it turns out that programs written with the model in mind
also work well on the vastly more complex hardware of todays machines.

The variant of von Neumann’s model we consider is the RAM (random access ma-
chine) model. The most important features of this model are that it is sequential, i.e., there
is a single processing unit, and that it has a uniform memory, i.e., all memory accesses
cost the same amount of time. The memory consists of cells S[0], S[1], S[2], . . . The “. . . ”
means that there are potentially infinitely many cells although at any point of time only a
finite number of them will be in use. We assume that “reasonable” functions of the input
size n can be stored in a single cell. We should keep in mind however, that that our model
allows us a limited form of parallelism. We can perform simple operations on log n bits
in constant time.

The external memory model is like the RAM model except that the fast memory is
limited in size to M words. Additionally, there is an external memory with unlimited
size. There are special I/O operations that transfer B consecutive words between slow
and fast memory. For example, the external memory could be a hard disk, M would then
be the main memory size andB would be a block size that is a good compromise between
low latency and high bandwidth. On current technology M = 1GByte and B = 1MByte
could be realistic values. One I/O step would then be around 10ms which is 107 clock
cycles of a 1GHz machine. With another setting of the parameters M and B, we could
model the smaller access time differences between a hardware cache and main memory.

186

12.2 Amortized Analysis for Unbounded Arrays
Our implementation of unbounded arrays follows the algorithm design principle “make
the common case fast”. Array access with [·] is as fast as for bounded arrays. Intuitively,
pushBack and popBack should “usually” be fast — we just have to update n. However,
a single insertion into a large array might incur a cost of n. We now show that such a
situation cannot happen for our implementation. Although some isolated procedure calls
might be expensive, they are always rare, regardless of what sequence of operations we
execute.

Lemma 18 Consider an unbounded array u that is initially empty. Any sequence σ =
〈σ1, . . . , σm〉 of pushBack or popBack operations on u is executed in time O(m).

Corollary 19 Unbounded arrays implement the operation [·] in worst case constant time
and the operations pushBack and popBack in amortized constant time.

To prove Lemma 18, we use the accounting method. Most of us have already used this
approach because it is the basic idea behind an insurance. For example, when you rent a
car, in most cases you also have to buy an insurance that covers the ruinous costs you could
incur by causing an accident. Similarly, we force all calls to pushBack and popBack to
buy an insurance against a possible call of reallocate. The cost of the insurance is put
on an account. If a reallocate should actually become necessary, the responsible call to
pushBack or popBack does not need to pay but it is allowed to use previous deposits on
the insurance account. What remains to be shown is that the account will always be large
enough to cover all possible costs.
Proof: Let m′ denote the total number of elements copied in calls of reallocate. The
total cost incurred by calls in the operation sequence σ is O(m+m′). Hence, it suffices
to show that m′ = O(m). Our unit of cost is now the cost of one element copy.

We require an insurance of 3 units from each call of pushBack and claim that this
suffices to pay for all calls of reallocate by both pushBack and popBack .

We prove by induction over the calls of reallocate that immediately after the call there
are at least n units left on the insurance account.

First call of reallocate: The first call grows w from 1 to 2 after at least onecall of
pushBack . We have n = 1 and 3− 1 = 2 > 1 units left on the insurance account.

For the induction step we prove that 2n units are on the account immediately before
the current call to reallocate. Only n elements are copied leaving n units on the account
— enough to maintain our invariant. The two cases in which reallocate may be called are
analyzed separately.

187

pushBack grows the array: The number of elements n has doubled since the last
reallocate when at least n/2 units were left on the account by the induction hypothe-
sis (this holds regardless of the type of operation that caused the reallocate). The n/2
new elements paid 3n/2 units giving a total of 2n units for insurance.

popBack shrinks the array: The number of elements has halved since the last
reallocate when at least 2n units were left on the account by the induction hypothesis.
Since then, n/2 elements have been removed and n/2 elements have to be copied. After
paying for the current reallocate, 2n− n/2 = 3/2n > 2(n/2) are left on the account.

12.3 Analysis of Randomized Quicksort
To analyze the running time of quicksort for an input sequence s = 〈e1, . . . , en〉 we
focus on the number of element comparisons performed. Other operations contribute
only constant factors and small additive terms in the execution time.

Let C(n) denote the worst case number of comparisons needed for any input sequence
of size n and any choice of random pivots. The worst case performance is easily deter-
mined. Lines (A), (B), and (C) in Figure 3.1. can be implemented in such a way that
all elements except for the pivot are compared with the pivot once (we allow three-way
comparisons here, with possible outcomes ‘smaller’, ‘equal’, and ‘larger’). This makes
n − 1 comparisons. Assume there are k elements smaller than the pivot and k′ elements
larger than the pivot. We get C(0) = C(1) = 0 and

C(n) = n− 1 + max {C(k) + C(k′) : 0 ≤ k ≤ n− 1, 0 ≤ k′ < n− k} .

By induction it is easy to verify that

C(n) =
n(n− 1)

2
= Θ

(
n2
)
.

The worst case occurs if all elements are different and we are always so unlucky to pick
the largest or smallest element as a pivot.

The expected performance is much better.

Theorem 20 The expected number of comparisons performed by quicksort is

C̄(n) ≤ 2n lnn ≤ 1.4n log n .

We concentrate on the case that all elements are different. Other cases are easier
because a pivot that occurs several times results in a larger middle sequence b that need
not be processed any further.

188

Let s′ = 〈e′1, . . . , e′n〉 denote the elements of the input sequence in sorted order. Ele-
ments e′i and e′j are compared at most once and only if one of them is picked as a pivot.
Hence, we can count comparisons by looking at the indicator random variables Xij , i < j
where Xij = 1 if e′i and e′j are compared and Xij = 0 otherwise. We get

C̄(n) = E[
n∑
i=1

n∑
j=i+1

Xij] =
n∑
i=1

n∑
j=i+1

E[Xij] =
n∑
i=1

n∑
j=i+1

prob(Xij = 1) .

The middle transformation follows from the linearity of expectation. The last equa-
tion uses the definition of the expectation of an indicator random variable E[Xij] =
prob(Xij = 1). Before we can further simplify the expression for C̄(n), we need to
determine this probability.

Lemma 21 For any i < j, prob(Xij = 1) =
2

j − i+ 1
.

Proof: Consider the j − i + 1 element set M = {e′i, . . . , e′j}. As long as no pivot from
M is selected, e′i and e′j are not compared but all elements from M are passed to the same
recursive calls. Eventually, a pivot p fromM is selected. Each element inM has the same
chance 1/|M | to be selected. If p = e′i or p = e′j we have Xij = 1. The probability for
this event is 2/|M | = 2/(j− i+ 1). Otherwise, e′i and e′j are passed to different recursive
calls so that they will never be compared.

Now we can finish the proof of Theorem 20 using relatively simple calculations.

C̄(n) =
n∑
i=1

n∑
j=i+1

prob(Xij = 1) =
n∑
i=1

n∑
j=i+1

2

j − i+ 1
=

n∑
i=1

n−i+1∑
k=2

2

k

≤
n∑
i=1

n∑
k=2

2

k
= 2n

n∑
k=2

1

k
= 2n(Hn − 1) ≤ 2n(lnn+ 1− 1) = 2n lnn .

For the last steps, recall the properties of the harmonic number Hn :=
∑n

k=1 1/k ≤
lnn+ 1.

12.4 Insertion Sort
Insertion Sort maintains the invariant that the output sequence is always sorted by choos-
ing an arbitrary element of the input sequence but taking care to insert this element at the
right place in the output sequence. Figure 12.1 gives an in-place array implementation of
insertion sort. This implementation is straightforward except for a small trick that allows

189

the inner loop to use only a single comparison. When the element e to be inserted is
smaller than all previously inserted elements, it can be inserted at the beginning without
further tests. Otherwise, it suffices to scan the sorted part of a from right to left while e
is smaller than the current element. This process has to stop because a[1] ≤ e. Insertion
Sort has a worst case running time of Θ(n2) but is nevertheless a fast algorithm for small
n.

Procedure insertionSort(a : Array [1..n] of Element)
for i := 2 to n do

invariant a[1] ≤ · · · ≤ a[i− 1] // a: 1..i− 1: sorted i..n: unsorted
//Move a[i] to the right place
e := a[i] // a: sorted e i+ 1..n
if e < a[1] then // new minimum

for j := i downto 2 do a[j] := a[j − 1] // a: sorted > e i+ 1..n
a[1] := e // a: e sorted > e i+ 1..n

else // Use a[1] as a sentinel
for j := i downto −∞ while a[j − 1] > e do a[j] := a[j − 1]
a[j] := e // a: ≤ e e > e i+ 1..n

Figure 12.1: Insertion sort

12.5 Lemma on Interval Maxima
Lemma 22 Consider an MST T = ({0, . . . , n− 1} , ET) where the JP algorithm (JP)
adds the nodes to the tree in the order 0, . . . , n − 1. Let ei, 0 < i < n denote the
edge used to add node i to the tree by the JP algorithm. Let wi, denote the weight of ei.
Then, for all nodes u < v, the heaviest edge on the path from u to v in T has weight
maxu<j≤v wj .

Proof: By induction over v. The claim is trivially true for v = 1. For the induction step
we assume that the claim is true for all pairs of nodes (u, v′) with u < v′ < v and show
that it is also true for the pair (u, v). First note that ev is on the path from u to v because
in the JP algorithm u is inserted before v and v is an isolated node until ev is added to the
tree. Let v′ < v denote the node at the other end of edge ev. Edge ev is heavier than all
the edges ev′+1,. . . ev−1 because otherwise the JP algorithm would have added v, using ev,
earlier. There are two cases to consider (see Figure 12.2).

190

1 4 3 850 1 4 3 850

Case 2: v’ > u

8
3

4

5

1

u

v’

v

3
84

5

1

Case 1: v’ < u

v’

u
v

Figure 12.2: Illustration of the two cases of Lemma 22. The JP algorithm adds the nodes
from left to right.

Case v′ ≤ u: By the induction hypothesis, the heaviest edge on the path from v′ to u
is maxv′<j≤uwj . Since all these edges are lighter than ev, the maximum over wu,. . . ,wv
finds the correct answer wv.
Case v′ > u: By the induction hypothesis, the heaviest edge on the path between u and
v′ has weight maxu<j≤v′ wj . Hence, the heaviest edge we are looking for has weight
max {wv,maxu<j≤v′ wj}. Maximizing over the larger set maxu<j≤v wj will return the
right answer since ev is heavier than the edges ev′+1,. . . ev−1.

Lemma 22 also holds when we have the MSF of an unconnected graph rather than the
MST of a connected graph. When JP spans a connected component, it selects an arbitrary
node i and adds it to the MSF with wi = ∞. Then the interval maximum for two nodes
that are in two different components is∞, as it should be.

12.6 Random Permutations without additional I/Os
For renaming nodes, we need a (pseudo)random permutation π : 0..n − 1 → 0..n − 1.
Assume for now that n is a square so that we can represent a node i as a pair (a, b) with i =
a+ b

√
n. Our permutations are constructed from Feistel permutations, i.e., permutations

of the form πf ((a, b)) = (b, a+f(b) mod
√
n) for some random mapping f : 0..

√
n−1→

0..
√
n − 1. Since

√
n is small, we can afford to implement f using a lookup table filled

with random elements. For example, for n = 232 the lookup table for f would require
only 128 KByte. It is known that a permutation π(x) = πf (πg(πh(πl(x)))) build by
chaining four Feistel permutations is “pseudorandom” in a sense useful for cryptography.
The same holds if the innermost and outermost permutation is replaced by an even simpler
permutation. In our implementation we use just two stages of Feistel-Permutations. It is
an interesting question what provable performance guarantees for the sweep algorithm or
other algorithmic problems can be given for such permutations.

A permutation π′ on 0.. d
√
ne2− 1 can be transformed to a permutation π on 0..n− 1

by iteratively applying π′ until a value below n is obtained. Since π′ is a permutation, this

191

process must eventually terminate. If π′ is random, the expected number of iterations is
close to 1 and it is unlikely that more than three iterations are necessary for any input.

12.7 Proof of Discarding Theorem for Suffix Array Con-
struction

Proof: We prove the theorem by showing that the total amount of data in the different
steps of the algorithm over the whole execution is as in the data flow graph in Figure 10.3.
The nontrivial points are that at most N = n log dps tuples are processed in each sorting
step over the whole execution and that at most n tuples are written to P . The former
follows from the fact that a suffix i is involved in the sorting steps as long as it has a non-
unique rank, which happens in exactly dlog(1+dps(i))e iterations. To show the latter, we
note that a tuple (c, i) is written to P in iteration k only if the previous tuple (c′, i − 2k)
was not unique. That previous tuple will become unique in the next iteration, because it
is represented by ((c′, c), i − 2k) in S. Since each tuple turns unique only once, the total
number of tuples written to P is at most n.

12.8 Pseudocode for the Discarding Algorithm

Function name2 (S : Sequence of Pair)
q:= q′:= 0; (`, `′):= ($, $)
result := 〈〉
foreach ((c, c′), i) ∈ S do

if c 6= ` then q:= q′:= 0; (`, `′):= (c, c′)
else if c′ 6= `′ then q′:= q; `′:= c′

append (c+ q′, i) to result
q++

return result

Figure 12.3: The alternative naming procedure.

192

Function doubling + discarding(T)
S:= 〈((T [i], T [i+ 1]), i) : i ∈ [0, n)〉 1

sort S 2

U := name(S) //undiscarded 3

P := 〈〉 //partially discarded
F := 〈〉 // fully discarded
for k := 1 to dlog ne do

mark unique names in U 4

sort U by (imod 2k, i div 2k) 5

merge P into U ; P := 〈〉 6

S:= 〈〉; count := 0
foreach (c, i) ∈ U do 7

if c is unique then
if count < 2 then

append (c, i) to F
else append (c, i) to P
count := 0

else
let (c′, i′) be the next pair in U
append ((c, c′), i) to S
count++

if S = ∅ then
sort F by first component 8

return 〈i : (c, i) ∈ F 〉 9

sort S 10

U := name2 (S) 11

Figure 12.4: The doubling with discarding algorithm.

193

Bibliography

[1] K. Kaligosi, P. Sanders. How Branch Mispredictions Affect Quicksort In 14th
European Symposium on Algorithms (ESA), number 4168 in LNCS, pages 780–791,
2006.

[2] P. Sanders and S. Winkel. Super Scalar Sample Sort In 12th European Symposium
on Algorithms (ESA), number 2625 in LNCS, pages 784–796, 2004.

[3] R. Dementiev and P. Sanders Asynchronous Parallel Disk Sorting In 15th ACM
Symposium on Parallelism in Algorithms and Architectures, pages 138–148, San
Diego, 2003.

[4] D. A. Hutchinson, P. Sanders, and J. S. Vitter. Duality Between Prefetching and
Queued Writing with Parallel Disks In 9th European Symposium on Algorithms
(ESA), number 2161 in LNCS, pages 62–73, 2001.

[5] Peter Sanders. Fast Priority Queues for Cached Memory In ALENEX ’99, Workshop
on Algorithm Engineering and Experimentation, number 1619 in LNCS, pages 312–
327, 1999.

[6] Roman Dementiev. Algorithm Engineering for Large Data Sets. Dissertation at
Universität des Saarlandes, 2006.

[7] P. Sanders, R. Dementiev. I/O-Efficient Algorithms and Data Structures. Slides for
Algorithm Engineering course at Universität Karlsruhe, 2007.

[8] Laura Toma and Norbert Zeh I/O-Efficient Algorithms for Sparse Graphs In Algo-
rithms for Memory Hierarchies, number 2625 in LNCS, pages 85–109, 2003.

[9] Piyush Kumar Cache Oblivious Algorithms In Algorithms for Memory Hierarchies,
number 2625 in LNCS, pages 193–212, 2003.

[10] Anil Maheshwari and Norbert Zeh A Survey of Techniques for Designing I/O-
Efficiet Algorithms In Algorithms for Memory Hierarchies, number 2625 in LNCS,
pages 36–61, 2003.

194

[11] M. Frigo, C. E. Leiserson, H. Prokop, S. Ramachandran. Cache-Oblivious Algo-
rithms In 40th Symposium on Foundations of Computer Science, pages 285–298,
1999.

[12] Irit Katriel and Ulrich Meyer Elementary Graph Algorithms in External Memory In
Algorithms for Memory Hierarchies, number 2625 in LNCS, pages 62–84, 2003.

[13] Deepak Ajwani, Ulrich Meyer, Vitaly Osipov. Improved external memory BFS im-
plementations In Workshop on Algorithm engineering and experiments (ALENEX
07), pages 3–12. New Orleans, USA, 2007.

[14] K. Munagala and A. Ranade. I/O-Complexity of Graph Algorithms In Proc. 10th
Ann. Symposium on Discrete Algorithms, pages 687–694. ACM-SIAM, 1999.

[15] K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear
I/O. In Proc. 10th Ann. European Symposium on Algorithms (ESA), volume 2461 of
LNCS, pages 723–735. Springer, 2002.

[16] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S.
Vitter. External-memory graph algorithms. In Proceedings of the Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 139–149, 1995.

[17] D. Ajwani, R. Dementiev, and U. Meyer. A computational study of external-memory
BFS algorithms. SODA, pages 601–610, 2006.

[18] Gerth Stolting Brodal and Rolf Fagerberg. Cache oblivious distribution sweeping In
Proceedings of the 29th International Colloquium on Au- tomata, Languages, and
Programming, pages 426–438, Malaga, Spain, July 2002.

[19] Erik D. Demaine. Cache-Oblivious Algorithms and Data Structures. In Lecture
Notes from the EEF Summer School on Massive Data Sets, 2002.

[20] L. A. Arge, G. S. Brodal, and L. Toma. On external-memory MST, SSSP and multi-
way planar graph separation. In Proc. 8th Scand. Workshop on Algorithmic Theory,
volume 1851 of LNCS, pages 433–447. Springer, 2000.

[21] N. Zeh. I/O-Efficient Algorithms for Shortest Path Related Problems. PhD thesis,
School of Computer Science, Carleton University, 2002.

[22] P. van Emde Boas. Preserving order in a forest in less than logarithmic time. In
Information Processing Letters, 6(3):80-82, 1977.

[23] R. Dementiev, L. Kettner, J. Mehnert, and P. Sanders. Engineering a Sorted List Data
Structure for 32 Bit Keys. In Workshop on Algorithm Engineering & Experiments,
pages 142–151, New Orleans, 2004.

195

[24] A. V. Goldberg and C. Harrelson. Computing the Shortest Path: A∗ meets Graph
Theory. In 16th ACM-SIAM Symposium on Discrete Algorithms, pages 156–165,
2005.

[25] J. Maue and P. Sanders and D. Matijevic. Goal Directed Shortest Path Queries Using
Precomputed Cluster Distances. In 5th Workshop on Experimental Algorithms
(WEA), LNCS vol. 4007, pages 316–328, 2006.

[26] F. Schulz and D. Wagner and K. Weihe. Dijkstra’s Algorithm On-Line: An Em-
pirical Case Study from Public Railroad Transport. In 3rd Workshop on Algorithm
Engineering, LNCS vol. 1668, pages 110–123, 1999.

[27] D. Wagner and T. Willhalm. Geometric Speed-Up Techniques for Finding Shortest
Paths in Large Sparse Graphs. In 11th European Symposium on Algorithms, LNCS
vol. 2832, pages 776–787, 2003.

[28] R. H. Möhring and H. Schilling and B. Schütz and D. Wagner and T. Willhalm. Par-
titioning Graphs to Speed Up Dijkstra’s Algorithm. In 4th International Workshop
on Efficient and Experimental Algorithms, pages 189–202, 2005.

[29] E. Köhler and R. H. Möhring and H. Schilling. Acceleration of Shortest Path and
Constrained Shortest Path Computation. In 4th International Workshop on Efficient
and Experimental Algorithms, 2005.

[30] P. Sanders, D. Schultes. Engineering Fast Route Planning Algorithms. In 6th Work-
shop on Experimental Algorithms (WEA), LNCS vol. 4525, pages 23–36, 2007.

[31] P. Sanders, D. Schultes. Highway Hierarchies Hasten Exact Shortest Path Queries.
In 13th European Symposium on Algorithms (ESA), LNCS vol. 3669, pages 568–
597, 2005.

[32] P. Sanders, D. Schultes. Engineering Highway Hierarchies. In 14th European Sym-
posium on Algorithms (ESA), LNCS vol. 4168, pages 804–816, 2006.

[33] P. Sanders, D. Schultes. Robust, Almost Constant Time Shortest-Path Queries in
Road Networks. In 9th DIMACS Challenge on Shortest Paths, 2007.

[34] P. Sanders, D. Schultes. Dynamic Highway-Node Routing. In 6th Workshop on
Experimental Algorithms (WEA), LNCS vol. 4525, pages 66–79, 2007.

[35] R. Gutman. Reach-based Routing: A New Approach to Shortest Path Algorithms
Optimized for Road Networks. In 6th Workshop on Algorithm Engineering and
Experiments, pages 100–111, 2004.

196

[36] D. Delling and D. Wagner. Landmark-Based Routing in Dynamic Graphs. In 6th
Workshop on Experimental Algorithms, 2007.

[37] I. Katriel, P. Sander and J. L. Träff. A Practical Minimum Spanning Tree Algorithm
Using the Cycle Property. In 11th European Symposium on Algorithms (ESA), LNCS
vol. 2832, pages 679–690, 2003.

[38] Roman Dementiev, Peter Sanders, Dominik Schultes, Jop Sibeyn. A Practical Mini-
mum Spanning Tree Algorithm Using the Cycle Property. In 3rd IFIP International
Conference on Theoretical Computer Science (TSC2004), pages 195–208, 2004.

[39] Juha Kärkkäinen, Peter Sanders. Sorting Strings and Suffixes. Slides, 2003.

[40] Bentley and Sedgewick. Fast Algorithms for Sorting and Searching Strings. In
SODA: ACM-SIAM Symposium on Discrete Algorithms, 1997.

[41] J. Kärkkäinen and P. Sanders. Simple Linear Work Suffix Array Construction. In
30th International Colloquium on Automata, Languages and Programming, LNCS
vol. 2719, pages 943–955, 2003.

[42] R. Dementiev, J. Mehnert, J. Kärkkäinen, P. Sanders. Better External Memory Suf-
fix Array Construction. In Workshop on Algorithm Engineering & Experiments
(ALENEX05), pages 86–97, 2005.

[43] P. Alefragis, P. Sanders, T. Takkula, and D. Wedelin. Parallel integer optimization
for crew scheduling. Annals of Operations Research, 99(1):141–166, 2000.

[44] Y. Azar, A. Z. Broder, A. R. Karlin, and Eli Upfal. Balanced allocations. SIAM
Journal on Computing, 29(1):180–200, February 2000.

[45] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced allocations: The
heavily loaded case. In 32th Annual ACM Symposium on Theory of Computing,
2000.

[46] J. M. Chambers, W. S. Cleveland, b. Kleiner, and P. A. Tukey. Graphical Methods
for Data Analysis. Duxbury Press, Boston, 1983.

[47] W. S. Cleveland. Elements of Graphing Data. Wadsworth, Monterey, Ca, 2nd
edition, 1994.

[48] D. S. Johnson. A theoretician’s guide to the experimental analysis of algorithms.
In M. Goldwasser, D. S. Johnson, and C. C. McGeoch, editors, Proceedings of the
5th and 6th DIMACS Implementation Challenges. American Mathematical Society,
2002.

197

[49] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACMTMCS: ACM Transac-
tions on Modeling and Computer Simulation, 8:3–30, 1998. http://www.math.
keio.ac.jp/˜matumoto/emt.html.

[50] C. C. McGeoch, D. Precup, and P. R. Cohen. How to find big-oh in your data set
(and how not to). In Advances in Intelligent Data Analysis, number 1280 in LNCS,
pages 41–52, 1997.

[51] C.C. McGeoch and B. M. E. Moret. How to present a paper on experimental work
with algorithms. SIGACT News, 30(4):85–90, 1999.

[52] B. M. E. Moret. Towards a discipline of experimental algorithmics. In 5th DIMACS
Challenge, DIMACS Monograph Series, 2000. to appear.

[53] W. H. Press, S.A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
in C. Cambridge University Press, 2nd edition, 1992.

[54] P. Sanders. Lastverteilungsalgorithmen für parallele Tiefensuche. Number 463 in
Fortschrittsberichte, Reihe 10. VDI Verlag, 1997.

[55] P. Sanders. Asynchronous scheduling of redundant disk arrays. In 12th ACM Sym-
posium on Parallel Algorithms and Architectures, pages 89–98, 2000.

[56] P. Sanders and R. Fleischer. Asymptotic complexity from experiments? a case study
for randomized algorithms. In Workshop on Algorithm Engineering, number 1982
in LNCS, pages 135–146, 2000.

[57] P. Sanders and J. Sibeyn. A bandwidth latency tradeoff for broadcast and reduction.
In 6th Euro-Par, number 1900 in LNCS, pages 918–926, 2000.

[58] Peter Sanders. Fast priority queues for cached memory. ACM Journal of Experi-
mental Algorithmics, 5, 2000.

[59] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, Connecticut, U.S.A., 1983.

198

