

Algorithmen II

Simon Gog – gog@kit.edu

Institute for Theoretical Informatics - Algorithms II

www.kit.edu

Classical OLAP queries: "Find all users aged between 30 and 35 who are connected to at least 100 and at most 200 other users"

One dimensional case (d = 1). Example ($x_0 = 19$, $x_1 = 76$):

- $count(x_0, x_1) = 7$
- report(x_0, x_1)={22, 35, 40, 44, 54, 62, 73}

Simple solution

- Sort points according to x-coordinates (O(n log n)) and store them in array A
- Calculate successor x'_0 of x_0 and predecessor x'_1 of x_1
- Let i'(j') be the index of $x'_0(x'_1)$ in A
- Method *count* returns k = j' i' + 1 (in $O(\log n)$ time)
- Method *report* returns subarray A[i', j'] (in $O(\log n + k)$ time)

Alternative solution: balanced binary search trees

- Find point in middle, split set and recurse on both half (pick left point if set size is even)
- Depth is $\log n$, construction time is bounded by sorting ($O(n \log n)$)

Alternative solution: balanced binary search trees

Find successor (predecessor) of $x_0(x_1)$ again

Institute for Theoretical Informatics Algorithms II

Subtrees of off-path edges are either included or excluded form result
Result can be implicitly represented using included off-path subtrees (there are at most O(log n) of them)

Two dimensional case (d = 2). Example ($x_0 = 12, x_1 = 32, y_0 = 10, y_1 = 29$): • $count(x_0, x_1, y_0, y_1) = 11$

• $report(x_0, x_1, y_0, y_1) = (19, 40), (23, 39), (22, 49), \cdots$

5 Simon Gog: Algorithmen II

First attempt of a solution

- Store points in array A_x and A_y
- Sort points in A_x according to x-coordinate (A_y according to y-coordinate)
- Let $k_x = count(x_0, x_1)$ in A_x , i.e all points with $x_0 \le x \le x_1$
- Let $k_y = count(y_1, y_1)$ in A_y , i.e. all points with $y_0 \le y \le y_1$
- Check smaller point list for both constaints
- Time complexity for this approach: $O(\log n) + O(\min(k_x, k_y))$
- Well, there are cases...

Second attempt

- Build a balanced binary tree using the x coordinates
- Calculate the $O(\log n)$ subtrees which contain all points with $x_0 \le x \le x_1$
- Idea: Filter these subtrees by y-coordinate

8 Simon Gog: Algorithmen II

Institute for Theoretical Informatics Algorithms II

How to filter by y-coordinate

- For each node v in the tree build a 1D range searching structure on the y-coordinates of all points in v's subtree
- This can be done during the preprocessing
- How does the query process change?
 - Determine paths to successor and predecessor of x_0 and x_1
 - Determine the root nodes of the O(log n) included off-path subtrees
 - For each such root node v_i retrieve all points which are in $[y_0, y_1]$ in $O(\log n + k_i)$ time, where k_i is the number of matching points

Total time complexity: $O(\log^2 n + k)$

- At most $O(\log n)$ subtrees for x
- Retrieval time for each subtree $O(\log n + k_i)$
- Points from two different subtrees are distinct

How to filter by y-coordinate

- For each node v in the tree build a 1D range searching structure on the y-coordinates of all points in v's subtree
- This can be done during the preprocessing
- How does the query process change?
 - Determine paths to successor and predecessor of x_0 and x_1
 - Determine the root nodes of the O(log n) included off-path subtrees
 - For each such root node v_i retrieve all points which are in $[y_0, y_1]$ in $O(\log n + k_i)$ time, where k_i is the number of matching points

Total time complexity: $O(\log^2 n + k)$

- At most $O(\log n)$ subtrees for x
- Retrieval time for each subtree $O(\log n + k_i)$
- Points from two different subtrees are *distinct*

How much space is used?

- Tree height is $O(\log n)$
- On each level ℓ each point is represented in only one node
- $\sum_{i=0}^{c_1 \log n} c_2 n = O(n \log n)$ words

How long does the preprocessing take?

- Problem: points have to be sorted according to y-coordinate in each node
- Solution: bottom-up construction
 - Start at the leaves
 - Merge the (already sorted) lists of the two children of a node
 - I.e. O(n log n) construction time

2d-range searching in $O(\log n + k)$ time

- Idea: Avoid expensive calcuation of successor/predecessor in all O(log n) 1d-range structures for y-coordinates
- Determine successor/predecessor in root node and map result into child nodes
- Technique known as *fractional cascading*
- More detailed: For each node v and entry of the y-range searching structure store a pointer to the corresponding successor in v's left and right child

