Algorithmen II

Simon Gog - gog@kit.edu

Institute for Theoretical Informatics - Algorithms ||

Orthogonal range searching

Classical OLAP queries: „Find all users aged between 30 and 35 who are connected to at least 100 and at most 200 other users"

Orthogonal range searching - 1D

One dimensional case $(d=1)$. Example ($x_{0}=19, x_{1}=76$):

- $\operatorname{count}\left(x_{0}, x_{1}\right)=7$
- $\operatorname{report}\left(x_{0}, x_{1}\right)=\{22,35,40,44,54,62,73\}$

Orthogonal range searching - 1D

Simple solution

- Sort points according to x-coordinates $(O(n \log n))$ and store them in array A
- Calculate successor x_{0}^{\prime} of x_{0} and predecessor x_{1}^{\prime} of x_{1}
- Let $i^{\prime}\left(j^{\prime}\right)$ be the index of $x_{0}^{\prime}\left(x_{1}^{\prime}\right)$ in A
- Method count returns $k=j^{\prime}-i^{\prime}+1$ (in $O(\log n)$ time)
- Method report returns subarray $A\left[i^{\prime}, j^{\prime}\right]$ (in $O(\log n+k)$ time)

Orthogonal range searching - 1D

Alternative solution: balanced binary search trees

- Find point in middle, split set and recurse on both half (pick left point if set size is even)
- Depth is $\log n$, construction time is bounded by sorting $(O(n \log n))$

Orthogonal range searching - 1D

Alternative solution: balanced binary search trees

- Find successor (predecessor) of $x_{0}\left(x_{1}\right)$ again

- Subtrees of off-path edges are either included or excluded form result
- Result can be implicitly represented using included off-path subtrees (there are at most $O(\log n)$ of them)

Orthogonal range searching - 2D

Two dimensional case ($d=2$). Example ($x_{0}=12, x_{1}=32$,
$y_{0}=10, y_{1}=29$):

- count $\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=11$
- report $\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=(19,40),(23,39),(22,49), \cdots$

Orthogonal range searching - 2D

First attempt of a solution

- Store points in array A_{x} and A_{y}
- Sort points in A_{x} according to x-coordinate (A_{y} according to y-coordinate)
- Let $k_{x}=\operatorname{count}\left(x_{0}, x_{1}\right)$ in A_{x}, i.e all points with $x_{0} \leq x \leq x_{1}$
- Let $k_{y}=\operatorname{count}\left(y_{1}, y_{1}\right)$ in A_{y}, i.e. all points with $y_{0} \leq y \leq y_{1}$
- Check smaller point list for both constaints
- Time complexity for this approach: $O(\log n)+O\left(\min \left(k_{x}, k_{y}\right)\right)$
- Well, there are cases...

Orthogonal range searching - 2D

$$
\begin{aligned}
& k_{x}=45 \\
& k_{y}=49 \\
& k=5 \\
& n=91
\end{aligned}
$$

Orthogonal range search - 2D

Second attempt

- Build a balanced binary tree using the x coordinates
- Calculate the $O(\log n)$ subtrees which contain all points with $x_{0} \leq x \leq x_{1}$
- Idea: Filter these subtrees by y-coordinate

Orthogonal range searching - 2D

How to filter by y-coordinate

- For each node v in the tree build a 1D range searching structure on the y-coordinates of all points in v 's subtree
- This can be done during the preprocessing
- How does the query process change?
- Determine paths to successor and predecessor of x_{0} and x_{1}
- Determine the root nodes of the $O(\log n)$ included off-path subtrees
- For each such root node v_{i} retrieve all points which are in $\left[y_{0}, y_{1}\right]$ in $O\left(\log n+k_{i}\right)$ time, where k_{i} is the number of matching points

Total time complexity: $O\left(\log ^{2} n+k\right)$

- At most $O(\log n)$ subtrees for x
- Retrieval time for each subtree $O\left(\log n+k_{i}\right)$
- Points from two different subtrees are distinct

Orthogonal range searching - 2D

How to filter by y-coordinate

- For each node v in the tree build a 1D range searching structure on the y-coordinates of all points in v 's subtree
- This can be done during the preprocessing
- How does the query process change?
- Determine paths to successor and predecessor of x_{0} and x_{1}
- Determine the root nodes of the $O(\log n)$ included off-path subtrees
- For each such root node v_{i} retrieve all points which are in $\left[y_{0}, y_{1}\right]$ in $O\left(\log n+k_{i}\right)$ time, where k_{i} is the number of matching points

Total time complexity: $O\left(\log ^{2} n+k\right)$

- At most $O(\log n)$ subtrees for x
- Retrieval time for each subtree $O\left(\log n+k_{i}\right)$
- Points from two different subtrees are distinct

Orthogonal range searching - 2D

How much space is used?

- Tree height is $O(\log n)$
- On each level ℓ each point is represented in only one node
- $\sum_{i=0}^{c_{1} \log n} c_{2} n=O(n \log n)$ words

How long does the preprocessing take?

- Problem: points have to be sorted according to y-coordinate in each node
- Solution: bottom-up construction
- Start at the leaves
- Merge the (already sorted) lists of the two children of a node
- I.e. $O(n \log n)$ construction time

Orthogonal range searching - 2D

2d-range searching in $O(\log n+k)$ time

- Idea: Avoid expensive calcuation of successor/predecessor in all $O(\log n) 1 d$-range structures for y-coordinates
- Determine successor/predecessor in root node and map result into child nodes
- Technique known as fractional cascading
- More detailed: For each node v and entry of the y-range searching structure store a pointer to the corresponding successor in v 's left and right child

Orthogonal range searching - 2D

