
0 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

Institute for Theoretical Informatics - Algorithms II

Algorithmen II
Simon Gog – gog@kit.edu

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association www.kit.edu



Orthogonal range searching

1 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

Classical OLAP queries: „Find all users aged between 30 and 35 who are
connected to at least 100 and at most 200 other users”

x0

y0

x1

y1



Orthogonal range searching – 1D

2 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

7 11 22 35 4044 54 62 73 81 87

x0 x1

One dimensional case (d = 1). Example (x0 = 19, x1 = 76):
count(x0, x1)=7
report(x0, x1)={22,35,40,44,54,62,73}



Orthogonal range searching – 1D

2 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

7 11 22 35 4044 54 62 73 81 87

x0 x1

Simple solution

Sort points according to x-coordinates (O(n log n)) and store them in
array A
Calculate successor x ′0 of x0 and predecessor x ′1 of x1

Let i ′(j ′) be the index of x ′0 (x ′1) in A
Method count returns k = j ′ − i ′ + 1 (in O(log n) time)
Method report returns subarray A[i ′, j ′] (in O(log n + k) time)



Orthogonal range searching – 1D

3 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

Alternative solution: balanced binary search trees

Find point in middle, split set and recurse on both half (pick left point if
set size is even)
Depth is log n, construction time is bounded by sorting (O(n log n))



Orthogonal range searching – 1D

3 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

Alternative solution: balanced binary search trees

x0 x1

Find successor (predecessor) of x0 (x1) again



4 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

too small

too large



4 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

too small

too large

x0 x1



4 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

too small

too large

x0 x1

split node



4 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

too small

too large

x0 x1

split node

Subtrees of off-path edges are either included or excluded form result
Result can be implicitly represented using included off-path subtrees
(there are at most O(log n) of them)



Orthogonal range searching – 2D

5 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

x0

y0

x1

y1

Two dimensional case (d = 2). Example (x0 = 12, x1 = 32,
y0 = 10,y1 = 29):

count(x0, x1, y0, y1) = 11

report(x0, x1, y0, y1) = (19,40), (23,39), (22,49), . . .



Orthogonal range searching – 2D

6 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

First attempt of a solution

Store points in array Ax and Ay

Sort points in Ax according to x-coordinate (Ay according to
y -coordinate)
Let kx = count(x0, x1) in Ax , i.e all points with x0 ≤ x ≤ x1

Let ky = count(y1, y1) in Ay , i.e. all points with y0 ≤ y ≤ y1

Check smaller point list for both constaints
Time complexity for this approach: O(log n) + O(min(kx , ky ))

Well, there are cases...



Orthogonal range searching – 2D

7 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

x0

y0

x1

y1

kx = 45
ky = 49
k = 5
n = 91



Orthogonal range search – 2D

8 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

Second attempt

Build a balanced binary tree using the x coordinates
Calculate the O(log n) subtrees which contain all points with
x0 ≤ x ≤ x1

Idea: Filter these subtrees by y -coordinate

x too sm
all

x too large

x0 x1



Orthogonal range searching – 2D

9 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

How to filter by y -coordinate

For each node v in the tree build a 1D range searching structure on
the y -coordinates of all points in v ’s subtree
This can be done during the preprocessing
How does the query process change?

Determine paths to successor and predecessor of x0 and x1
Determine the root nodes of the O(log n) included off-path subtrees
For each such root node vi retrieve all points which are in [y0, y1] in
O(log n + ki ) time, where ki is the number of matching points

Total time complexity: O(log2 n + k)

At most O(log n) subtrees for x
Retrieval time for each subtree O(log n + ki )

Points from two different subtrees are distinct



Orthogonal range searching – 2D

9 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

How to filter by y -coordinate

For each node v in the tree build a 1D range searching structure on
the y -coordinates of all points in v ’s subtree
This can be done during the preprocessing
How does the query process change?

Determine paths to successor and predecessor of x0 and x1
Determine the root nodes of the O(log n) included off-path subtrees
For each such root node vi retrieve all points which are in [y0, y1] in
O(log n + ki ) time, where ki is the number of matching points

Total time complexity: O(log2 n + k)

At most O(log n) subtrees for x
Retrieval time for each subtree O(log n + ki )

Points from two different subtrees are distinct



Orthogonal range searching – 2D

10 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

How much space is used?

Tree height is O(log n)
On each level ` each point is represented in only one node

∑c1 log n
i=0 c2n = O(n log n) words

How long does the preprocessing take?

Problem: points have to be sorted according to y -coordinate in each
node
Solution: bottom-up construction

Start at the leaves
Merge the (already sorted) lists of the two children of a node
I.e. O(n log n) construction time



Orthogonal range searching – 2D

11 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

2d-range searching in O(log n + k) time

Idea: Avoid expensive calcuation of successor/predecessor in all
O(log n) 1d-range structures for y -coordinates
Determine successor/predecessor in root node and map result into
child nodes
Technique known as fractional cascading
More detailed: For each node v and entry of the y -range searching
structure store a pointer to the corresponding successor in v ’s left and
right child



Orthogonal range searching – 2D

12 Simon Gog:
Algorithmen II

Institute for Theoretical Informatics
Algorithms II

y0 y1

6

6

11

11

17

17

32

32

42

42

46

46

51

51

60

60

69

69

80

80

94

94


