

Übung 13 – Algorithmen II

Yaroslav Akhremtsev, Demian Hespe – yaroslav.akhremtsev@kit.edu, hespe@kit.edu Mit Folien von Michael Axtmann

http://algo2.iti.kit.edu/AlgorithmenII_WS17.php

Institut für Theoretische Informatik - Algorithmik II

```
sweath - current weight:
    PROPERTY STATE
or( idget0 eid = graph.edgeBegin( current ); eid != graph.edgeEnd( current ); ++eid ){
  const Edge & edge = graph.getEdge( eid );
 COUNTING( statistic data.inc( DijkstraStatisticData::TOUCHED EDGES ); )
 if ( edge. forward ) {
    COUNTING( statistic data.inc( DijkstraStatisticData::RELAXED EDGES ); )
   Weight new weight = edge.weight + current weight;
  GUARANTEE( new weight >= current weight, std::runtime error, "Weight overflow detected
  if( !priority queue.isReached( edge.target ) ){
     COUNTING( statistic data.inc( DijkstraStatisticData::SUCCESSFULLY RELAXED EDGES )
    COUNTING( statistic data.inc( DijkstraStatisticData: REACHED MODES )
   priority queue.push( edge.target, new weight ):
} else {
  if( priority queue.getCurrentKey( edge.target ) * new welling
     COUNTING( Statistic data.inc( DijkstrastatisticData | tuccastamus v del aces | tuccastamus v
     priority queue.decreasekey( edge target, new weight)
```

Themenübersicht

preflow-push Algorithmus

- Überblick
- FIFO preflow-push
- Heuristiken

Matching

Speichermodell

- Parallel Disk Model
- Speicherlatenzen
- Blockgrößen

I/O-effizientes Design

- Basistechniken
- externes Sortieren

Wiederholung

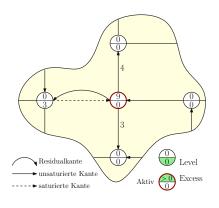
Bezeichnungen

- aktiver Knoten
 - Knoten ν aktiv gdw. $excess(\nu) = inflow(\nu) outflow(\nu) > 0$
- gültige Kante
 - Kante $(v, w) \in G^f$ ist gültig, wenn Level d(v) = d(w) + 1

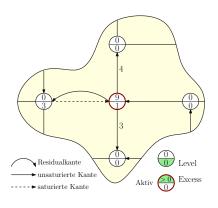
allgemeiner Ablauf

- 1. wähle aktiven Knoten V
- 2. falls gültige Kante (v, w) existiert: push
 - lacktriang schiebe Fluss entlang (V, W)
- 3. ansonsten: relabel

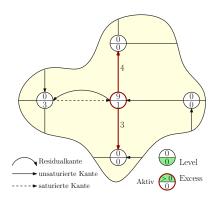
- Operationen nur auf aktiven Knoten
- aktive Knoten haben excess (inflow > outflow)
- relabel
 - erhöht Level eines Knoten
 - erhält $d(u) \le d(v) + 1$ für alle (u, v) im Residualgraph
 - nur zulässig wenn push vom Knoten nicht möglich
- push
 - schiebe Fluss entlang Kante (u, v)
 - Vorraussetzung: d(u) = d(v) + 1



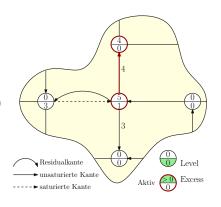
- Operationen nur auf aktiven Knoten
- aktive Knoten haben excess (inflow > outflow)
- relabel
 - erhöht Level eines Knoten
 - erhält $d(u) \le d(v) + 1$ für alle (u, v) im Residualgraph
 - nur zulässig wenn push vom Knoten nicht möglich
- push
 - schiebe Fluss entlang Kante (u, v)
 - Vorraussetzung: d(u) = d(v) + 1



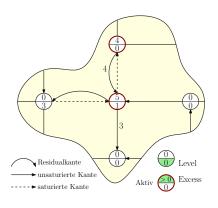
- Operationen nur auf aktiven Knoten
- aktive Knoten haben excess (inflow > outflow)
- relabel
 - erhöht Level eines Knoten
 - erhält $d(u) \le d(v) + 1$ für alle (u, v) im Residualgraph
 - nur zulässig wenn push vom Knoten nicht möglich
- push
 - schiebe Fluss entlang Kante (u, v)
 - Vorraussetzung: d(u) = d(v) + 1



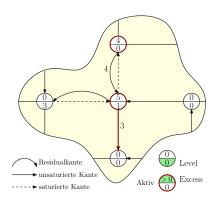
- Operationen nur auf aktiven Knoten
- aktive Knoten haben excess (inflow > outflow)
- relabel
 - erhöht Level eines Knoten
 - erhält $d(u) \le d(v) + 1$ für alle (u, v) im Residualgraph
 - nur zulässig wenn push vom Knoten nicht möglich
- push
 - schiebe Fluss entlang Kante (u, v)
 - Vorraussetzung: d(u) = d(v) + 1



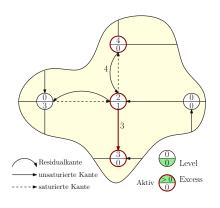
- Operationen nur auf aktiven Knoten
- aktive Knoten haben excess (inflow > outflow)
- relabel
 - erhöht Level eines Knoten
 - erhält $d(u) \le d(v) + 1$ für alle (u, v) im Residualgraph
 - nur zulässig wenn push vom Knoten nicht möglich
- push
 - schiebe Fluss entlang Kante (u, v)
 - Vorraussetzung: d(u) = d(v) + 1



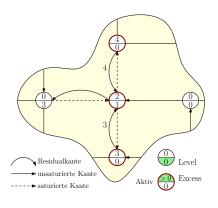
- Operationen nur auf aktiven Knoten
- aktive Knoten haben excess (inflow > outflow)
- relabel
 - erhöht Level eines Knoten
 - erhält $d(u) \le d(v) + 1$ für alle (u, v) im Residualgraph
 - nur zulässig wenn push vom Knoten nicht möglich
- push
 - schiebe Fluss entlang Kante (u, v)
 - Vorraussetzung: d(u) = d(v) + 1



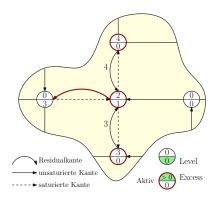
- Operationen nur auf aktiven Knoten
- aktive Knoten haben excess (inflow > outflow)
- relabel
 - erhöht Level eines Knoten
 - erhält $d(u) \le d(v) + 1$ für alle (u, v) im Residualgraph
 - nur zulässig wenn push vom Knoten nicht möglich
- push
 - schiebe Fluss entlang Kante (u, v)
 - Vorraussetzung: d(u) = d(v) + 1



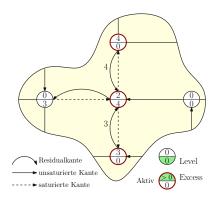
- Operationen nur auf aktiven Knoten
- aktive Knoten haben excess (inflow > outflow)
- relabel
 - erhöht Level eines Knoten
 - erhält $d(u) \le d(v) + 1$ für alle (u, v) im Residualgraph
 - nur zulässig wenn push vom Knoten nicht möglich
- push
 - schiebe Fluss entlang Kante (u, v)
 - Vorraussetzung: d(u) = d(v) + 1



- Operationen nur auf aktiven Knoten
- aktive Knoten haben excess (inflow > outflow)
- relabel
 - erhöht Level eines Knoten
 - erhält $d(u) \le d(v) + 1$ für alle (u, v) im Residualgraph
 - nur zulässig wenn push vom Knoten nicht möglich
- push
 - schiebe Fluss entlang Kante (u, v)
 - Vorraussetzung: d(u) = d(v) + 1



- Operationen nur auf aktiven Knoten
- aktive Knoten haben excess (inflow > outflow)
- relabel
 - erhöht Level eines Knoten
 - erhält $d(u) \le d(v) + 1$ für alle (u, v) im Residualgraph
 - nur zulässig wenn push vom Knoten nicht möglich
- push
 - schiebe Fluss entlang Kante (u, v)
 - Vorraussetzung: d(u) = d(v) + 1



Wiederholung

Bezeichnungen

- aktiver Knoten
 - Knoten ν aktiv gdw. excess(ν) = inflow(ν) outflow(ν) > 0
- gültige Kante
 - Kante $(v, w) \in G^f$ ist gültig, wenn Level d(v) = d(w) + 1

allgemeiner Ablauf

- 1 wähle aktiven Knoten V
- 2. falls gültige Kante (V, W) existiert: push
 - schiebe Fluss entlang (V, W)
- 3. ansonsten: relabel
 - erhöhe Level von V

Wiederholung

Bezeichnungen

- aktiver Knoten
 - Knoten ν aktiv gdw. $excess(\nu) = inflow(\nu) outflow(\nu) > 0$
- gültige Kante
 - Kante $(v, w) \in G^f$ ist gültig, wenn Level d(v) = d(w) + 1

allgemeiner Ablauf

- 1. wähle aktiven Knoten V
- 2. falls gültige Kante (V, W) existiert: push
 - schiebe Fluss entlang (V, W)

WELCHEN?

WELCHE?

WIFVIFI?

- 3. ansonsten: relabel
 - erhöhe Level von V

WIFVIFI?

Wiederholung

Bezeichnungen

- aktiver Knoten
 - Knoten ν aktiv gdw. excess(ν) = inflow(ν) outflow(ν) > 0
- gültige Kante
 - Kante $(v, w) \in G^f$ ist gültig, wenn Level d(v) = d(w) + 1

allgemeiner Ablauf

- 1. wähle aktiven Knoten V
- 2. falls gültige Kante (V, W) existiert: push
 - schiebe Fluss entlang (V, W) $f_{(v,w)} = f_{(v,w)} + \min\{c_{(v,w)}^t, excess(v)\}$
- 3. ansonsten: relabel
 - erhöhe Level von V d(v) = d(v) + 1

WIFVIFI?

WELCHEN? WELCHE?

WIFVIFI?

 $\mathcal{O}(n^2m)$

Übersicht

Unterschiedliche Auswahl des aktiven Knoten:

generic preflow-push

■ FIFO preflow-push $\mathcal{O}(n^3)$

• highest-level preflow-push $\mathcal{O}(n^2\sqrt{m})$

Unterschiedliches relabel:

- aggressive local relabeling
- global relabeling
- gap heuristic
- → nur Heuristiken, aber in Praxis deutliche Beschleunigung!

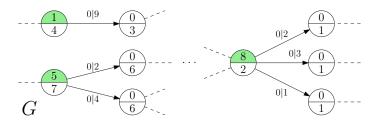
Überblick

Unterschiede zu generic preflow-push

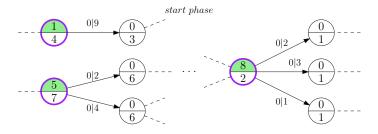
- push aus aktivem Knoten bis relabel oder excess abgebaut
 - typisches Vorgehen bei Ausführung per Hand
- Verwalte aktive Knoten in FIFO Liste
 - füge Knoten nach relabel bzw. aktiv gewordene Knoten hinten ein

Theorem: FIFO preflow-push findet in $\mathcal{O}(n^3)$ einen maximum Fluss

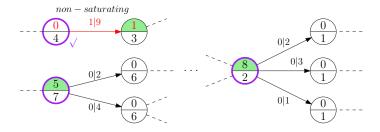
- Unterteile Ablauf in Phasen:
 - alle zu Phasenbeginn aktiven Knoten werden genau einmal betrachtet
 - → pro Phase baut jeder Knoten max. 1x allen excess ab
 - → pro Phase macht jeder Knoten max. 1x einen non-saturating push
 - $\rightarrow \#_{\text{non-saturating}} \leq n \cdot \#_{\text{phases}}$



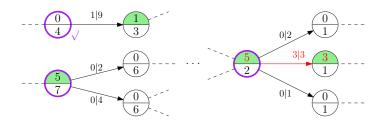
- Unterteile Ablauf in Phasen:
 - alle zu Phasenbeginn aktiven Knoten werden genau einmal betrachtet
 - → pro Phase baut jeder Knoten max. 1x allen excess ab
 - → pro Phase macht jeder Knoten max. 1x einen non-saturating push
 - $\rightarrow \#_{\text{non-saturating}} \leq n \cdot \#_{\text{phases}}$



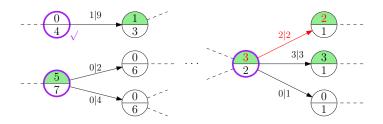
- Unterteile Ablauf in Phasen:
 - alle zu Phasenbeginn aktiven Knoten werden genau einmal betrachtet
 - \rightarrow pro Phase baut jeder Knoten max. 1x allen *excess* ab
 - → pro Phase macht jeder Knoten max. 1x einen non-saturating push
 - $ightarrow \ \#_{ ext{non-saturating}} \leq n \cdot \#_{ ext{phases}}$



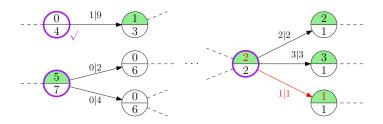
- Unterteile Ablauf in Phasen:
 - alle zu Phasenbeginn aktiven Knoten werden genau einmal betrachtet
 - ightarrow pro Phase baut jeder Knoten max. 1x allen *excess* ab
 - → pro Phase macht jeder Knoten max. 1x einen non-saturating push
 - $\rightarrow \#_{\text{non-saturating}} \leq n \cdot \#_{\text{phases}}$



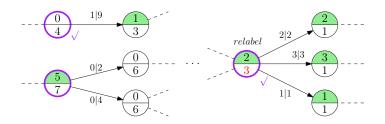
- Unterteile Ablauf in Phasen:
 - alle zu Phasenbeginn aktiven Knoten werden genau einmal betrachtet
 - → pro Phase baut jeder Knoten max. 1x allen excess ab
 - → pro Phase macht jeder Knoten max. 1x einen non-saturating push
 - $\rightarrow \#_{\text{non-saturating}} \leq n \cdot \#_{\text{phases}}$



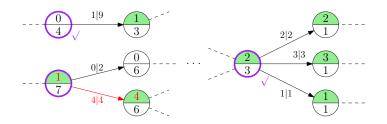
- Unterteile Ablauf in Phasen:
 - alle zu Phasenbeginn aktiven Knoten werden genau einmal betrachtet
 - → pro Phase baut jeder Knoten max. 1x allen excess ab
 - → pro Phase macht jeder Knoten max. 1x einen non-saturating push
 - $\rightarrow \#_{\text{non-saturating}} \leq n \cdot \#_{\text{phases}}$



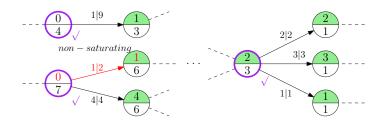
- Unterteile Ablauf in Phasen:
 - alle zu Phasenbeginn aktiven Knoten werden genau einmal betrachtet
 - → pro Phase baut jeder Knoten max. 1x allen excess ab
 - → pro Phase macht jeder Knoten max. 1x einen non-saturating push
 - $\rightarrow \#_{\text{non-saturating}} \leq n \cdot \#_{\text{phases}}$



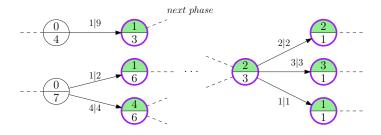
- Unterteile Ablauf in Phasen:
 - alle zu Phasenbeginn aktiven Knoten werden genau einmal betrachtet
 - → pro Phase baut jeder Knoten max. 1x allen *excess* ab
 - → pro Phase macht jeder Knoten max. 1x einen non-saturating push
 - $\rightarrow \#_{\text{non-saturating}} \leq n \cdot \#_{\text{phases}}$



- Unterteile Ablauf in Phasen:
 - alle zu Phasenbeginn aktiven Knoten werden genau einmal betrachtet
 - → pro Phase baut jeder Knoten max. 1x allen *excess* ab
 - → pro Phase macht jeder Knoten max. 1x einen non-saturating push
 - $\rightarrow \#_{\text{non-saturating}} \leq n \cdot \#_{\text{phases}}$

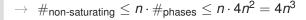


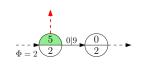
- Unterteile Ablauf in Phasen:
 - alle zu Phasenbeginn aktiven Knoten werden genau einmal betrachtet
 - → pro Phase baut jeder Knoten max. 1x allen *excess* ab
 - → pro Phase macht jeder Knoten max. 1x einen non-saturating push
 - $\rightarrow \#_{\text{non-saturating}} \leq n \cdot \#_{\text{phases}}$



- Sei $\Phi = \max\{d(v) \mid v \in G^f \text{ aktiv}\} \ge 0$ (Potential, dass gleich dem höchsten aktiven Level ist)
 - Phase mit relabel: $\Delta\Phi \leq 1$ (Erhöhung)
 Phase ohne relabel: $\Delta\Phi \leq -1$ (Erniedrigung)
 - da #_{relabel} ≤ 2n² (siehe Vorlesung)
 → maximal 2n² Erhöhungen
 → maximal 2n² Erniedrigungen
 - $\rightarrow \#_{\text{phases}} \leq 4n^2$
- $\rightarrow \#_{\text{non-saturating}} \le n \cdot \#_{\text{phases}} \le n \cdot 4n^2 = 4n^3$
 - restlicher Beweis wie bei generic preflow-push

- Sei $\Phi = \max\{d(v) \mid v \in G^f \text{ aktiv}\} \ge 0$ (Potential, dass gleich dem höchsten aktiven Level ist)
 - Phase mit relabel: $\Delta \Phi \leq 1$ (Erhöhung)
 Phase ohne relabel: $\Delta \Phi \leq -1$ (Erniedrigung)
 - da $\#_{\text{relabel}} \le 2n^2$ (siehe Vorlesung)
 - \rightarrow maximal 2 n^2 Erhöhungen
 - \rightarrow maximal $2n^2$ Erniedrigungen
 - $\rightarrow \#_{\text{phases}} \leq 4n^2$



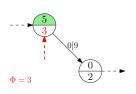


Sei $\Phi = \max\{d(v) \mid v \in G^f \text{ aktiv}\} \ge 0$ (Potential, dass gleich dem höchsten aktiven Level ist)

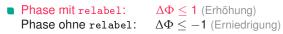
Phase mit relabel: $\Delta \Phi \leq 1$ (Erhöhung)
Phase ohne relabel: $\Delta \Phi \leq -1$ (Erniedrigung)

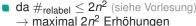
- da $\#_{\text{relabel}} \le 2n^2$ (siehe Vorlesung)
 - \rightarrow maximal 2 n^2 Erhöhungen
 - \rightarrow maximal 2 n^2 Erniedrigungen
- $\rightarrow \#_{\text{phases}} \leq 4n^2$





Sei $\Phi = \max\{d(v) \mid v \in G^f \text{ aktiv}\} \ge 0$ (Potential, dass gleich dem höchsten aktiven Level ist)





$$\rightarrow$$
 maximal $2n^2$ Erniedrigungen

$$\rightarrow \#_{\mathsf{phases}} \leq 4n^2$$

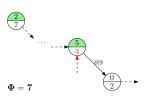
$$\rightarrow \#_{\text{non-saturating}} \le n \cdot \#_{\text{phases}} \le n \cdot 4n^2 = 4n^3$$

Sei $\Phi = \max\{d(v) \mid v \in G^f \text{ aktiv}\} \ge 0$ (Potential, dass gleich dem höchsten aktiven Level ist)

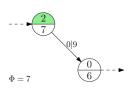
Phase mit relabel:
$$\Delta\Phi \leq 1$$
 (Erhöhung)
Phase ohne relabel: $\Delta\Phi \leq -1$ (Erniedrigung)

- da #_{relabel} ≤ 2n² (siehe Vorlesung)
 → maximal 2n² Erhöhungen
 - → maximal 2n² Emonungen
 - \rightarrow maximal $2n^2$ Erniedrigungen
- $\rightarrow \#_{\text{phases}} \leq 4n^2$

$$\rightarrow \#_{\text{non-saturating}} \le n \cdot \#_{\text{phases}} \le n \cdot 4n^2 = 4n^3$$



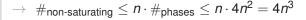
- Sei $\Phi = \max\{d(v) \mid v \in G^f \text{ aktiv}\} \ge 0$ (Potential, dass gleich dem höchsten aktiven Level ist)
 - Phase mit relabel: $\Delta\Phi \leq 1$ (Erhöhung)
 Phase ohne relabel: $\Delta\Phi \leq -1$ (Erniedrigung)
 - da $\#_{\text{relabel}} \le 2n^2$ (siehe Vorlesung)
 - \rightarrow maximal $2n^2$ Erhöhungen
 - \rightarrow maximal $2n^2$ Erniedrigungen
 - $\rightarrow \#_{\text{phases}} \leq 4n^2$
- $\rightarrow \#_{\text{non-saturating}} \le n \cdot \#_{\text{phases}} \le n \cdot 4n^2 = 4n^3$
 - restlicher Beweis wie bei generic preflow-push

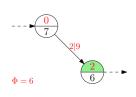


Sei $\Phi = \max\{d(v) \mid v \in G^f \text{ aktiv}\} \ge 0$ (Potential, dass gleich dem höchsten aktiven Level ist)

 $\begin{array}{ll} \mbox{ \begin{tabular}{ll} Phase mit relabel: } & \Delta\Phi \leq \mbox{1 (Erhöhung)} \\ \mbox{ \begin{tabular}{ll} Phase ohne relabel: } & \Delta\Phi \leq -\mbox{1 (Erhöhung)} \\ \end{array}$

- da $\#_{\text{relabel}} \le 2n^2$ (siehe Vorlesung)
 - → maximal 2n² Erhöhungen
 - \rightarrow maximal $2n^2$ Erniedrigungen
- $\rightarrow \#_{\text{phases}} \leq 4n^2$





FIFO preflow-push Algorithmus **Beweis Laufzeit**

• Sei $\Phi = \max\{d(v) \mid v \in G^f \text{ aktiv}\} \geq 0$ (Potential, dass gleich dem höchsten aktiven Level ist)

■ Phase mit relabel: $\Delta \Phi < 1$ (Erhöhung) Phase ohne relabel: $\Delta \Phi < -1$ (Erniedrigung)

■ da
$$\#_{\text{relabel}} \le 2n^2$$
 (siehe Vorlesung)

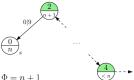
$$\rightarrow$$
 maximal $2n^2$ Erhöhungen

$$\rightarrow$$
 maximal $2n^2$ Erniedrigungen

$$\rightarrow \#_{\text{phases}} \leq 4n^2$$

$$\rightarrow \#_{\text{non-saturating}} \le n \cdot \#_{\text{phases}} \le n \cdot 4n^2 = 4n^3$$

restlicher Beweis wie bei generic preflow-push

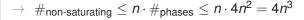


FIFO preflow-push Algorithmus **Beweis Laufzeit**

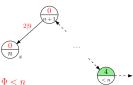
• Sei $\Phi = \max\{d(v) \mid v \in G^t \text{ aktiv}\} > 0$ (Potential, dass gleich dem höchsten aktiven Level ist)

■ Phase mit relabel: $\Delta \Phi < 1$ (Erhöhung) Phase ohne relabel: $\Delta \Phi < -1$ (Erniedrigung)

- da $\#_{\text{relabel}} \le 2n^2$ (siehe Vorlesung)
 - → maximal 2n² Erhöhungen
 - → maximal 2n² Erniedrigungen
- $\rightarrow \#_{\text{phases}} \leq 4n^2$



restlicher Beweis wie bei generic preflow-push



FIFO preflow-push Algorithmus Beweis Laufzeit

- Sei $\Phi = \max\{d(v) \mid v \in G^f \text{ aktiv}\} \ge 0$ (Potential, dass gleich dem höchsten aktiven Level ist)
 - Phase mit relabel: $\Delta\Phi \leq 1$ (Erhöhung)
 Phase ohne relabel: $\Delta\Phi \leq -1$ (Erniedrigung)
 - da #_{relabel} ≤ 2n² (siehe Vorlesung)
 → maximal 2n² Erhöhungen
 → maximal 2n² Erniedrigungen
 - $\rightarrow \#_{\text{phases}} \leq 4n^2$
- $\rightarrow \#_{\text{non-saturating}} \le n \cdot \#_{\text{phases}} \le n \cdot 4n^2 = 4n^3$
 - restlicher Beweis wie bei generic preflow-push

(Lemma 8)

Lemmas

- $T_{\text{push op}} = T_{\text{relabel op}} = T_{\text{node selection}} = \mathcal{O}(1)$
- $\#_{\text{relabels}} \le 2n^2$ (Lemma 7)
- $(\#_{\text{pushes}} + \#_{\text{relabels}}) \cdot T_{\text{edge selection}} \leq 4nm$ (Lemma 10)
- \blacksquare #pushes = #saturating + #non-saturating
- $\#_{\text{saturating}} \leq nm$
- $T_{\text{generic preflow-push}} = T_{\text{init}} + T_{\text{pushes}} + T_{\text{relabels}} \in \mathcal{O}(n^2 m)$
 - $T_{\text{init}} = n + m$
 - $T_{\text{pushes}} = \#_{\text{pushes}} \cdot (T_{\text{node selection}} + T_{\text{edge selection}} + T_{\text{push op}})$
 - $T_{\text{relabels}} = \#_{\text{relabels}} \cdot (T_{\text{node selection}} + T_{\text{edge selection}} + T_{\text{relabel op}})$

FIFO preflow-push Algorithmus Laufzeit

(Lemma 8)

Lemmas

- $T_{\text{push op}} = T_{\text{relabel op}} = T_{\text{node selection}} = \mathcal{O}(1)$
- $\#_{\text{relabels}} < 2n^2$ (Lemma 7)
- $(\#_{\text{pushes}} + \#_{\text{relabels}}) \cdot T_{\text{edge selection}} \leq 4nm$ (Lemma 10)
- \blacksquare #pushes = #saturating + #non-saturating
- $\#_{\text{saturating}} \leq nm$
- $\#_{\text{non-saturating}} \in \mathcal{O}(n^3)$ (FIFO)
- TFIFO preflow-push = $T_{\text{init}} + T_{\text{pushes}} + T_{\text{relabels}} \in \mathcal{O}(n^3)$
 - $T_{init} = n + m$
 - $T_{\text{pushes}} = \#_{\text{pushes}} \cdot (T_{\text{node selection}} + T_{\text{edge selection}} + T_{\text{push op}})$
 - $T_{\text{relabels}} = \#_{\text{relabels}} \cdot (T_{\text{node selection}} + T_{\text{edge selection}} + T_{\text{relabel op}})$

Relabeling

Heuristiken

- aggressive local relabeling
- global relabeling
- gap heuristic

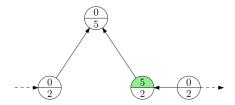
Knotenauswahl

two-phase approach

- aggressive local relabeling
 - erhöhe Level in einem Schritt, so dass gültige Kante existiert

$$d(v) = 1 + \min_{(v,w) \in E^f} d(w)$$

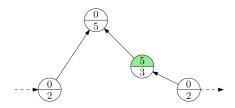
 $(d(w) \ge d(v)$, wenn keine gültige Kante in G^f existiert!)



- aggressive local relabeling
 - erhöhe Level in einem Schritt, so dass gültige Kante existiert

$$d(v) = 1 + \min_{(v,w) \in E^f} d(w)$$

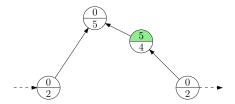
 $(d(w) \ge d(v)$, wenn keine gültige Kante in G^f existiert!)



- aggressive local relabeling
 - erhöhe Level in einem Schritt, so dass gültige Kante existiert

$$d(v) = 1 + \min_{(v,w) \in E^f} d(w)$$

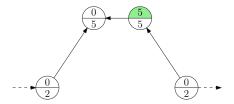
 $(d(w) \ge d(v)$, wenn keine gültige Kante in G^f existiert!)



- aggressive local relabeling
 - erhöhe Level in einem Schritt, so dass gültige Kante existiert

$$d(v) = 1 + \min_{(v,w) \in E^f} d(w)$$

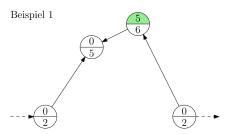
 $(d(w) \ge d(v)$, wenn keine gültige Kante in G^f existiert!)



- aggressive local relabeling
 - erhöhe Level in einem Schritt, so dass gültige Kante existiert

$$d(v) = 1 + \min_{(v,w) \in E^f} d(w)$$

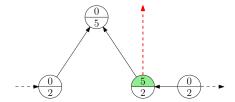
 $(d(w) \ge d(v)$, wenn keine gültige Kante in G^f existiert!)



- aggressive local relabeling
 - erhöhe Level in einem Schritt, so dass gültige Kante existiert

$$d(v) = 1 + \min_{(v,w) \in E^f} d(w)$$

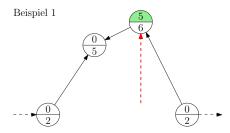
 $(d(w) \ge d(v)$, wenn keine gültige Kante in G^f existiert!)



- aggressive local relabeling
 - erhöhe Level in einem Schritt, so dass gültige Kante existiert

$$d(v) = 1 + \min_{(v,w) \in E^f} d(w)$$

 $(d(w) \ge d(v)$, wenn keine gültige Kante in G^f existiert!)



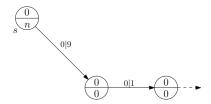
aggressive local relabeling

Heuristiken

erhöhe Level in einem Schritt, so dass gültige Kante existiert

$$d(v) = 1 + \min_{(v,w) \in E^f} d(w)$$

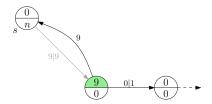
 $(d(w) \ge d(v)$, wenn keine gültige Kante in G^f existiert!)



- aggressive local relabeling
 - erhöhe Level in einem Schritt, so dass gültige Kante existiert

$$d(v) = 1 + \min_{(v,w) \in E^f} d(w)$$

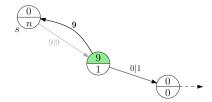
 $(d(w) \ge d(v)$, wenn keine gültige Kante in G^f existiert!)



- aggressive local relabeling
 - erhöhe Level in einem Schritt, so dass gültige Kante existiert

$$d(v) = 1 + \min_{(v,w) \in E^f} d(w)$$

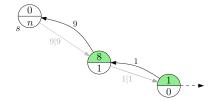
 $(d(w) \ge d(v)$, wenn keine gültige Kante in G^f existiert!)



- Heuristiken
- aggressive local relabeling
 - erhöhe Level in einem Schritt, so dass gültige Kante existiert

$$d(v) = 1 + \min_{(v,w) \in E^f} d(w)$$

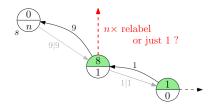
 $(d(w) \ge d(v)$, wenn keine gültige Kante in G^f existiert!)



- Heuristiken
- aggressive local relabeling
 - erhöhe Level in einem Schritt, so dass gültige Kante existiert

$$d(v) = 1 + \min_{(v,w) \in E^f} d(w)$$

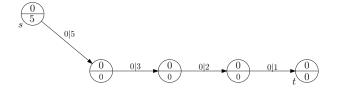
 $(d(w) \ge d(v))$, wenn keine gültige Kante in G^f existiert!)



- Heuristiken
- global relabeling
 - setze Levels auf

$$d(v) = \left\{ \begin{array}{cc} \mu(v,t) & \text{falls t von v erreichbar} \\ n + \mu(v,s) & \text{sonst, falls s von v erreichbar} \\ 2n - 1 & \text{sonst} \end{array} \right.$$

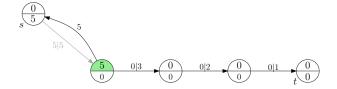
■ Berechnung der Distanzen $\mu(v,\cdot)$ über Breitensuche in $\mathcal{O}(m)$ (nur alle $\Omega(m)$ Schritte, damit Kosten $\mathcal{O}(1)$ pro Schritt)



- Heuristiken
- global relabeling
 - setze Levels auf

$$d(v) = \left\{ \begin{array}{cc} \mu(v,t) & \text{falls t von v erreichbar} \\ n + \mu(v,s) & \text{sonst, falls s von v erreichbar} \\ 2n - 1 & \text{sonst} \end{array} \right.$$

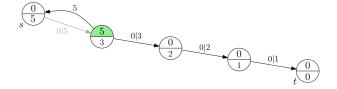
Berechnung der Distanzen $\mu(v,\cdot)$ über Breitensuche in $\mathcal{O}(m)$ (nur alle $\Omega(m)$ Schritte, damit Kosten $\mathcal{O}(1)$ pro Schritt)



- Heuristiken
- global relabeling
 - setze Levels auf

$$d(v) = \left\{ \begin{array}{cc} \mu(v,t) & \text{falls t von v erreichbar} \\ n + \mu(v,s) & \text{sonst, falls s von v erreichbar} \\ 2n - 1 & \text{sonst} \end{array} \right.$$

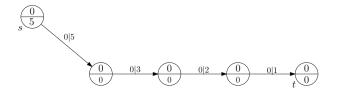
Berechnung der Distanzen $\mu(v,\cdot)$ über Breitensuche in $\mathcal{O}(m)$ (nur alle $\Omega(m)$ Schritte, damit Kosten $\mathcal{O}(1)$ pro Schritt)



- Heuristiken
- global relabeling
 - setze Levels auf

$$d(v) = \left\{ \begin{array}{cc} \mu(v,t) & \text{falls t von v erreichbar} \\ n + \mu(v,s) & \text{sonst, falls s von v erreichbar} \\ 2n - 1 & \text{sonst} \end{array} \right.$$

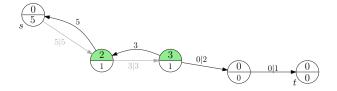
■ Berechnung der Distanzen $\mu(v,\cdot)$ über Breitensuche in $\mathcal{O}(m)$ (nur alle $\Omega(m)$ Schritte, damit Kosten $\mathcal{O}(1)$ pro Schritt)



- Heuristiken
- global relabeling
 - setze Levels auf

$$d(v) = \left\{ \begin{array}{cc} \mu(v,t) & \text{falls t von v erreichbar} \\ n + \mu(v,s) & \text{sonst, falls s von v erreichbar} \\ 2n - 1 & \text{sonst} \end{array} \right.$$

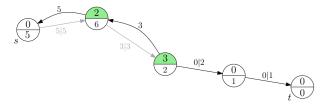
Berechnung der Distanzen $\mu(v,\cdot)$ über Breitensuche in $\mathcal{O}(m)$ (nur alle $\Omega(m)$ Schritte, damit Kosten $\mathcal{O}(1)$ pro Schritt)



- Heuristiken
- global relabeling
 - setze Levels auf

$$d(v) = \left\{ \begin{array}{cc} \mu(v,t) & \text{falls t von v erreichbar} \\ n + \mu(v,s) & \text{sonst, falls s von v erreichbar} \\ 2n - 1 & \text{sonst} \end{array} \right.$$

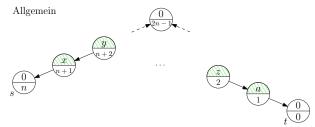
Berechnung der Distanzen $\mu(v,\cdot)$ über Breitensuche in $\mathcal{O}(m)$ (nur alle $\Omega(m)$ Schritte, damit Kosten $\mathcal{O}(1)$ pro Schritt)



- Heuristiken
- global relabeling
 - setze Levels auf

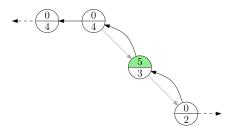
$$d(v) = \left\{ \begin{array}{cc} \mu(v,t) & \text{falls t von v erreichbar} \\ n + \mu(v,s) & \text{sonst, falls s von v erreichbar} \\ 2n - 1 & \text{sonst} \end{array} \right.$$

■ Berechnung der Distanzen $\mu(v,\cdot)$ über Breitensuche in $\mathcal{O}(m)$ (nur alle $\Omega(m)$ Schritte, damit Kosten $\mathcal{O}(1)$ pro Schritt)



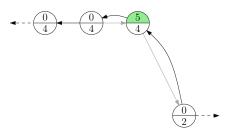
- gap heuristic
 - wird ein Level durch relabel (v) leer, setze Level von v und aller von v erreichbaren Knoten auf

$$d(w) = \max\{d(w), n\}$$



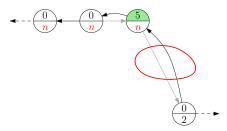
- gap heuristic
 - wird ein Level durch relabel (v) leer, setze Level von v und aller von v erreichbaren Knoten auf

$$d(w) = \max\{d(w), n\}$$



- gap heuristic
 - wird ein Level durch relabel (v) leer, setze Level von v und aller von v erreichbaren Knoten auf

$$d(w) = \max\{d(w), n\}$$

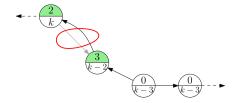


- gap heuristic
 - wird ein Level durch relabel (v) leer, setze Level von v und aller von v erreichbaren Knoten auf

$$d(w) = \max\{d(w), n\}$$

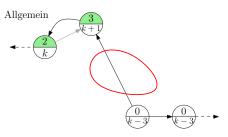
(Lücke kann nie mehr überwunden werden, Fluss nur noch zurück zu s)

Allgemein



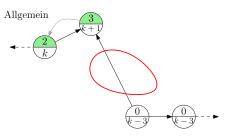
- gap heuristic
 - wird ein Level durch relabel (v) leer, setze Level von v und aller von v erreichbaren Knoten auf

$$d(w) = \max\{d(w), n\}$$



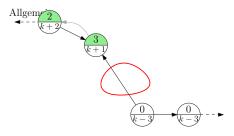
- gap heuristic
 - wird ein Level durch relabel (v) leer, setze Level von v und aller von v erreichbaren Knoten auf

$$d(w) = \max\{d(w), n\}$$

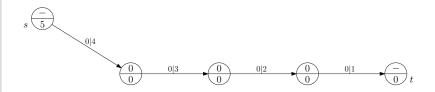


- gap heuristic
 - wird ein Level durch relabel (v) leer, setze Level von v und aller von v erreichbaren Knoten auf

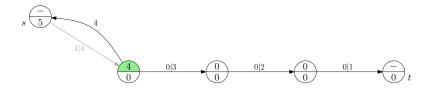
$$d(w) = \max\{d(w), n\}$$



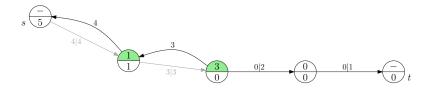
- Heuristiken
- two-phase approach
 - Phase 1: wähle nur Knoten Level d(v) < n aus
 - → erzeugt maximum preflow
 - \rightarrow korrekter Fluss in t
 - Phase 2: nur noch Knoten mit Level $d(v) \ge n$ übrig
 - \rightarrow Fluss nur nach s möglich



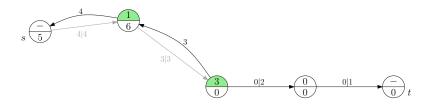
- Heuristiken
- two-phase approach
 - Phase 1: wähle nur Knoten Level d(v) < n aus
 - → erzeugt maximum preflow
 - \rightarrow korrekter Fluss in t
 - Phase 2: nur noch Knoten mit Level $d(v) \ge n$ übrig
 - ightarrow Fluss nur nach s möglich



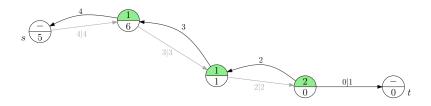
- Heuristiken
- two-phase approach
 - Phase 1: wähle nur Knoten Level d(v) < n aus
 - → erzeugt maximum preflow
 - \rightarrow korrekter Fluss in t
 - Phase 2: nur noch Knoten mit Level $d(v) \ge n$ übrig
 - \rightarrow Fluss nur nach s möglich



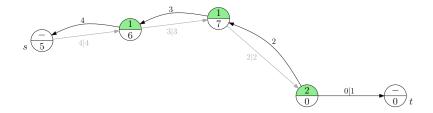
- Heuristiken
- two-phase approach
 - Phase 1: wähle nur Knoten Level d(v) < n aus
 - → erzeugt maximum preflow
 - \rightarrow korrekter Fluss in t
 - Phase 2: nur noch Knoten mit Level $d(v) \ge n$ übrig
 - → Fluss nur nach s möglich



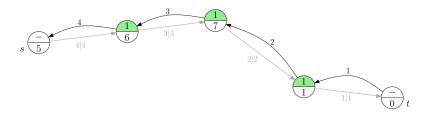
- two-phase approach
 - Phase 1: wähle nur Knoten Level d(v) < n aus
 - → erzeugt maximum preflow
 - \rightarrow korrekter Fluss in t
 - Phase 2: nur noch Knoten mit Level $d(v) \ge n$ übrig
 - → Fluss nur nach s möglich



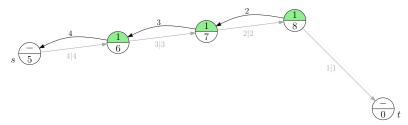
- two-phase approach
 - Phase 1: wähle nur Knoten Level d(v) < n aus
 - → erzeugt maximum preflow
 - \rightarrow korrekter Fluss in t
 - Phase 2: nur noch Knoten mit Level $d(v) \ge n$ übrig
 - → Fluss nur nach s möglich



- two-phase approach
 - Phase 1: wähle nur Knoten Level d(v) < n aus
 - → erzeugt maximum preflow
 - \rightarrow korrekter Fluss in t
 - Phase 2: nur noch Knoten mit Level $d(v) \ge n$ übrig
 - → Fluss nur nach s möglich

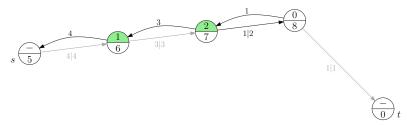


- two-phase approach
 - Phase 1: wähle nur Knoten Level d(v) < n aus
 - → erzeugt maximum preflow
 - \rightarrow korrekter Fluss in t
 - Phase 2: nur noch Knoten mit Level $d(v) \ge n$ übrig
 - → Fluss nur nach s möglich

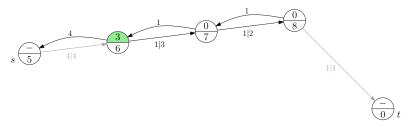


preflow-push Algorithmus

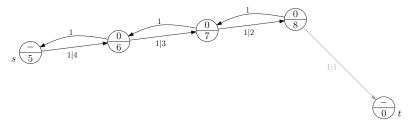
- Heuristiken
- two-phase approach
 - Phase 1: wähle nur Knoten Level d(v) < n aus
 - → erzeugt maximum preflow
 - \rightarrow korrekter Fluss in t
 - Phase 2: nur noch Knoten mit Level $d(v) \ge n$ übrig
 - → Fluss nur nach s möglich



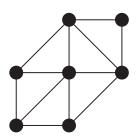
- two-phase approach
 - Phase 1: wähle nur Knoten Level d(v) < n aus
 - → erzeugt maximum preflow
 - \rightarrow korrekter Fluss in t
 - Phase 2: nur noch Knoten mit Level $d(v) \ge n$ übrig
 - → Fluss nur nach s möglich



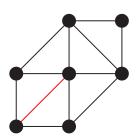
- two-phase approach
 - Phase 1: wähle nur Knoten Level d(v) < n aus
 - → erzeugt maximum preflow
 - \rightarrow korrekter Fluss in t
 - Phase 2: nur noch Knoten mit Level $d(v) \ge n$ übrig
 - → Fluss nur nach s möglich



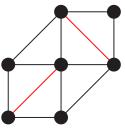
- Teilmenge von Kanten eines Graphen
- Kein Knoten inzident zu mehr als einer (gematchten) Kante
- Maximal: keine Kante hinzunehmbar
- Maximum: kein Matching hat größere Kardinalität
- Perfekt: jeder Knoten ist Endpunkt einer gematchten Kante
- Kardinalität: Zahl der Kanten im Matching
- Maximum Matching im allgemeinen über alternierende Pfade berechnet



- Teilmenge von Kanten eines Graphen
- Kein Knoten inzident zu mehr als einer (gematchten) Kante
- Maximal: keine Kante hinzunehmbar
- Maximum: kein Matching hat größere Kardinalität
- Perfekt: jeder Knoten ist Endpunkt einer gematchten Kante
- Kardinalität: Zahl der Kanten im Matching
- Maximum Matching im allgemeinen über alternierende Pfade berechnet

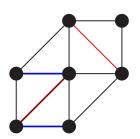


- Teilmenge von Kanten eines Graphen
- Kein Knoten inzident zu mehr als einer (gematchten) Kante
- Maximal: keine Kante hinzunehmbar
- Maximum: kein Matching hat größere Kardinalität
- Perfekt: jeder Knoten ist Endpunkt einer gematchten Kante
- Kardinalität: Zahl der Kanten im Matching
- Maximum Matching im allgemeinen über alternierende Pfade berechnet

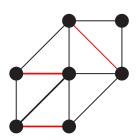


maximal aber nicht maximum

- Teilmenge von Kanten eines Graphen
- Kein Knoten inzident zu mehr als einer (gematchten) Kante
- Maximal: keine Kante hinzunehmbar
- Maximum: kein Matching hat größere Kardinalität
- Perfekt: jeder Knoten ist Endpunkt einer gematchten Kante
- Kardinalität: Zahl der Kanten im Matching
- Maximum Matching im allgemeinen über alternierende Pfade berechnet

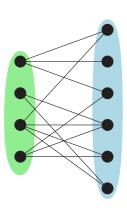


- Teilmenge von Kanten eines Graphen
- Kein Knoten inzident zu mehr als einer (gematchten) Kante
- Maximal: keine Kante hinzunehmbar
- Maximum: kein Matching hat größere Kardinalität
- Perfekt: jeder Knoten ist Endpunkt einer gematchten Kante
- Kardinalität: Zahl der Kanten im Matching
- Maximum Matching im allgemeinen über alternierende Pfade berechnet



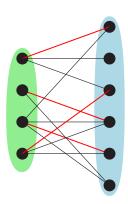
Bipartite - Matching

- Bipartiter Graph: zwei Gruppen von Knoten, Kanten nicht innerhalb einer Gruppe
- modelliere als Flussproblem mit Kapazitäten 1
- Fluss zwischen den Teilmengen entspricht gematchten Kanten



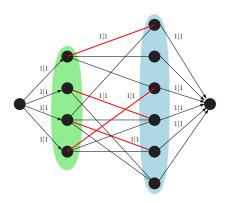
Bipartite - Matching

- Bipartiter Graph: zwei Gruppen von Knoten, Kanten nicht innerhalb einer Gruppe
- modelliere als Flussproblem mit Kapazitäten 1
- Fluss zwischen den Teilmengen entspricht gematchten Kanten



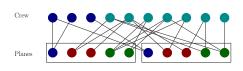
Bipartite - Matching

- Bipartiter Graph: zwei Gruppen von Knoten, Kanten nicht innerhalb einer Gruppe
- modelliere als Flussproblem mit Kapazitäten 1
- Fluss zwischen den Teilmengen entspricht gematchten Kanten

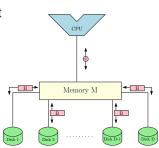


Matching Anwendungen

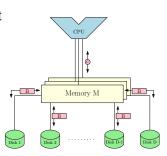
- Anwendungen in sämtlichen Zuweisungsproblemen
- ...Jobs auf Maschinen
- ...Crewscheduling



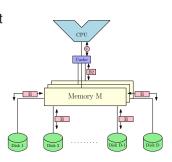
- Vitter und Shriver:
 - Parallel Disk Model (PDM)
- Speicherzugriffe in Blöcken
- lacksquare Blockzugriffe minimieren ightarrow Datenlokalität
- Muster wiederholt sich in Speicherhierarchie immer wieder



- Vitter und Shriver:
 - Parallel Disk Model (PDM)
- Speicherzugriffe in Blöcken
- lacktriangle Blockzugriffe minimieren ightarrow Datenlokalität
- Muster wiederholt sich in Speicherhierarchie immer wieder

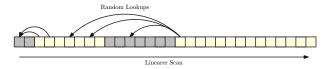


- Vitter und Shriver:
 - Parallel Disk Model (PDM)
- Speicherzugriffe in Blöcken
- lacksquare Blockzugriffe minimieren ightarrow Datenlokalität
- Muster wiederholt sich in Speicherhierarchie immer wieder

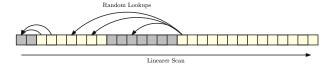


- nicht nur relevant bei Disk-I/O
- Beispiel: kürzeste Wege-Bäume auf großen Straßennetzen (z.B. Europa)
 - Dijkstra (annähernd linear): $\approx 3-5$ Sek.
 - lacktriangle Breitensuche (untere Schranke?): pprox 2 Sek.

- nicht nur relevant bei Disk-I/O
- Beispiel: kürzeste Wege-Bäume auf großen Straßennetzen (z.B. Europa)
 - Dijkstra (annähernd linear): $\approx 3-5$ Sek.
 - Breitensuche (untere Schranke?): \approx 2 Sek.
 - PHAST (linearer Scan): < 0.2 Sek.



- nicht nur relevant bei Disk-I/O
- Beispiel: kürzeste Wege-Bäume auf großen Straßennetzen (z.B. Europa)
 - Dijkstra (annähernd linear): $\approx 3-5$ Sek.
 - Breitensuche (untere Schranke?): \approx 2 Sek.
 - PHAST (linearer Scan): < 0.2 Sek.</p>



Strukturierter Zugriff als wichtiges Designprinzip

Blockgrößen

Einflussfaktoren

- T_{seek}: Positionierungszeit
- W_{max}: maximale Bandbreite
- \rightarrow Lesedauer: $T = T_{seek} + B/W_{max}$

Optimale Blockgröße

- Beispiel: RAM
 - $T_{seek} = 30 \text{ ns} (Zykluszeit)$
 - $W_{max} \approx 25 \text{ GB/s}$
 - Anzahl Blöcke pro Zeile: R = 128
 - Ziel: 95% Auslastung der Bandbreite bei sequenziellem Lesen

$$\rightarrow W = \frac{B}{T} = B/\left(\frac{1}{128}T_{\text{seek}} + B/W_{\text{max}}\right) \stackrel{!}{=} 0.95 \cdot W_{\text{max}}$$

$$\rightarrow B = 0.15 \cdot W_{max} \cdot T_{seek} = 111 \text{ Byte!}$$

Karlsruher Institut für Technologie

Grundlegende Techniken

- Zugriffsmuster
 - Random Access erwartet $\mathcal{O}(n)$ I/Os
 - Linearer Scan $\mathcal{O}(n/B)$ I/Os
- Sortieren

$$O\left(\frac{2n}{B}\left(1+\lceil\log_{M/B}\frac{n}{M}\rceil\right)\right)$$
 I/Os

- lokale Kriterien
- oft vorbereitend für linearen Scan
- Prioritätswarteschlangen
 - nutzbar als Warteliste: "Speicherzugriff auf später verschieben"
- Stack / Queue

Karlsruher Institut für Technologie

- Grundlegende Techniken
- Zugriffsmuster
 - Random Access erwartet O(n) I/Os
 - Linearer Scan $\mathcal{O}(n/B)$ I/Os
- Sortieren
 - $\mathcal{O}\left(\frac{2n}{B}\left(1+\lceil\log_{M/B}\frac{n}{M}\rceil\right)\right)$ I/Os
 - lokale Kriterien
 - oft vorbereitend f
 ür linearen Scan
- Prioritätswarteschlangen
 - nutzbar als Warteliste: "Speicherzugriff auf später verschieben"
- Stack / Queue

Karlsruher Institut für Technologie

- Grundlegende Techniken
- Zugriffsmuster
 - Random Access erwartet O(n) I/Os
 - Linearer Scan O(n/B) I/Os
- Sortieren
 - $\mathcal{O}\left(\frac{2n}{B}\left(1+\lceil\log_{M/B}\frac{n}{M}\rceil\right)\right)$ I/Os
 - lokale Kriterien
 - oft vorbereitend für linearen Scan
- Prioritätswarteschlangen
 - nutzbar als Warteliste: "Speicherzugriff auf später verschieben"
- Stack / Queue

Karlsruher Institut für Technologie

Grundlegende Techniken

- Zugriffsmuster
 - Random Access erwartet O(n) I/Os
 - Linearer Scan O(n/B) I/Os
- Sortieren
 - $\mathcal{O}\left(\frac{2n}{B}\left(1+\lceil\log_{M/B}\frac{n}{M}\rceil\right)\right)$ I/Os
 - lokale Kriterier
 - oft vorbereitend für linearen Scan
- Prioritätswarteschlangen
 - nutzbar als Warteliste: "Speicherzugriff auf später verschieben"
- Stack / Queue

Karlsruher Institut für Technologie

- Grundlegende Techniken
- Zugriffsmuster
 - Random Access erwartet O(n) I/Os
 - Linearer Scan O(n/B) I/Os
- Sortieren
 - $\mathcal{O}\left(\frac{2n}{B}\left(1+\lceil\log_{M/B}\frac{n}{M}\rceil\right)\right)$ I/Os
 - lokale Kriterien
 - oft vorbereitend für linearen Scan
- Prioritätswarteschlangen
 - nutzbar als Warteliste: "Speicherzugriff auf später verschieben"
- Stack / Queue

Grundlegende Techniken

- Zugriffsmuster
 - Random Access erwartet O(n) I/Os
 - Linearer Scan O(n/B) I/Os
- Sortieren
 - $\mathcal{O}\left(\frac{2n}{B}\left(1+\lceil\log_{M/B}\frac{n}{M}\rceil\right)\right)$ I/Os
 - lokale Kriterien
 - oft vorbereitend f
 ür linearen Scan
- Prioritätswarteschlangen
 - nutzbar als Warteliste: "Speicherzugriff auf später verschieben"
- Stack / Queue

Karlsruher Institut für Technolo

Grundlegende Techniken

- Zugriffsmuster
 - Random Access erwartet O(n) I/Os
 - Linearer Scan O(n/B) I/Os
- Sortieren
 - $\mathcal{O}\left(\frac{2n}{B}\left(1+\lceil\log_{M/B}\frac{n}{M}\rceil\right)\right)$ I/Os
 - lokale Kriterien
 - oft vorbereitend f
 ür linearen Scan
- Prioritätswarteschlangen
 - nutzbar als Warteliste: "Speicherzugriff auf später verschieben"
- Stack / Queue

Zwei-Phasen Algorithmus

Run Formation

- Run entspricht einem Teilbereich zu sortierender Daten
- \blacksquare ieweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
- alle Daten einmal lesen + schreiben

Multiway Merge

- jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{R}$ I/Os
- \blacksquare Hilfsmittel: Interne PQ für $\frac{M}{R}$ Eingabeströme
- Pro Phase: Gruppen von $\frac{M}{R}$ Runs zu einem Run mergen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M} \cdot M \log M + n \log \frac{M}{B} \cdot \left\lceil \log_{M/B} \frac{n}{M} \right\rceil \right)$$

$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

Karlsruher Institut für Technologie

Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten

 - \blacksquare jeweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
 - alle Daten einmal lesen + schreiben
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{B}$ I/Os
 - lacktriangle Hilfsmittel: Interne PQ für $\frac{M}{B}$ Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{B}$ Runs zu einem Run mergen $\rightarrow \lceil \log_{M/B} \frac{n}{M} \rceil$ Phasen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M}\cdot M\log M + n\log \frac{M}{B}\cdot \lceil \log_{M/B} \frac{n}{M}\rceil\right)$$

$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten
 - [n/M] Stück, Größe M
 - \blacksquare jeweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{R}$ I/Os
 - \blacksquare Hilfsmittel: Interne PQ für $\frac{M}{B}$ Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{R}$ Runs zu einem Run mergen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M} \cdot M \log M + n \log \frac{M}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten
 - [n/M] Stück, Größe M
 - ieweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{R}$ I/Os
 - \blacksquare Hilfsmittel: Interne PQ für $\frac{M}{B}$ Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{R}$ Runs zu einem Run mergen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M}\cdot M\log M + n\log \frac{M}{B}\cdot \lceil \log_{M/B} \frac{n}{M}\rceil\right)$$

$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten
 - [n/M] Stück, Größe M
 - ieweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{R}$ I/Os
 - \blacksquare Hilfsmittel: Interne PQ für $\frac{M}{B}$ Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{R}$ Runs zu einem Run mergen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M} \cdot M \log M + n \log \frac{M}{B} \cdot \left\lceil \log_{M/B} \frac{n}{M} \right\rceil\right)$$

$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten
 - [n/M] Stück, Größe M
 - ieweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{R}$ I/Os
 - \blacksquare Hilfsmittel: Interne PQ für $\frac{M}{B}$ Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{R}$ Runs zu einem Run mergen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M}\cdot M\log M + n\log \frac{M}{B}\cdot \lceil \log_{M/B} \frac{n}{M}\rceil\right)$$

$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

Karlsruher Institut für Technologie

Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten
 - [n] Stück, Größe M
 - jeweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
 - alle Daten einmal lesen + schreiben
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{B}$ I/Os
 - lacktriangle Hilfsmittel: Interne PQ für $\frac{M}{B}$ Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{B}$ Runs zu einem Run mergen $\rightarrow \lceil \log_{M/B} \frac{n}{M} \rceil$ Phasen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M}\cdot M\log M + n\log \frac{M}{B}\cdot \lceil \log_{M/B} \frac{n}{M}\rceil\right)$$

$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten
 - [n/M] Stück, Größe M
 - ieweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{R}$ I/Os
 - \blacksquare Hilfsmittel: Interne PQ für $\frac{M}{B}$ Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{R}$ Runs zu einem Run mergen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M}\cdot M\log M + n\log \frac{M}{B}\cdot \lceil \log_{M/B} \frac{n}{M}\rceil\right)$$

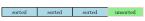
$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

Karlsruher Institut für Technologie

Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten
 - \bullet $\lceil \frac{n}{M} \rceil$ Stück, Größe M
 - jeweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
 - alle Daten einmal lesen + schreiben
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{B}$ I/Os
 - \blacksquare Hilfsmittel: Interne PQ für $\frac{M}{B}$ Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{B}$ Runs zu einem Run mergen $\rightarrow \lceil \log_{M/B} \frac{n}{M} \rceil$ Phasen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M}\cdot M\log M + n\log\frac{M}{B}\cdot \lceil \log_{M/B}\frac{n}{M}\rceil\right)$$



$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

Karlsruher Institut für Technologie

Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten
 - \bullet $\lceil \frac{n}{M} \rceil$ Stück, Größe M
 - jeweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
 - alle Daten einmal lesen + schreiben
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{B}$ I/Os
 - \blacksquare Hilfsmittel: Interne PQ für $\frac{M}{B}$ Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{B}$ Runs zu einem Run mergen $\rightarrow \lceil \log_{M/B} \frac{n}{M} \rceil$ Phasen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M}\cdot M\log M + n\log \frac{M}{B}\cdot \lceil \log_{M/B} \frac{n}{M}\rceil\right)$$

sorted sorted sorted sorted

$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten
 - [n/M] Stück, Größe M
 - ieweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
 - alle Daten einmal lesen + schreiben
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{R}$ I/Os
 - \blacksquare Hilfsmittel: Interne PQ für $\frac{M}{R}$ Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{R}$ Runs zu einem Run mergen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M}\cdot M\log M + n\log \frac{M}{B}\cdot \lceil \log_{M/B} \frac{n}{M}\rceil\right)$$

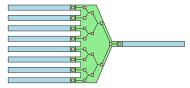
$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten
 - \bullet $\lceil \frac{n}{M} \rceil$ Stück, Größe M
 - jeweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
 - alle Daten einmal lesen + schreiben
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{B}$ I/Os
 - \blacksquare Hilfsmittel: Interne PQ für $\frac{M}{B}$ Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{B}$ Runs zu einem Run mergen $\rightarrow \lceil \log_{M/B} \frac{n}{M} \rceil$ Phasen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M} \cdot M \log M + n \log \frac{M}{B} \cdot \left\lceil \log_{M/B} \frac{n}{M} \right\rceil\right)$$

$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

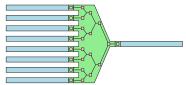


Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten
 - [n/M] Stück, Größe M
 - \bullet jeweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
 - alle Daten einmal lesen + schreiben
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{R}$ I/Os
 - Hilfsmittel: Interne PQ für M/B Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{R}$ Runs zu einem Run mergen
- Innere Arbeit:

$$\mathcal{O}\left(\frac{n}{M}\cdot M\log M + n\log\frac{M}{B}\cdot \lceil \log_{M/B}\frac{n}{M}\rceil\right)$$

$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$



Karlsruher Institut für Technologi

Zwei-Phasen Algorithmus

- Run Formation
 - Run entspricht einem Teilbereich zu sortierender Daten
 - \bullet $\lceil \frac{n}{M} \rceil$ Stück, Größe M
 - jeweils $\mathcal{O}(M \log M)$ Arbeit (Sortieren)
 - alle Daten einmal lesen + schreiben
- Multiway Merge
 - jede Mischphase liest und schreibt alle Daten $\rightarrow \frac{2n}{B}$ I/Os
 - Hilfsmittel: Interne PQ für $\frac{M}{B}$ Eingabeströme
 - Pro Phase: Gruppen von $\frac{M}{B}$ Runs zu einem Run mergen $\rightarrow \lceil \log_{M/B} \frac{n}{M} \rceil$ Phasen
- Innere Arbeit:

$$O\left(\frac{n}{M} \cdot M \log M + n \log \frac{M}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

$$\mathcal{O}\left(\frac{2n}{B} + \frac{2n}{B} \cdot \lceil \log_{M/B} \frac{n}{M} \rceil\right)$$

