Sanders: Algorithms Il - November 3, 2020 &(IT

Karlsruhe Institute of Technology

Algorithmen / Algorithms 11

Peter Sanders
Exercise:
Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:
http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

Sanders: Algorithms Il - november 3, 2020 2-1 &(IT
2 Advanced Data Structures

Karlsruhe Institute of Technology

Here using the example of priority queues.

further examples:

] Monotone integer priority queues chapter: shortest paths
] Perfect Hashing chapter: randomized algorithms
|| search trees with advanced operations see book
| External priority queues chapter: external algorithms

[| Geometric data structures chapter: geom. algorithms

Sanders: Algorithms II - November 3, 2020 2-2 &(IT

Karlsruhe Institute of Technology

Procedure build({eq,...,e,}) M:={ei,...,e,}

Function size return |M|

Procedure insert(e) M:=M U {e}

Function min return min M

Function deleteMin e:= minM; M:=M\{e}; returne

Function remove(h : Handle) e:=h; M:=M\ {e}; returne

Procedure decreaseKey(h : Handle, k : Key) assert key(h) > k; key(h):=k
Procedure merge(M') M:=MUM'’

Sanders: Algorithms Il - november 3, 2020 2-3 &(IT
Addressable Priority queues — Use Cases
|| Dijkstra’s algorithm shortest paths
[Jarnik-Prim algorithm for minimum spanning trees
|| Here: hierarchy construction for route planning
] Here: graph partitioning
] Here: disk scheduling

In general:

Greedy algorithms, where priorities change (within limits).

Sanders: Algorithms Il - November 3, 2020

Basic Data Structure

A forest of heap-ordered trees

Wr

d a

5 o
A
h |

Generalization of binary heaps:
L] Tree — forest

] Binary — arbitrary node-degrees

Karlsruhe Institute of Technology

Sanders: Algorithms II - November 3, 2020 2-5 &(IT

Karlsruhe Institute of Technology

Processing Forests

AN Ny

a<b a

- AAMA

union(a, b): link(min(a,b), max(a,b))

Sanders: Algorithms II - November 3, 2020 2-6 &(IT

Karlsruhe Institute of Technology

Pairing Heaps
[Fredman Sedgewick Sleator Tarjan 1986]

Procedure insertltem(/ : Handle)

newTree(h)
Procedure newTree(/ : Handle) WI’) \l/ h
forest:= forestU {A} d a' e =]

if xh < min then minPtr:= h |

g f/l\b
A
h |

Attention: Simple implementation from the 1. English edition.

Further editions differ (e.g. the German edition).

Sanders: Algorithms Il - November 3, 2020

Pairing Heaps

Procedure decreaseKey (% : Handle, k : Key)
key(h):=k
if /1 is not a root then cut(h)
else update minPtr
Procedure cut(h : Handle)
remove the subtree rooted at /

newTree(h)

Karlsruhe Institute of Technology

Sanders: Algorithms Il - November 3, 2020)8 & (IT

Function deleteMin : Handle
m:= minPtr
forest:= forest \ {m}
foreach child i of m do newTree(h)

perform pair-wise union operations on the roots in forest
update minPtr

return m

...

Sanders: Algorithms II - November 3, 2020 2-9 &(IT

Karlsruhe Institute of Technology

Pairing Heaps

Procedure merge(o : AdressablePQ)
if *minPtr > *(0.minPtr) then minPtr:= o0.minPtr
forest:= forest U o.forest

o.forest:= ()

Sandel”S.' AlgOFltth II = November 3, 2020 2-10 &(IT
Pairing Heaps — Representation

Roots: in a doubly linked list

T parent
| left sibling

or parent data
data —

left sibling <—T1T— — T =right sibling
— 1 —right sibling

Tree items:

I
J/ one child

o

I
\L one child

Sanders: Algorithms Il - November 3, 2020 2-11 &(IT
Pairing Heaps — Analysis -
insert, merge: O(1)
deleteMin, remove: O(logn) amortized

decreaseKey: unknown! O(loglogn) < T < O(logn) amortized,

but fast in practice.

Proofs: not here.

Sanders: Algorithms Il - november 3, 2020 2-12 &(IT
Fibonacci Heaps [Fredman Tarjan 1987]
Rank: Save the number of (immediate) children.

Union-by-rank: Only call union on roots with the same rank.
Mark: Mark nodes that have lost a child.

Cascading cuts: Cut at marked nodes

(i.e. nodes that have lost two children)

Theorem: Amortised complexity O(logn) for deleteMin and remove
O(1) for all other operations.

(i.e. total time = O(o0 + dlogn) if

d =#deleteMin, o0 =#otherOps, n = max |M|)

Sanders: Algorithms Il - November 3, 2020

Fibonacci Heaps — Representation

Roots: in a doubly linked list

(and a temporary array for deleteMin)

¢ parent
|

Rree items:

data |rank

m

left sibling<—1—

¢ one child

insert, merge: as before, in time O(1)

ark

— T =right sibling

Karlsruhe Institute of Technology

Sanders: Algorithms Il - november 3, 2020 2-14 QQ(IT

deleteMin with Union-by-Rank

Function deleteMin : Handle

m:.= minPir

forest:= forest \ {m}
foreach child i of m do newTree(h)
while da, b € forest : rank(a) = rank(b) do

union(a, b) // increments rank of surviving root
update minPtr

return m

Sanders: Algorlthms II = November 3, 2020 7-15 &(IT
Fast Union-by-Rank

An array that is addressed by the rank.

Execute link until a free entry is found.

©l@ | @a> | 1 1@l Ifeplel @l @)
PO T e
.

Analysis: Time O(#unions + [forest|)

Sanders.' AlgOl’ltth II - November 3, 2020 2-16 &(IT
Amortised Analysis for deleteMin

maxRank:= max rank(a) (after)
acforest

Lemma: Tyeletemin = O(maxRank)

Proof: Using the accounting method. One token per Root
rank(minPtr) < maxRank

~~ costs of O(maxRank) for newTrees and a new token.

Union-by-rank: token pays for
| union operations (a token becomes free) and
| iterating through roots (old and new).

At the end there are < maxRank roots.

Sandel”S.' Algorlthms II = November 3, 2020 2-17 &(IT
Why is maxRank logarithmic? — Binomial Trees =~

2k 1 1% insert, 1 X deleteMin ~~ rank k

[Vuillemin 1978] PQ (only) with binomial trees, Tyecreasekey = O(logn).

Problem: Cuts can lead to high ranking trees.

Sanders: Algorithms Il - November 3, 2020 Ry *..2'18 &(IT

Cascading Cuts % s
Procedure decreaseKey(/ : Handle, k : Key) @D ;5
key(h):= k D |8
cascadingCut(/) © (® 8
Procedure cascadingCut(/) @

if /1 1s not a root then %@

Q.\

p:= parent(/) <
e /g

unmark /1 %
cut(/) @D 5
) o
if p is marked then @ ©

cascadingCut(p) @ @ ® @D ®);

else mark p ©L

We will show: cascading cuts keep maxRank logarithmic

Sandel”S.' AlgOFltth II = November 3, 2020 2-19 g!(IT

Lemma: decreaseKey has amortised complexity O(1).

Accounting Method: (= 1 Token per cut or union)

1 token per root

2 tokens for every marked node

Looking at decreaseKey with & consecutive marked predecessors:
2k token becomes free (nodes become unmarked)

2 token needed for new marks

k+1 tokens needed for the new roots

k+1 tokens pay for the cuts

Thus, there remains a cost of 4 tokens +O(1) time for decreaseKey

Sandel”s.' Algorlthms II = November 3, 2020 2-20 &(IT
Here is where Mr. Fibonacci comes in.

0 fir i=0
Fii=1<1 fir i=1
Fi o+ F;i 1 else

Known: F 1 >((14v/5)/2)" > 1.618 forall i > 0.

We show:

A subtree with root v and rank(v) = i contains > F;., elements.
=

logarithmic time for deleteMin.

Sanders: Algorithms Il - november 3, 2020 2-21 QQ(IT
Proof: |

Looking at the moment when the j-th child w; of v was added:

wjand v had the samerank > j—1 (v already had j — I children)
rank(w ;) was reduced by at most one (cascading cuts)
= rank(w;) > j—2and rank(v) > j— 1

S;:= lower bound for the # of nodes whose root has rank i:

So=1

S1=2
Siz1+1+8S+51+---+5 >
fori > 2

This recurrence

has the solution $; > Fj.»

Sanders.' Algorlthms II = November 3, 2020 2-22 &(IT
Addressable Priority Queues — More

] Lower bound Q (logn) for deleteMin (comparison based) Proof:

exercise
| | Worst case Bounds: not here
[| Monotone PQs with integer keys (stay tuned)

Open Problems:
Analysis of pairing heaps (simplification of Fibonacci Heaps)

Sanders.' AlgOFltth II = November 3, 2020 2.73 &(IT
Recap Data Structures

| In this lecture, we focused on the example of priority queues

(see shortest path algorithms and external algorithms).
[| Heap concept can take you far.

|| Sibling-pointers can be used to represent arbitrary trees with a

constant number of pointers per item.

| | Fibonacci heaps — a non-trivial example for amortised analysis

