
Sanders: Algorithms II - November 3, 2020

Algorithmen / Algorithms II

Peter Sanders

Exercise:

Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:

http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

Sanders: Algorithms II - November 3, 2020 2-1

2 Advanced Data Structures

Here using the example of priority queues.

further examples:

� Monotone integer priority queues chapter: shortest paths

� Perfect Hashing chapter: randomized algorithms

� search trees with advanced operations see book

� External priority queues chapter: external algorithms

� Geometric data structures chapter: geom. algorithms

Sanders: Algorithms II - November 3, 2020 2-2

2.1 Addressable Priority Queues – Operations

Procedure build({e1, . . . ,en}) M:= {e1, . . . ,en}
Function size return |M|
Procedure insert(e) M:= M∪{e}
Function min return minM

Function deleteMin e:= minM; M:= M \{e}; return e

Function remove(h : Handle) e:= h; M:= M \{e}; return e

Procedure decreaseKey(h : Handle,k : Key) assert key(h)≥ k; key(h):= k

Procedure merge(M′) M:= M∪M′

Sanders: Algorithms II - November 3, 2020 2-3

Addressable Priority queues – Use Cases

� Dijkstra’s algorithm shortest paths

� Jarník-Prim algorithm for minimum spanning trees

� Here: hierarchy construction for route planning

� Here: graph partitioning

� Here: disk scheduling

In general:

Greedy algorithms, where priorities change (within limits).

Sanders: Algorithms II - November 3, 2020 2-4

Basic Data Structure

A forest of heap-ordered trees

g

d

h i

e

minPtr

f bc

a

Generalization of binary heaps:

� Tree → forest

� Binary → arbitrary node-degrees

Sanders: Algorithms II - November 3, 2020 2-5

Processing Forests

Cut:

Link:

a b a

b

a<b

union(a,b): link(min(a,b),max(a,b))

Sanders: Algorithms II - November 3, 2020 2-6

Pairing Heaps

[Fredman Sedgewick Sleator Tarjan 1986]

Procedure insertItem(h : Handle)

newTree(h)

Procedure newTree(h : Handle)

forest:= forest∪{h}
if ∗h < min then minPtr:= h

g

d

h i

e

minPtr

f bc

a

h?

Attention: Simple implementation from the 1. English edition.

Further editions differ (e.g. the German edition).

Sanders: Algorithms II - November 3, 2020 2-7

Pairing Heaps

Procedure decreaseKey(h : Handle,k : Key)

key(h):= k

if h is not a root then cut(h)

else update minPtr

Procedure cut(h : Handle)

remove the subtree rooted at h

newTree(h)
h

h

Sanders: Algorithms II - November 3, 2020 2-8

Pairing Heaps

Function deleteMin : Handle

m:= minPtr

forest:= forest\{m}
foreach child h of m do newTree(h)

perform pair-wise union operations on the roots in forest

update minPtr

return m

m

cab f ed g

b d

a

f

gec
roots roots

≤ ≥≥

Sanders: Algorithms II - November 3, 2020 2-9

Pairing Heaps

Procedure merge(o : AdressablePQ)

if *minPtr > ∗(o.minPtr) then minPtr:= o.minPtr

forest:= forest∪o.forest

o.forest:= /0

Sanders: Algorithms II - November 3, 2020 2-10

Pairing Heaps – Representation

Roots: in a doubly linked list

Tree items:

one child

right sibling

data
left sibling
or parent

one child

parent

left sibling
right sibling

data

Sanders: Algorithms II - November 3, 2020 2-11

Pairing Heaps – Analysis

insert, merge: O(1)

deleteMin, remove: O(logn) amortized

decreaseKey: unknown! O(log logn)≤ T ≤ O(logn) amortized,

but fast in practice.

Proofs: not here.

Sanders: Algorithms II - November 3, 2020 2-12

Fibonacci Heaps [Fredman Tarjan 1987]

Rank: Save the number of (immediate) children.

Union-by-rank: Only call union on roots with the same rank.

Mark: Mark nodes that have lost a child.

Cascading cuts: Cut at marked nodes

(i.e. nodes that have lost two children)

Theorem: Amortised complexity O(logn) for deleteMin and remove

O(1) for all other operations.

(i.e. total time = O(o+d logn) if

d =#deleteMin, o =#otherOps, n = max |M|)

Sanders: Algorithms II - November 3, 2020 2-13

Fibonacci Heaps – Representation

Roots: in a doubly linked list

(and a temporary array for deleteMin)

Rree items:

one child

parent

left sibling
right sibling

data rank mark

insert, merge: as before, in time O(1)

Sanders: Algorithms II - November 3, 2020 2-14

deleteMin with Union-by-Rank

Function deleteMin : Handle

m:= minPtr

forest:= forest\{m}
foreach child h of m do newTree(h)

while ∃a,b ∈ forest : rank(a) = rank(b) do

union(a,b) // increments rank of surviving root

update minPtr

return m

m

Sanders: Algorithms II - November 3, 2020 2-15

Fast Union-by-Rank

An array that is addressed by the rank.

Execute link until a free entry is found.

feg

roots
ab

ba
c

g d ab

b

a

f

dc

b

dcgedc

c

f

e a

Analysis: Time O(#unions+ |forest|)

Sanders: Algorithms II - November 3, 2020 2-16

Amortised Analysis for deleteMin

maxRank:= max
a∈forest

rank(a) (after)

Lemma: TdeleteMin = O(maxRank)

Proof: Using the accounting method. One token per Root

rank(minPtr)≤ maxRank

 costs of O(maxRank) for newTrees and a new token.

Union-by-rank: token pays for

� union operations (a token becomes free) and

� iterating through roots (old and new).

At the end there are ≤ maxRank roots.

Sanders: Algorithms II - November 3, 2020 2-17

Why is maxRank logarithmic? – Binomial Trees

2k +1×insert, 1×deleteMin rank k

B3B4

B2

B1

B0

B5

[Vuillemin 1978] PQ (only) with binomial trees, TdecreaseKey = O(logn).

Problem: Cuts can lead to high ranking trees.

Sanders: Algorithms II - November 3, 2020 2-18

Cascading Cuts

✖

6

3

7 514

7

✖7

✖

de
cr

ea
se

K
ey

(
,6

)

1

3

5

9 8

✖

de
cr

ea
se

K
ey

(
,4

)

3

5

9

61

Procedure decreaseKey(h : Handle,k : Key)

key(h):= k

cascadingCut(h)

Procedure cascadingCut(h)

if h is not a root then

p:= parent(h)

unmark h

cut(h)

if p is marked then

cascadingCut(p)

else mark p

We will show: cascading cuts keep maxRank logarithmic

Sanders: Algorithms II - November 3, 2020 2-19

Lemma: decreaseKey has amortised complexity O(1).

Accounting Method: (≈ 1 Token per cut or union)

1 token per root

2 tokens for every marked node

Looking at decreaseKey with k consecutive marked predecessors:

2k token becomes free (nodes become unmarked)

2 token needed for new marks

k+1 tokens needed for the new roots

k+1 tokens pay for the cuts

Thus, there remains a cost of 4 tokens +O(1) time for decreaseKey

Sanders: Algorithms II - November 3, 2020 2-20

Here is where Mr. Fibonacci comes in.

Fi:=















0 für i=0

1 für i=1

Fi−2 +Fi−1 else

Known: Fi+1 ≥((1+
√

5)/2)i ≥ 1.618i
for all i ≥ 0.

We show:

A subtree with root v and rank(v) = i contains ≥ Fi+2 elements.

⇒
logarithmic time for deleteMin.

Sanders: Algorithms II - November 3, 2020 2-21

Proof:

Looking at the moment when the j-th child w j of v was added:

w j and v had the same rank ≥ j−1 (v already had j−1 children)

rank(w j) was reduced by at most one (cascading cuts)

⇒ rank(w j)≥ j−2 and rank(v)≥ j−1

Si:= lower bound for the # of nodes whose root has rank i:

S0 = 1

S1 = 2

Si ≥ 1+1+S0 +S1 + · · ·+Si−2

for i ≥ 2

This recurrence

has the solution Si ≥ Fi+2

...

v

w1 w2 w3 wi

≥ S0 ≥ S1 ≥ Si−2

Sanders: Algorithms II - November 3, 2020 2-22

Addressable Priority Queues – More

� Lower bound Ω(logn) for deleteMin (comparison based) Proof:

exercise

� Worst case Bounds: not here

� Monotone PQs with integer keys (stay tuned)

Open Problems:

Analysis of pairing heaps (simplification of Fibonacci Heaps)

Sanders: Algorithms II - November 3, 2020 2-23

Recap Data Structures

� In this lecture, we focused on the example of priority queues

(see shortest path algorithms and external algorithms).

� Heap concept can take you far.

� Sibling-pointers can be used to represent arbitrary trees with a

constant number of pointers per item.

� Fibonacci heaps – a non-trivial example for amortised analysis

