

Algorithmen / Algorithms II

Peter Sanders

Exercise:

Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:

http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

Advanced Graph Algorithms

3 Shortest Paths

Slides partially due to Rob van Stee

Input: Graph G = (V, E)

Cost function/edge weights $c: E \to \mathbb{R}$

Source vertex s.

Output: for all $v \in V$

Length $\mu(v)$ of the shortest path from s to v, $\mu(v) := \min \{c(p) : p \text{ is path from } s \text{ to } v\}$ where $c(\langle e_1, \dots, e_k \rangle) := \sum_{i=1}^k c(e_i)$.

Often we want a "suitable" representation of the shortest path.

General Definitions

Similar to BFS we use two vertex arrays:

□ d[v] = current (preliminary) distance from *s* to *v* **Invariant:** $d[v] \ge \mu(v)$

parent[v] = predecessor of v
 on the (preliminary) shortest path from s to v
 Invariant: this path attests d[v]

Initialization:

d[s] = 0, parent[s] = s $d[v] = \infty$, parent[v] = \bot

Relaxation of an edge (u, v)

if d[u] + c(u, v) < d[v]possibly $d[v] = \infty$ set d[v] := d[u] + c(u, v) and parent[v] := u

Invariants are maintained!

Observation:

d[v] can change several times!

Dijkstra's Algorithm: Pseudocode

initialize d, parent all nodes are non-scanned while \exists non-scanned node u with $d[u] < \infty$ u := non-scanned node v with minimal d[v]relax all edges (u, v) out of uu is scanned now

Claim: At the end, d defines the optimal distances and parent the corresponding paths (see Algo I:)

 \neg v reachable \implies v will be scanned at some point

 $\Box \ v \text{ scanned} \Longrightarrow \boldsymbol{\mu}(v) = \boldsymbol{d}[v]$

8

ð

Running Time

$$T_{\text{Dijkstra}} = O(m \cdot T_{\text{decreaseKey}}(n) + n \cdot (T_{\text{deleteMin}}(n) + T_{\text{insert}}(n)))$$

Using Fibonacci heap priority queues:

```
\Box insert O(1)
```

```
\Box decreaseKey O(1)
```

 \Box deleteMin $O(\log n)$ (amortized)

$$T_{\text{DijkstraFib}} = O(m \cdot 1 + n \cdot (\log n + 1))$$

= $O(m + n \log n)$

However: constant factors in $O(\cdot)$ are larger when compared to binary heaps!

Running Time on Average

So far: $\leq m$ decreaseKeys ($\leq 1 \times$ per edge)

How many decreaseKeys on average?

Model:

Arbitrary graph G

Arbitrary source vertex s

Arbitrary sets C(v)

of edge weights for

incoming edges of vertex v

Average over all possible assignments

 $C(v) \rightarrow$ incoming edges of v

Example: all costs are independent and uniformly distributed

Running Time on Average

Probabilistic view: Random selection of the uniformly distributed inputs that are to be averaged

we look for the expected value of the running time

Question: Difference to the expected running time for randomized algorithms?

Running Time on Average

Theorem 1. $\mathbb{E}[\# decrease Key operations] = O(n \log \frac{m}{n})$

Then

$$\mathbb{E}(T_{\text{DijkstraBHeap}}) = O\left(m + n\log\frac{m}{n} \cdot T_{\text{decreaseKey}}(n) + n \cdot (T_{\text{deleteMin}}(n) + T_{\text{insert}}(n))\right)$$
$$= O\left(m + n\log\frac{m}{n}\log n + n\log n\right)$$
$$= O\left(m + n\log\frac{m}{n}\log n\right)$$

(previously, we had $T_{\text{DijkstraBHeap}} = O((m+n)\log n))$

 $(T_{\text{DijkstraFib}} = O(m + n \log n) \text{ worst case})$

3-10

Linear Running Time for Dense Graphs

 $m = \Omega(n \log n \log \log n) \Rightarrow$ linear running time.

(verify)

Thus, in this case might be better than Fibonacci heaps

3-11

Theorem 1. $\mathbb{E}[\# decreaseKey operations] = O(n \log \frac{m}{n})$

Theorem 1. $\mathbb{E}[\# decreaseKey operations] = O(n \log \frac{m}{n})$

decreaseKey only performed during processing of e_i if

 $\mu(u_i) + c(e_i) < \min_{j < i} (\mu(u_j) + c(e_j)).$

However, $\mu(u_i) \geq \mu(u_j)$ for j < i, and thus:

 $c(e_i) < \min_{j < i} c(e_j)$

is a necessary condition.

Prefix minimum

3-12

3-13

Theorem 1. $\mathbb{E}[\# decrease Key operations] = O(n \log \frac{m}{n})$

Costs in C(v) appear in random order

How many times does one find a new minimum in a random order?

Harmonic number H_k (see below)

First minimum: leads to insert(v).

Thus $\leq H_k - 1 \leq (\ln k + 1) - 1 = \ln k$ expected decreaseKeys

3-14

Theorem 1. $\mathbb{E}[\# decreaseKey operations] = O(n \log \frac{m}{n})$

For each vertex $v \le H_k - 1 \le \ln k$ (expected) decreaseKeys where k = indegree(v).

In total

$$\sum_{v \in V} \ln \operatorname{indegree}(v) \le n \ln \frac{m}{n}$$

(due to concavity of $\ln x$)

Prefix Minima in a Random Sequence

Define random variable M_n as the number of prefix minima in a sequence of n different numbers (dependent on a random permutation)

Define indicator variables $I_i := 1$ iff the *i*-th number is a prefix minimum.

$$E[M_n] = E[\sum_{i=1}^n I_i] \stackrel{\text{Lin. } E[\cdot]}{=} \sum_{i=1}^n E[I_i]$$
$$= \sum_{i=1}^n \frac{1}{i} = H_n \text{ due to } \mathbb{P}[I_i = 1] = \frac{1}{i}$$
$$\underbrace{x_1, \dots, x_{i-1}}_{$$

3-16

Monotone Integer Priority Queues

Basic idea: Application tailored data structure

Dijkstra's algorithm uses priority queue monotonically: Operations insert and decreaseKey use distances in the form of d[u] + c(e)

This value is continiously increasing

Monotone Integer Priority Queues

Assumption: All edge weights are integers in the interval [0, C]

 $\Longrightarrow \forall v \in V : d[v] \le (n-1)C$

Furthermore:

Let d^* be the last value that was removed from Q.

In Q there are always only vertices with distances in the interval $[d^*, d^* + C]$.

3-17

Bucket Queue

(e,33), (f,35), (g,36)>

Operations

Initialization: C + 1 empty lists, $d^* = 0$ insert(v): inserts v in $B[d[v] \mod (C+1)]$ decreaseKey(v): removes v from its list and adds it to $B[d[v] \mod (C+1)]$

d* $7 \mod 102$

O(1)

deleteMin: starts at bucket $B[d^* \mod (C+1)]$. If empty, set $d^* := d^* + 1$ and repeat. requires monotonicity!

d^* is increased at most nC times, at most n elements in total are removed from Q \Rightarrow

Total costs of deleteMin operations = O(n + nC) = O(nC). More specifically: O(n + maxPathLength)

3-20

Running Time Dijkstra with Bucket Queues

$$T_{\text{Dijkstra}} = O(m \cdot T_{\text{decreaseKey}}(n) + \text{Costs of deleteMin operations} + n \cdot T_{\text{insert}}(n)))$$
$$T_{\text{DijkstraBQ}} = O(m \cdot 1 + nC + n \cdot 1)) = O(m + nC) \text{ or} = O(m + maxPathLength)$$

Using radix heaps we can achieve $T_{\text{DijkstraRadix}} = O(m + n \cdot \log C)$ Idea: use buckets of different sizes

Radix Heaps

We use buckets -1 till K, where $K = 1 + \lfloor \log C \rfloor$

 $d^* = \text{distance that was previously removed from } Q$

For each vertex $v \in Q$ holds $d[v] \in [d^*, \ldots, d^* + C]$.

Consider binary representation of the possible distances in Q.

For example, let C = 9, in binary 1001. Then K = 4.

Example 1: $d^* = 10000$, then $\forall v \in Q : d[v] \in [10000, 11001]$

Example 2: $d^* = 11101$, then $\forall v \in Q : d[v] \in [11101, 100110]$

Store *v* in bucket B[i] if d[v] and d^* first differ at the *i*-th position, (use B[K] if i > K, and B[-1] if they are the same)

Definition
$$msd(a,b)$$

The position of the highest valued binary digit where a and b are different

a	11001010	1010100	1110110
b	11000101	1010110	1110110
msd(a,b)	3	1	-1

Using a machine instruction, we can evaluate msd(a,b) very fast

Radix Heap Invariant

v is stored in bucket B[i] where $i = \min(msd(d^*, d[v]), K)$.

Example 1: $d^* =$	10000, <i>C</i> =	9, <i>K</i> = 4
--------------------	-------------------	-----------------

Bucket	d[v] binary	d[v]
-1	10000	16
0	10001	17
1	1001*	18,19
2	101**	20–23
3	11***	24–25
4	-	-

(Nothing is stored in bucket 4)

Radix Heap Invariant

v is stored in bucket B[i] where $i = \min(msd(d^*, d[v]), K)$.

Example 2: d^*	s = 11101,	C = 9,	K = 4
------------------	------------	--------	-------

Bucket	d[v] binary	d[v]
-1	11101	29
0	_	-
1	1111*	30,31
2	-	-
3	-	-
4	100000 and higher	32 and higher
		1

If $d[v] \ge 32$, then $msd(d^*, d[v]) > 4!$

Bucket Queues and Radix Heaps

Bucket queue with C = 9

Content= <(a,29), (b,30), (c,30), (d,31), (e,33), (f,35), (g,36)>

Binary Radix Heap

Radix Heap: deleteMin

Function deleteMin: Element

 $\begin{aligned} \mathbf{if} \ B[-1] &= \emptyset \\ i &:= \min \left\{ j \in 0..K : B[j] \neq \emptyset \right\} \\ \text{move } \min B[i] \text{ to } B[-1] \text{ and to } d^* \\ \mathbf{foreach} \ e \in B[i] \text{ do } // \text{ exactly here invariant is violated } ! \\ \text{move } e \text{ to } B[\min(msd(d^*, d[e]), K)] \\ \text{result} &:= B[-1].\text{popFront} \\ \mathbf{return} \text{ result} \end{aligned}$

 $B[0], \ldots, B[i-1]$: empty, thus do nothing. $B[i+1], \ldots, B[K]$: msd is preserved, because old and new d^* same for all bits j > i

Buckets j > i when changing d^*

Example:
$$d^* = 10000$$
, $C = 9$, $K = 4$.

New $d^* = 10010$, was stored in bucket 1

	$d^* = 10000$		$d^* = 100$	010
Bucket	d[v] binary	d[v]	d[v] binary	d[v]
-1	10000	16	10010	18
0	10001	17	1001 <mark>1</mark>	19
1	1001*	18,19	-	-
2	101**	20–23	10 <mark>1</mark> **	20-23
3	11***	24–25	11***	24-27
4	-	-	-	-

Bucket B[i] when changing d^*

Lemma: Elements x of B[i] move to buckets with smaller indices

We only cover the case i < K.

Let d_o^* be the old value of d^* .

3-29

Costs of deleteMin Operations

Find bucket B[i]: O(i)

```
Shift elements from B[i]: O(|B[i]|)
```

In total O(K + |B[i]|) if $i \ge 0$, O(1) if i = -1

Always shift in the direction of smaller indices

We already pay for this during insert (amortized analysis): there are at most K shifts of an element

3-30

Running Time Dijkstra with Radix Heaps

In total we get (amortized)

 $\Box T_{\text{insert}}(n) = O(K)$ $\Box T_{\text{deleteMin}}(n) = O(K)$ $\Box T_{\text{decreaseKey}}(n) = O(1)$

$$T_{\text{Dijkstra}} = O(m \cdot T_{\text{decreaseKey}}(n) + n \cdot (T_{\text{deleteMin}}(n) + T_{\text{insert}}(n)))$$
$$T_{\text{DijkstraRadix}} = O(m + n \cdot (K + K)) = O(m + n \cdot \log C)$$

Sanders: Algorithms II - November 16, 2020 – Supplement

3-31

Linear Running Time for Random Edge Weights

Previously: Dijkstra with binary heaps has linear running time for dense graphs ($m > n \log n \log \log n$)

Previous slide: $T_{\text{DijkstraRadix}} = O(m + n \cdot \log C)$

Now: Dijkstra with radix heaps has linear running time (O(m+n)) if Edge weights are identically uniformly distributed in 0..C

- we only need a small adjustment in the algorithm

Sanders: Algorithms II - November 16, 2020 – Supplement

3-32

Modification of Algorithm for Random Edge Weights

Precomputation of lightest incoming edge weight $c_{\min}^{in}(v) := \min \{c((u,v) : (u,v) \in E\}$ Observation: $d[v] \le d^* + c_{\min}^{in}(v)$ $\implies d[v] = \mu(v).$ \implies place v in set F of unscanned vertices with correct distance

Vertices in F will be scanned at the next possibility.

($\approx F$ as an extension of von B[-1].)

Sanders: Algorithms II - November 16, 2020 – Supplement

3-33

Analysis

A vertex v is never put in a bucket i with $i < \log c_{\min}^{in}(v)$

Thus *v* is shifted at most $K + 1 - \log c_{\min}^{in}(v)$ times

Total cost for shifting then is at most

$$\sum_{v} (K - \log c_{\min}^{\text{in}}(v) + 1) = n + \sum_{v} (K - \log c_{\min}^{\text{in}}(v)) \le n + \sum_{e} (K - \log c(e)).$$

 $K - \log c(e) =$ number of zeroes at the beginning of the binary representation of c(e) as a *K*-bit number.

$$\begin{split} \mathbb{P}(K - \log c(e) = i) &= 2^{-i} \quad \Rightarrow \quad \mathbb{E}(K - \log c(e)) = \sum_{i \ge 0} i 2^{-i} \le 2 \\ \text{Running time} &= \mathbf{O}(m + n) \end{split}$$

All-Pairs Shortest Paths

For now there has always been a dedicated source vertex *s*

How can we find the shortest paths for all pairs (u, v) in *G*?

Assumption: negative costs allowed, but no negative cycles

Solution 1: Run Bellman-Ford n times

...Running time $O(n^2m)$

Solution 2: Vertex potentials

... Running time $O(nm + n^2 \log n)$, significantly faster

Vertex Potentials

Each vertex gets a potential pot(v)

With the help of these potentials we define the reduced cost $\bar{c}(e)$ of an edge e = (u, v) to be

$$\bar{c}(e) = \operatorname{pot}(u) + c(e) - \operatorname{pot}(v).$$

Using these costs we find the same shortest paths as before!

This holds for all possible potentials – we can define them freely

Vertex Potentials

Let p be a path from u to v with cost c(p). Then

$$\bar{c}(p) = \sum_{i=1}^{k-1} \bar{c}(e_i) = \sum_{i=1}^{k-1} (\operatorname{pot}(v_i) + c(e_i) - \operatorname{pot}(v_{i+1}))$$

$$= \operatorname{pot}(v_1) + \sum_{i=1}^{k-1} c(e_i) - \operatorname{pot}(v_k)$$

$$= \operatorname{pot}(v_1) + c(p) - \operatorname{pot}(v_k).$$

Node Potentials

Let p be a path from u to v with cost c(p). Then

$$\bar{c}(p) = \operatorname{pot}(v_1) + c(p) - \operatorname{pot}(v_k).$$

Let q be another u-v-path, then $c(p) \leq c(q) \Leftrightarrow \overline{c}(p) \leq \overline{c}(q)$.

Definition: $\mu(u, v)$ = shortest distance from u to v

Auxiliary Vertices

We add an auxiliary vertex s to G

For all $v \in V$ we add an edge (s, v) with cost 0

Calculate shortest paths from *s* using Bellman-Ford

Definition of Potentials

Define $pot(v) := \mu(v)$ for all $v \in V$

Now the reduced costs are all non negative: we can use Dijkstra! (Possibly remove s...)

 \Box No negative cycles, thus pot(v) well-defined

 \Box For arbitray edge e = (u, v) it holds that

 $\boldsymbol{\mu}(\boldsymbol{u}) + \boldsymbol{c}(\boldsymbol{e}) \geq \boldsymbol{\mu}(\boldsymbol{v})$

and therefore

$$\bar{c}(e) = \underbrace{\mu(u) + c(e)}_{\geq \mu(v)} - \mu(v) \ge 0$$

Algorithm

All-Pairs Shortest Paths in the Absence of Negative Cycles

new vertex *s* foreach $v \in V$ do add edge (s, v) (cost 0) // O(*n*) pot:= μ := BellmanFordSSSP(s, c) // O(*nm*) foreach vertex $x \in V$ do // O($n(m+n\log n)$) $\bar{\mu}(x, \cdot)$:= DijkstraSSSP (x, \bar{c}) // return to original cost function foreach $e = (v, w) \in V \times V$ do // O(n^2) $\mu(v, w)$:= $\bar{\mu}(v, w) + pot(w) - pot(v)$

Running Time

 \Box Add s: O(n)

 \Box Postprocessing: $O(n^2)$ (return to original cost function)

Running Dijkstra *n* times dominates

Running time $O(n(m+n\log n)) = O(nm+n^2\log n)$

Possible parallelization: par. Bellman–Ford + independent SSSP searches. Memory consumption?

Distance to a Target Vertex *t*

What to do if we are only interested in the distance from s to a specific target vertex t?

Trick 0:

Dijkstra stops once t is removed from Q

"On average" saves half of the scans

Question: How much does it save for navigation?

Ideas for Route Planning

Forward + backward search

Target-oriented search

Exploit hierarchies

Bidirectional Search

Idea: Alternate searching for s and t

Forward search on original graph G = (V, E)Backward search on backward graph $G^r = (V, E^r)$ (Search direction switches at every step)

Preliminary shortest distance is stored at every step: $d[s,t] = \min(d[s,t], d_{\text{forward}}[u] + d_{\text{backward}}[u])$

Stopping criterion:

Search scans vertex that has already been scanned in other direction. $d[s,t] \Rightarrow \mu(s,t)$

A* Search

Idea: Search "in the direction of t"

Assumption: We know a function f(v) which estimates $\mu(v,t) \forall v$

Define pot(v) = f(v) and $\bar{c}(u, v) = c(u, v) + f(v) - f(u)$

[Or: in Dijkstra's algorithm, do not remove v that has minimum d[v] from Q, but v that has minimum d[v] + f[v]]

A* Search

3-46

Idea: Search "in the direction of *t*"

Assumption: We know a function f(v) which estimates $\mu(v,t) \forall v$

Define pot(v) = f(v) and $\bar{c}(u, v) = c(u, v) + f(v) - f(u)$

Example: $f(v) = \mu(v,t)$.

Then: $\overline{c}(u,v) = c(u,v) + \mu(v,t) - \mu(u,t) = 0$ if (u,v) is part of the

shortest path from s to t.

$$s \to \cdots \to \underbrace{u \xrightarrow{c(u,v)} \underbrace{v \to \cdots \to t}_{\mu(u,t)}}_{\mu(u,t)}$$

Therefore, Dijkstra only scans vertices on this path!

Required Properties of f(v)

Consistency (reduced costs not negative): $c(e) + f(v) \ge f(u) \ \forall e = (u, v)$

 $\Box f(v) \le \mu(v,t) \; \forall v \in V$

 $\Box f(t) = 0$ then we can stop once *t* is removed from *Q*

Let p be any path from s to t.

Are all edges along p relaxed? $\Rightarrow d[t] \le c(p)$. Otherwise: $\exists v \in p \cap Q$, and $d[t] + f(t) \le d[v] + f(v)$ because t was already removed. Thus

$$d[t] = d[t] + f(t) \le d[v] + f(v) \le d[v] + \mu(v,t) \le c(p)$$

How do we find f(v)?

We need heuristics for f(v).

Route in road network: f(v) = Euclidean distance $||v - t||_2$

results in noticable but not outstanding speedup

Travel time: $\frac{||v - t||_2}{\text{Maximum speed}}$

practically useless

Even better but requires precomputation: Landmarks

3-49

Landmarks [Goldberg Harrelson 2003]

Precomputation: Choose landmarkset *L*. $\forall \ell \in L, v \in V$ compute/store $\mu(v, \ell)$.

Query: Search for landmark $\ell \in L$ "behind" the target. Use lower bound $f_{\ell}(v) = \mu(v, \ell) - \mu(t, \ell)$

- + Conceptually simple
- + Significant speedup (\approx factor of 20 on average)
- + Combinable with other techniques
- Landmark selection complicated
- High memory consumption

Summary Shortest Paths

- Non-trivial examples for average-case analysis. Similar to MST
- Monotone integer priority queues as an example for data structures that are tailored for an algorithm
- Vertex potentials generally useful for graph algorithms
- State-of-the-art research meets classic algorithmics