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Advanced Graph Algorithms

3 Shortest Paths
Slides partially due to Rob van Stee

Input: Graph G = (V,E)

Cost function/edge weights c : E → R

Source vertex s.

Output: for all v ∈V

Length µ(v) of the shortest path from s to v,

µ(v) := min{c(p) : p is path from s to v}

where c(〈e1, . . . ,ek〉) := ∑k
i=1 c(ei).

Often we want a "suitable" representation of the shortest path.

3.0 km
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General Definitions

Similar to BFS we use two vertex arrays:

� d[v] = current (preliminary) distance from s to v

Invariant: d[v]≥ µ(v)

� parent[v] = predecessor of v

on the (preliminary) shortest path from s to v

Invariant: this path attests d[v]

Initialization:

d[s] = 0, parent[s] = s

d[v] = ∞, parent[v] =⊥
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Relaxation of an edge (u,v)

if d[u]+ c(u,v)< d[v]

possibly d[v] = ∞

set d[v] := d[u]+ c(u,v) and parent[v] := u

Invariants are maintained!

Observation:

d[v] can change several times!
u

u′

v

s

d[u′]

d[u]

d[u]+ c(u,v)

d[u′]+ c(u′,v)

parent
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Dijkstra’s Algorithm: Pseudocode

initialize d, parent

all nodes are non-scanned

while ∃ non-scanned node u with d[u]< ∞

u := non-scanned node v with minimal d[v]

relax all edges (u,v) out of u

u is scanned now

Claim: At the end, d defines the optimal distances

and parent the corresponding paths (see Algo I:)

� v reachable =⇒ v will be scanned at some point

� v scanned =⇒ µ(v) = d[v]
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Example
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Running Time

TDijkstra = O(m ·TdecreaseKey(n)+n · (TdeleteMin(n)+Tinsert(n)))

Using Fibonacci heap priority queues:

� insert O(1)

� decreaseKey O(1)

� deleteMin O(logn) (amortized)

TDijkstraFib = O(m ·1+n · (logn+1))

= O(m+n logn)

However: constant factors in O(·) are larger when compared to binary

heaps!
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Running Time on Average

So far: ≤ m decreaseKeys (≤ 1× per edge)

How many decreaseKeys on average?

Model:

� Arbitrary graph G

� Arbitrary source vertex s

� Arbitrary sets C(v)

of edge weights for

incoming edges of vertex v

Average over all possible assignments

C(v)→ incoming edges of v

indegree(v)=5
C(v)={c ,..., c }51

v

Example: all costs are independent and uniformly distributed
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Running Time on Average

Probabilistic view: Random selection of the uniformly distributed inputs

that are to be averaged

=⇒

we look for the expected value of the running time

Question: Difference to the expected running time for randomized

algorithms?
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Running Time on Average

Theorem 1. E[#decreaseKey operations] = O
(
n log m

n

)

Then

E(TDijkstraBHeap) = O
(

m+n log
m

n
·TdecreaseKey(n)

+n · (TdeleteMin(n)+Tinsert(n)))

= O
(

m+n log
m

n
logn+n logn

)

= O
(

m+n log
m

n
logn

)

(previously, we had TDijkstraBHeap = O((m+n) logn))

(TDijkstraFib = O(m+n logn) worst case)
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Linear Running Time for Dense Graphs

m = Ω(n logn log logn)⇒ linear running time.

(verify)

Thus, in this case might be better than Fibonacci heaps
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Theorem 1. E[#decreaseKey operations] = O
(
n log m

n

)
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Theorem 1. E[#decreaseKey operations] = O
(
n log m

n

)

decreaseKey only performed during processing of ei if

µ(ui)+ c(ei)< min
j<i

(µ(u j)+ c(e j)).

However, µ(ui)≥ µ(u j) for j < i, and thus:

c(ei)< min
j<i

c(e j)

is a necessary condition.

Prefix minimum

v

ee

e

1

u

u

1

i
i
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Theorem 1. E[#decreaseKey operations] = O
(
n log m

n

)

Costs in C(v) appear in random order

How many times does one find a new minimum in a random order?

Harmonic number Hk (see below)

First minimum: leads to insert(v).

Thus ≤ Hk −1 ≤ (lnk+1)−1 = lnk expected decreaseKeys
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Theorem 1. E[#decreaseKey operations] = O
(
n log m

n

)

For each vertex v ≤ Hk −1 ≤ lnk (expected) decreaseKeys where

k = indegree(v).

In total

∑
v∈V

ln indegree(v)≤ n ln
m

n

(due to concavity of lnx)



Sanders: Algorithms II - November 16, 2020 3-15

Prefix Minima in a Random Sequence

Define random variable Mn as the number of prefix minima in a

sequence of n different numbers (dependent on a random permutation)

Define indicator variables Ii:= 1 iff the i-th number is a prefix minimum.

E[Mn] = E[
n

∑
i=1

Ii]
Lin. E[·]
=

n

∑
i=1

E[Ii]

=
n

∑
i=1

1

i
= Hn due to P [Ii = 1] =

1

i

x1, . . . ,xi−1
︸ ︷︷ ︸

<xi?

,xi,xi+1, . . . ,xn
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Monotone Integer Priority Queues

Basic idea: Application tailored data structure

Dijkstra’s algorithm uses priority queue monotonically:

Operations insert and decreaseKey use distances in the form of

d[u]+ c(e)

This value is continiously increasing

ts
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Monotone Integer Priority Queues

Assumption: All edge weights are integers in the interval [0,C]

=⇒∀v ∈V : d[v]≤ (n−1)C

Furthermore:

Let d∗ be the last value

that was removed from Q.

In Q there are always

only vertices with distances in the

interval [d∗,d∗+C].

s

settled
Q

d*

d*+C
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Bucket Queue

Cyclic array B of C + 1 doubly linked

lists

Vertex with distance d[v] is stored in

B[d[v] mod (C+1)].

a,29 b,30 30c,

d,31

e, 33

f, 35

g,36

0
1
2

3
45

6
7
8

9

d*

Bucket queue with C = 9

<(a,29), (b,30), (c,30), (d,31)

(e,33), (f,35), (g,36)>

Content=

mod 10
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Operations
0

1
2

3
45

6
7
8

9

d*

mod 10
Initialization: C+1 empty lists, d∗ = 0

insert(v): inserts v in B[d[v] mod (C+1)] O(1)

decreaseKey(v): removes v from its list and

adds it to B[d[v] mod (C+1)] O(1)

deleteMin: starts at bucket B[d∗ mod (C+1)]. If empty, set

d∗ := d∗+1 and repeat. requires monotonicity!

d∗ is increased at most nC times, at most n elements in total are

removed from Q ⇒

Total costs of deleteMin operations = O(n+nC) = O(nC).

More specifically: O(n+maxPathLength)
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Running Time Dijkstra with Bucket Queues

TDijkstra = O(m ·TdecreaseKey(n)

+Costs of deleteMin operations

+n ·Tinsert(n)))

TDijkstraBQ = O(m ·1+nC+n ·1))

= O(m+nC) or

= O(m+maxPathLength)

Using radix heaps we can achieve TDijkstraRadix = O(m+n · logC)

Idea: use buckets of different sizes
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Radix Heaps

We use buckets -1 till K, where K = 1+ ⌊logC⌋

d∗ = distance that was previously removed from Q

For each vertex v ∈ Q holds d[v] ∈ [d∗, . . . ,d∗+C].

Consider binary representation of the possible distances in Q.

For example, let C = 9, in binary 1001. Then K = 4.

Example 1: d∗ = 10000, then ∀v ∈ Q : d[v] ∈ [10000,11001]

Example 2: d∗ = 11101, then ∀v ∈ Q : d[v] ∈ [11101,100110]

Store v in bucket B[i] if d[v] and d∗ first differ at the i-th position,

(use B[K] if i > K, and B[−1] if they are the same)
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Definition msd(a,b)

The position of the highest valued binary digit where a and b are

different

a 11001010 1010100 1110110

b 11000101 1010110 1110110

msd(a,b) 3 1 −1

Using a machine instruction, we can evaluate msd(a,b) very fast
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Radix Heap Invariant

v is stored in bucket B[i] where i = min(msd(d∗,d[v]),K).

Example 1: d∗ = 10000, C = 9, K = 4

Bucket d[v] binary d[v]

-1 10000 16

0 10001 17

1 1001* 18,19

2 101** 20–23

3 11*** 24–25

4 - -

(Nothing is stored in bucket 4)
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Radix Heap Invariant

v is stored in bucket B[i] where i = min(msd(d∗,d[v]),K).

Example 2: d∗ = 11101, C = 9, K = 4

Bucket d[v] binary d[v]

-1 11101 29

0 - -

1 1111* 30,31

2 - -

3 - -

4 100000 and higher 32 and higher

If d[v]≥ 32, then msd(d∗,d[v])> 4!
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Bucket Queues and Radix Heaps

a,29 b,30 30c,

d,31

e, 33

f, 35

g,36

a,29 g,36 f, 35 e, 33b,30 d,31 30c,

0
1
2

3
45

6
7
8

9

−1 0 1 2 3 4=K

d*

<(a,29), (b,30), (c,30), (d,31), (e,33), (f,35), (g,36)>
Content=mod 10

Bucket queue with C = 9

Binary Radix Heap
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Radix Heap: deleteMin

Function deleteMin: Element

if B[−1] = /0

i:= min{ j ∈ 0..K : B[ j] 6= /0}

move minB[i] to B[−1] and to d∗

foreach e ∈ B[i] do // exactly here invariant is violated !

move e to B[min(msd(d∗,d[e]),K)]

result:= B[−1].popFront

return result

B[0], . . . ,B[i−1]: empty, thus do nothing.

B[i+1], . . . ,B[K]: msd is preserved, because old and new d∗

same for all bits j > i
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Buckets j > i when changing d∗

Example: d∗ = 10000, C = 9, K = 4.

New d∗ = 10010, was stored in bucket 1

d∗ = 10000 d∗ = 10010

Bucket d[v] binary d[v] d[v] binary d[v]

-1 10000 16 10010 18

0 10001 17 10011 19

1 1001* 18,19 - -

2 101** 20–23 101** 20-23

3 11*** 24–25 11*** 24-27

4 - - - -
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Bucket B[i] when changing d∗

Lemma: Elements x of B[i] move to buckets with smaller indices

We only cover the case i < K.

Let d∗
o be the old value of d∗.

1

1

i 0
0o

Casei<K

d*

d*

x α

α

α
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Costs of deleteMin Operations

Find bucket B[i]: O(i)

Shift elements from B[i]: O(|B[i]|)

In total O(K + |B[i]|) if i ≥ 0, O(1) if i =−1

Always shift in the direction of smaller indices

We already pay for this during insert (amortized analysis):

there are at most K shifts of an element
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Running Time Dijkstra with Radix Heaps

In total we get (amortized)

� Tinsert(n) = O(K)

� TdeleteMin(n) = O(K)

� TdecreaseKey(n) = O(1)

TDijkstra = O(m ·TdecreaseKey(n)+n · (TdeleteMin(n)+Tinsert(n)))

TDijkstraRadix = O(m+n · (K +K)) = O(m+n · logC)
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Linear Running Time for Random Edge Weights

Previously: Dijkstra with binary heaps has linear running time for dense

graphs (m > n logn log logn)

Previous slide: TDijkstraRadix = O(m+n · logC)

Now: Dijkstra with radix heaps has linear running time (O(m+n)) if

Edge weights are identically uniformly distributed in 0..C

– we only need a small adjustment in the algorithm
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Modification of Algorithm for Random Edge

Weights

Precomputation of lightest incoming edge weight

cin
min(v):= min{c((u,v) : (u,v) ∈ E}

Observation: d[v]≤ d∗+ cin
min(v)

=⇒ d[v] = µ(v).

=⇒ place v in set F of unscanned vertices with correct distance

Vertices in F will be scanned at the next possibility.

(≈ F as an extension of von B[−1].)
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Analysis

A vertex v is never put in a bucket i with i < logcin
min(v)

Thus v is shifted at most K +1− logcin
min(v) times

Total cost for shifting then is at most

∑
v

(K− logcin
min(v)+1)= n+∑

v

(K− logcin
min(v))≤ n+∑

e

(K− logc(e)).

K − logc(e) = number of zeroes at the beginning of the binary

representation of c(e) as a K-bit number.

P(K− logc(e) = i) = 2−i ⇒ E(K− logc(e)) =∑i≥0 i2−i ≤ 2

Running time = O(m+n)
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All-Pairs Shortest Paths

For now there has always been a dedicated source vertex s

How can we find the shortest paths for all pairs (u,v) in G?

Assumption: negative costs allowed, but no negative cycles

Solution 1: Run Bellman-Ford n times

. . . Running time O
(
n2m

)

Solution 2: Vertex potentials

. . . Running time O
(
nm+n2 logn

)
, significantly faster
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Vertex Potentials

Each vertex gets a potential pot(v)

With the help of these potentials we define the reduced cost c̄(e) of an

edge e = (u,v) to be

c̄(e) = pot(u)+ c(e)− pot(v).

Using these costs we find the same shortest paths as before!

This holds for all possible potentials – we can define them freely
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Vertex Potentials

e2

v
v

1

k3

2 v=ve
e

e

1
3

k−1u=v

Let p be a path from u to v with cost c(p). Then

c̄(p) =
k−1

∑
i=1

c̄(ei) =
k−1

∑
i=1

(pot(vi)+ c(ei)− pot(vi+1))

= pot(v1)+
k−1

∑
i=1

c(ei)− pot(vk)

= pot(v1)+ c(p)− pot(vk).
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Node Potentials

Let p be a path from u to v with cost c(p). Then

c̄(p) = pot(v1)+ c(p)− pot(vk).

Let q be another u-v-path, then c(p)≤ c(q)⇔ c̄(p)≤ c̄(q).

e2
ek−1

v
v k3

2 v=ve
e

1
3

u=v1

pot(u) pot(v)

Path p

Path q

Definition: µ(u,v) = shortest distance from u to v
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Auxiliary Vertices

We add an auxiliary vertex s to G

For all v ∈V we add an edge (s,v) with cost 0

Calculate shortest paths from s using Bellman-Ford

s

G

0

0

0
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Definition of Potentials

Define pot(v) := µ(v) for all v ∈V

Now the reduced costs are all non negative: we can use Dijkstra!

(Possibly remove s...)

� No negative cycles, thus pot(v) well-defined

� For arbitray edge e = (u,v) it holds that

µ(u)+ c(e)≥ µ(v)

and therefore

c̄(e) = µ(u)+ c(e)
︸ ︷︷ ︸

≥µ(v)

−µ(v)≥ 0
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Algorithm

All-Pairs Shortest Paths in the Absence of Negative Cycles

new vertex s

foreach v ∈V do add edge (s,v) (cost 0) // O(n)

pot:= µ:= BellmanFordSSSP(s,c) // O(nm)

foreach vertex x ∈V do // O(n(m+n logn))

µ̄(x, ·):= DijkstraSSSP(x, c̄)

// return to original cost function

foreach e = (v,w) ∈V ×V do // O
(
n2
)

µ(v,w):= µ̄(v,w)+ pot(w)− pot(v)
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Running Time

� Add s: O(n)

� Postprocessing: O
(
n2
)

(return to original cost function)

� Running Dijkstra n times dominates

Running time O(n(m+n logn)) = O
(
nm+n2 logn

)

Possible parallelization: par. Bellman–Ford + independent SSSP

searches. Memory consumption?
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Distance to a Target Vertex t

What to do if we are only interested in the distance from s to a specific

target vertex t?

Trick 0:

ts

Dijkstra stops once t is removed from Q

"On average" saves half of the scans

Question: How much does it save for navigation?
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Ideas for Route Planning

� Forward + backward search

ts

� Target-oriented search

ts

� Exploit hierarchies

s t

� Tabulate segments

s z
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Bidirectional Search

Idea: Alternate searching for s and t ts

Forward search on original graph G = (V,E)

Backward search on backward graph Gr = (V,Er)

(Search direction switches at every step)

Preliminary shortest distance is stored at every step:

d[s, t] = min(d[s, t], dforward[u]+dbackward[u])

Stopping criterion:

Search scans vertex that has already been scanned in other direction.

d[s, t]⇒ µ(s, t)
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A∗ Search

Idea: Search "in the direction of t"

s tts

Assumption: We know a function f (v) which estimates µ(v, t) ∀v

Define pot(v) = f (v) and c̄(u,v) = c(u,v)+ f (v)− f (u)

[Or: in Dijkstra’s algorithm, do not remove v that has minimum d[v]

from Q, but v that has minimum d[v]+ f [v]]
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A∗ Search

Idea: Search "in the direction of t"

s tts

Assumption: We know a function f (v) which estimates µ(v, t) ∀v

Define pot(v) = f (v) and c̄(u,v) = c(u,v)+ f (v)− f (u)

Example: f (v) = µ(v, t).

Then: c̄(u,v) = c(u,v)+µ(v, t)−µ(u, t) = 0 if (u,v) is part of the

shortest path from s to t.

s → ·· · → u
c(u,v)
−→

µ(v,t)
︷ ︸︸ ︷
v→ ·· · →t

︸ ︷︷ ︸

µ(u,t)

Therefore, Dijkstra only scans vertices on this path!
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Required Properties of f (v)

� Consistency (reduced costs not negative):

c(e)+ f (v)≥ f (u) ∀e = (u,v)

� f (v)≤ µ(v, t) ∀v ∈V

� f (t) = 0 then we can stop once t is removed from Q

Let p be any path from s to t.

Are all edges along p relaxed? ⇒ d[t]≤ c(p).

Otherwise: ∃v ∈ p∩Q, and d[t]+ f (t)≤ d[v]+ f (v) because t

was already removed. Thus

d[t] = d[t]+ f (t)≤ d[v]+ f (v)≤ d[v]+µ(v, t)≤ c(p)
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How do we find f (v)?

We need heuristics for f (v).

Route in road network: f (v) = Euclidean distance ||v− t||2

results in noticable but not outstanding speedup

Travel time:
||v− t||2

Maximum speed
practically useless

Even better but requires precomputation: Landmarks
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Landmarks [Goldberg Harrelson 2003]

Precomputation: Choose landmarkset L. ∀ℓ ∈ L,v ∈V

compute/store µ(v, ℓ).

Query: Search for landmark ℓ ∈ L "behind" the target.

Use lower bound fℓ(v) = µ(v, ℓ)−µ(t, ℓ)

+ Conceptually simple

+ Significant speedup

(≈ factor of 20 on average)

+ Combinable with other techniques

− Landmark selection complicated

− High memory consumption

v

l
t
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Summary Shortest Paths

� Non-trivial examples for average-case analysis. Similar to MST

� Monotone integer priority queues as an example for data

structures that are tailored for an algorithm

� Vertex potentials generally useful for graph algorithms

� State-of-the-art research meets classic algorithmics


