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Advanced Graph Algorithms

3 Shortest Paths

Slides partially due to Rob van Stee

Input: Graph G = (V,E)
Cost function/edge weights ¢ : E — R

Source vertex s.

Output: forallv € V

Length LL(v) of the shortest path from s to v,
1(v) :=min{c(p) : pis path from s to v}
where c({e1,...,e;)) == Y5, c(e;).

Often we want a "suitable" representation of the shortest path.
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General Definitions g
® I} E A\
Similar to BFS we use two vertex arrays: % S
D Q.
] d[v] = current (preliminary) distance from s to v o =
: o)
Invariant: d|v] > u(v) % =
® o | d[y]
[ ] parent|v| = predecessor of v !
on the (preliminary) shortest path from s to v | -
. . i D D
Invariant: this path attests d|v] 1 =
e e o 2
Initialization: M
d|s| =0, parent[s] = s 1%

d|v]| = oo, parent|v| = L
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tttttttttttttttttttttttttttttt

Relaxation of an edge (u,v) s

if du| 4+ c(u,v) < d|v|
possibly d[v] = oo
set d|v| := d[u| + c(u,v) and parent[v] := u

Invariants are maintained!

d[u']

Observation: d[ul
d|v] can change several times!

dlu}+c(u,v)
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Dijkstra’s Algorithm: Pseudocode

initialize d, parent

all nodes are non-scanned

while 3 non-scanned node u with d|u] < oo
u := non-scanned node v with minimal d V]
relax all edges (u,v) out of u

i is scanned now

Claim: At the end, d defines the optimal distances

and parent the corresponding paths (see Algo [:)

[ | v reachable = v will be scanned at some point

[] vscanned = U (v) =d|v|
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Example 2

NN
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Running Time

Toiikstra = O (M - Tyecreasexey (1) + 1 (Tyeistemin (1) + Tinsert(12)) )
Using Fibonacci heap priority queues:
] insert O(1)
] decreaseKey O(1)

] deleteMin O(logn) (amortized)
Toijsrarib = O(m-1+n-(logn+1))
= O(m+nlogn)

However: constant factors in O(-) are larger when compared to binary
heaps!
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Running Time on Average

So far: < m decreaseKeys (< 1 X per edge)

How many decreaseKeys on average?

Model: ®
L] Arbitrary graph G
'\ v
] Arbitrary source vertex s ®
. =
] Arbitrary sets C(v)
of edge weights for ®
iIncoming edges of vertex v
®
Average over all possible assignments indegree(v)=5
C(v) — incoming edges of v C(v)={Cy-s G}

Example: all costs are independent and uniformly distributed
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Running Time on Average

Probabilistic view: Random selection of the uniformly distributed inputs

that are to be averaged
—
we look for the expected value of the running time

Question: Difference to the expected running time for randomized

algorithms?
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Running Time on Average

Theorem 1. E|#decreaseKey operations| = O(n log %)

Then

m
E(TDijkstraBHeap) = 0 (m +nlog ; ' TdecreaseKey(n)
+n- (TdeleteMin (n) + Tinsert(n)))
= 0 (m +nlog e logn+ nlogn)
n

= O(ernlongogn)
n

(previously, we had TpikstrapHeap = O((m +n)logn))

(Tpijkstrarib = O(m + nlogn) worst case)
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Linear Running Time for Dense Graphs

m = Q(nlognloglogn) = linear running time.
(verify)

Thus, in this case might be better than Fibonacci heaps
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Karlsruhe Institute of Technology

Theorem 1. El#decreaseKey operations) = O(nlog2)
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Theorem 1. E[#decreaseKey operations| = O(nlog™)

decreaseKey only performed during processing of ¢; if

w(u;) +c(e;) <min(u(uj)+clej)). Y e

=
J<U o :el
However, W (u;) > W (u;) for j < i, and thus: .\ v

c(e;) <minc(e;) Y
J<i

IS @ necessary condition.

Prefix minimum
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Theorem 1. El#decreaseKey operations) = O(nlog2)
Costs in C(v) appear in random order
How many times does one find a new minimum in a random order?

Harmonic number H}. (see below)
First minimum: leads to insert(v).

Thus < Hy — 1 < (Ink+ 1) — 1 = Ink expected decreaseKeys
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Theorem 1. E[#decreaseKey operations| = O(nlog™)

For each vertex v < H;, — 1 < Ink (expected) decreaseKeys where
k = indegree(v).

In total

Y Inindegree(v) < nln ~

vev n

(due to concavity of In x)
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Prefix Minima in a Random Sequence -

Define random variable M,, as the number of prefix minima in a

sequence of n different numbers (dependent on a random permutation)

Define indicator variables /;:= 1 iff the i-th number is a prefix minimum.
1 Lin. E 1
EWd:EZL Z

n
=) -=H,dueto P[j=1] =~
i=1 " :

Xy ee e s Xi—15 X X415 -+ 5 Xn
\ - -~ _J/

<x;?
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ttttttttttttttttttttttttttttt

Monotone Integer Priority Queues

Basic idea: Application tailored data structure

Dijkstra’s algorithm uses priority queue monotonically:

Operations insert and decreaseKey use distances in the form of
dlu]+c(e)

This value is continiously increasing
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Karlsruhe Institute of Technology

Monotone Integer Priority Queues

Assumption: All edge weights are integers in the interval [0, C]
—YeV:dpy|<(n—-1)C
Furthermore:

Let d™ be the last value

that was removed from Q.

In O there are always

only vertices with distances in the
interval |[d*,d* + C].
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Bucket queue withC =9

b,30— ¢, 3@
d,31

Cyclic array B of C + 1 doubly linked

lists
Vertex with distance d|v| is stored in

Bld[v] mod (C+1)].

e 33

Content=
<(a,29), (b,30), (c,30), (d,31)
(e,33), (f,35), (g,36)>
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Operations d* <

9 0)
Initialization: C + 1 empty lists, d* = 0 7lmod 1
insert(v): inserts vin B[d[v] mod (C+1)] © 4 O(1)
decreaseKey(v): removes v from its list and
adds it to B|d[v] mod (C+1)] O(1)

deleteMin: starts at bucket B|d* mod (C + 1)]. If empty, set
d* :=d* + 1 and repeat. requires monotonicity!

d* is increased at most nC times, at most n elements in total are

removed from Q =

Total costs of deleteMin operations = O(n+nC) = O(nC).
More specifically: O(n + maxPathLength)
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Running Time Dijkstra with Bucket Queues

Tpiikstra = O(m - Tyecreasekey ()
+Costs of deleteMin operations
+1 - Tinsert (1)) )
Toikstraea = O(m-1+nC+n-1))
= O(m+nC) or
= O(m+ maxPathLength)

Using radix heaps we can achieve Tpjkstraradix = O(m +n-logC)

|dea: use buckets of different sizes
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Radix Heaps

We use buckets -1 till K, where K = 1+ |logC|

d* = distance that was previously removed from Q

For each vertex v € Q holds d|v] € [d*,...,d* +C].

Consider binary representation of the possible distances in Q.

For example, let C = 9, in binary 1001. Then K = 4.

Example 1: d* = 10000, then Vv € Q : d[v] € [10000, 11001]
Example 2: d* = 11101, then Vv € Q : d|v| € [11101,100110]

Store v in bucket Bli] if d|v] and d* first differ at the i-th position,
(use B|K| if i > K, and B|—1] if they are the same)
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Definition msd(a, b)

The position of the highest valued binary digit where a and b are

different

a 11001010 1010100 1110110
b 11000101 1010110 1110110
msd(a, ) 3 1 —1

Using a machine instruction, we can evaluate msd(a, b) very fast
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Karlsruhe Institute of Technology

Radix Heap Invariant

v is stored in bucket B|i] where i = min(msd(d*,d[v]),K).
Example 1: d* = 10000,C =9, K =4

Bucket | d|v] binary  d|v]
-1 10000 16
0 10001 17
1 1001~ 18,19
5 101**  20-23
3 1q*** 24—25
4 ) i

(Nothing is stored in bucket 4)
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Radix Heap Invariant

v is stored in bucket B|i] where i = min(msd(d*,d[v]),K).

Example 2: d* =11101,C=9,K =4

Bucket d|v] binary d|v]
-1 11101 29
0 -
1 1111* 30,31
2 -
3 -
4 100000 and higher 32 and higher

If d[v] > 32, then msd(d*,d|v]) > 4!
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Bucket Queues and Radix Heaps

<

c, 30 Bucket queue with C =9
Content=
<(a,29), (b,30), (c,30), (d,31), (e,33), (,35), (g,36)>
-10 1 2 3 4=K
[ [ [
a,29 b,30 [ d,31 c, 30 0,36 []f, 35 []€33

Binary Radix Heap
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Radix Heap: deleteMin

Function deleteMin: Element
if B[—1] = 0
i:=min{j € 0..K: B|j] #0}
move min B|i| to B[—1] and to d*
foreach e € B|i| do // exactly here invariant is violated !
move e to B\min(msd(d*,dle]),K)]
result:= B|—1|.popFront

return result

B[0],...,B|i — 1]: empty, thus do nothing.
Bli+1],...,B|K]: msd is preserved, because old and new d*

same for all bits j > i
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Buckets j > i when changing d*

Example: d* = 10000,C =9, K = 4.
New d* = 10010, was stored in bucket 1

d* = 10000 d* = 10010
Bucket || d[v] binary d[v] | d[v]binary d[V]
-1 10000 16 10010 18
0 10001 17 10011 19
1 1001~ 18,19 - -
101** 20-23 101** 20-23
11%* 24—-25 11%** 24-27

A~ W N
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Bucket B[i] when changing d*

Lemma: Elements x of B|i] move to buckets with smaller indices
We only cover the case i < K.

Let d be the old value of d*.

Casei<K
i 0
dy | o |0
d* o |1
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Costs of deleteMin Operations

Find bucket B|i]: O(i)

Shift elements from Bli]: O(|Bli]|)

In total O(K + |Bli]|) ifi >0,0(1)ifi=—1
Always shift in the direction of smaller indices

We already pay for this during insert (amortized analysis):

there are at most K shifts of an element
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Running Time Dijkstra with Radix Heaps

In total we get (amortized)
[] Tinsert(n) — O(K)
L] 1 5eleteMin (n) — O(K)

L] TdecreaseKey(n) — O(l)

IDijkstra = O(m - TdecreaseKey(n) + 1 - (Tyetetemin(1) + Tinsert(12) ) )
IpijkstraRadix = O(m+n-(K+K))=0(m+n-logC)
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Linear Running Time for Random Edge Weights

Previously: Dijkstra with binary heaps has linear running time for dense

graphs (m > nlognloglogn)
Previous slide: TDijkstraRadix = O(m +n- lOg C)

Now: Dijkstra with radix heaps has linear running time (O(m + n)) if
Edge weights are identically uniformly distributed in O..C

— we only need a small adjustment in the algorithm



Sanders: Algorithms II - November 16, 2000 — Supplement ‘ee® 3-32 &(IT
Modification of Algorithm for Random Edge @

Weights

Precomputation of lightest incoming edge weight
¢ (v):= min{c((u,v): (u,v) €E}
Observation: d[v] < d* +c™. (v)

= dv| = u(v).

— place v in set ' of unscanned vertices with correct distance

Vertices in I will be scanned at the next possibility.

(=~ F as an extension of von B[—1].)
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Analysis =MoL

A vertex v is never put in a bucket i with i < logc™. (v)
Thus v is shifted at most K + 1 —logc™. (v) times

Total cost for shifting then is at most

Y (K- logc™ (v)+1) —n+2 (K —logc™ (v )) <n+) (K—logc(e)).

v

K —logc(e) = number of zeroes at the beginning of the binary

representation of ¢(e) as a K-bit number.
P(K—logc(e)=i)=2"" = E(K—logc(e))=Y;>0i2 ' <2

Running time = O(m + n)
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All-Pairs Shortest Paths

For now there has always been a dedicated source vertex s
How can we find the shortest paths for all pairs (u,v) in G?
Assumption: negative costs allowed, but no negative cycles
Solution 1: Run Bellman-Ford 7 times

... Running time O(nzm)
Solution 2: Vertex potentials

... Running time O (nm +n?log n) , significantly faster
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Vertex Potentials

Each vertex gets a potential pot(v)

With the help of these potentials we define the reduced cost ¢(e) of an

edge e = (u, V) to be
c(e) = pot(u) 4 c(e) — pot(v).

Using these costs we find the same shortest paths as before!

This holds for all possible potentials — we can define them freely
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Vertex Potentials

V2 ° _
e, @ Vj SN V=V
A %\./% 0 ./e//.
k-1

u=v
Let p be a path from u to v with cost ¢(p). Then

k—

1
c(p) = ZC ej :Z (pot(vi) +c(e;) —pot(vit1))

=1

M_

pot(vy) c(e;) — pot(vy)

— pot(v1) + _<> pot ().

Karlsruhe Institute of Technology
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Node Potentials L

Let p be a path from u to v with cost ¢(p). Then
¢(p) = pot(vi) +c(p) — pot(vk).

Let g be another u-v-path, then c(p) < c(q) < ¢(p) < ¢(q).

V2 Path p
Vv \ V=M%
?/ \ 81 4
pot(u) \ 0/ pot(v)
Patm'"’""""

Definition: [ (u,v) = shortest distance from u to v
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AUXiliary Ve rtices Karlsruhe Institute of Technology

We add an auxiliary vertex s to G

For all v € V we add an edge (s, V) with cost 0

Calculate shortest paths from s using Bellman-Ford

G
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Definition of Potentials

Define pot(v) := w(v) forallv e V

Now the reduced costs are all non negative: we can use Dijkstra!

(Possibly remove s...)
] No negative cycles, thus pot(v) well-defined

] For arbitray edge e = (u, V) it holds that

() +cle) = pu(v)

and therefore
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Algorithm

Karlsruhe Institute of Technology

All-Pairs Shortest Paths in the Absence of Negative Cycles

new vertex s

foreach v € V do add edge (s,v) (cost 0) // O(n)
pot:= U:= BellmanFordSSSP(s,c) // O(nm)
foreach vertex x € V do I/ O(n(m+nlogn))

[1(x,-):= DijkstraSSSP(x, )
//return to original cost function
foreach e = (v,w) € V xV do // O(nz)

w(v,w):= it(v,w) + pot(w) — pot(v)
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] Add s: O(n)
|| Postprocessing: O(nz) (return to original cost function)
] Running Dijkstra n times dominates
Running time O(n(m +nlogn)) = O(nm+ n*logn)

Possible parallelization: par. Bellman—Ford - independent SSSP

searches. Memory consumption?
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ttttttttttttttttttttttttttttt

Distance to a Target Vertex ¢

What to do if we are only interested in the distance from s to a specific

target vertex 1?

Trick 0:

Dijkstra stops once ¢ is removed from O
"On average" saves half of the scans

Question: How much does it save for navigation?
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Ideas for Route Planning

| | Forward + backward search

| Target-oriented search

[ ] Exploit hierarchies ‘e

[] Tabulate segments ‘e
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Bidirectional Search

ldea: Alternate searching for s and ¢

Forward search on original graph G = (V,E)
Backward search on backward graph G" = (V,E")

(Search direction switches at every step)

Preliminary shortest distance is stored at every step:
d [S 1 ] = min(d [S 1 ]7 dforward[u] - dbackward[u])

Stopping criterion:
Search scans vertex that has already been scanned in other direction.
dls,t] = p(s,1)
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ldea: Search "in the direction of ¢"

D

Assumption: We know a function f(v) which estimates t(v,z) Vv
Define pot(v) = f(v) and ¢(u,v) = c(u,v) + f(v) — f(u)

[Or: in Dijkstra’s algorithm, do not remove v that has minimum d|v]
from Q, but v that has minimum d[v] + f[v]]
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A* Search
G
ldea: Search "in the direction of ¢"

Assumption: We know a function f(v) which estimates (v,z) Vv

Define pot(v) = f(v) and ¢(u,v) = c(u,v) + f(v) — f(u)

Example: f(v) = u(v,t).
Then: ¢(u,v) = c(u,v)+ p(v,t) —p(u,t) = 0if (u,v) is part of the

shortest path from s to 7.

()
C(1,V ) e
§—> e S Y— P> e S
W

p(ut)
Therefore, Dijkstra only scans vertices on this path!
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Required Properties of f(v)

] Consistency (reduced costs not negative):
c(e)+ f(v) = f(u) Ve = (u,v)
L fv) <ut)YveV
[ f(¢) = 0 then we can stop once ¢ is removed from Q

Let p be any path from s to 7.
Are all edges along p relaxed? = d|t| < c¢(p).
Otherwise: v € pN Q, and d[t] + f(t) < d[v]+ f(v) because ¢

was already removed. Thus

d[t] = dlt]+ f(t) < d[v]+ f(v) <d[v]+u(v1)< c(p)
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How do we find f(v)? e

We need heuristics for f(v).

Route in road network: f(v) = Euclidean distance ||v —||»
results in noticable but not outstanding speedup
v —1]l2

Travel time: : practically useless
Maximum speed

Even better but requires precomputation: Landmarks



Sanders: Algorithms Il - November 16, 2020 3-49 &(IT
Landmarks [Goldberg Harrelson 2003]

Karlsruhe Institute of Technology

Precomputation: Choose landmarkset L. V/ € L,v € V

compute/store LL(v, /).

Query: Search for landmark £ € L "behind" the target.
Use lower bound f;(v) = (v, ) — p(t,0)

+ Conceptually simple

-+ Significant speedup

(= factor of 20 on average)
+ Combinable with other techniques
— Landmark selection complicated

— High memory consumption
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Summary Shortest Paths
| Non-trivial examples for average-case analysis. Similar to MST

| Monotone integer priority queues as an example for data

structures that are tailored for an algorithm
[ Vertex potentials generally useful for graph algorithms

|| State-of-the-art research meets classic algorithmics



