
Sanders: Algorithms II - November 2, 2020

Algorithmen II

Peter Sanders

Exercise:

Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:

http://algo2.iti.kit.edu/AlgorithmenII_WS20.php



Sanders: Algorithms II - November 2, 2020 4-1

4 Applications of DFS



Sanders: Algorithms II - November 2, 2020 4-2

DFS Schema for G = (V,E)

unmark all nodes; init

foreach s ∈V do

if s is not marked then

mark s // make s a root and grow

root(s) // a new DFS-tree rooted at it.

DFS(s,s)

Procedure DFS(u,v : NodeId) // Explore v coming from u.

foreach (v,w) ∈ E do

if w is marked then traverseNonTreeEdge(v,w)

else traverseTreeEdge(v,w)

mark w

DFS(v,w)

backtrack(u,v) // return from v along the incoming edge



Sanders: Algorithms II - November 2, 2020 4-3

DFS Ordering

init: dfsPos=1 : 1..n

root(s): dfsNum[s]:= dfsPos++

traverseTreeEdge(v,w): dfsNum[w]:= dfsPos++

u≺v ⇔ dfsNum[u]< dfsNum[v] .

Observation:

Nodes on the recursion stack are sorted w.r.t. ≺

s
cross
backward
tree

forward

1 2 3 4 5

67

b

cd

e fg



Sanders: Algorithms II - November 2, 2020 4-4

Finishing Time

init: finishingTime=1 : 1..n

backtrack(u,v): finishTime[v]:= finishingTime++

s
cross
backward
tree

forward

7 5 4 2 1

36

b

cd

e fg



Sanders: Algorithms II - November 2, 2020 4-5

Strongly Connected Components

Consider the relation
∗
↔ where

u
∗
↔ v if ∃ path 〈u, . . . ,v〉 and ∃ path 〈v, . . . ,u〉.

Observation:
∗
↔ is an equivalence relation Exercise

The equivalence classes of
∗
↔ are called strongly connected

components.

aa bb

c

d e

e

f

g
i

i
h

c,d, f ,g,h



Sanders: Algorithms II - November 2, 2020 4-6

Strongly Connected Components –

Abstract Algorithm

Gc:= (V, /0 = Ec)

foreach edge e ∈ E do

invariant SCCs of Gc are known

Ec:= Ec ∪{e}



Sanders: Algorithms II - November 2, 2020 4-7

Shrunken Graph

Gs
c = (V s,Es

c)

Nodes: SCCs of Gc.

Edges: (C,D) ∈ Es
c ⇔∃(c,d) ∈ Ec : c ∈C∧d ∈ D

aa bb

c

d e

e

f

g
i

i
h

c,d, f ,g,h

Observation: the shrunken graph is acyclic



Sanders: Algorithms II - November 2, 2020 4-8

Effects of a New Edge e on Gc, Gs
c

internal to an SCC: Nothing changes

between two SCCs:

no cycle: new edge in Gs
c

closing a cycle: SCCs on the cycle collapse.

aa bb

c

d e

e

f

g
i

i
h

c,d, f ,g,h



Sanders: Algorithms II - November 2, 2020 4-9

More Concretely: Finding SCCs with DFS

[Cheriyan/Mehlhorn 96, Gabow 2000]

Vc = marked nodes

Ec = edges explored so far

Active nodes: marked but not yet finished.

SCCs of Gc:

not reached: unmarked nodes

open: contains active nodes

closed: all nodes finished

component[w] is the representative of an SCC.

Nodes of open (closed) components are called open (closed)



Sanders: Algorithms II - November 2, 2020 4-10

Invariants of Gc

1. Edges from closed nodes lead to closed nodes

2. Open components S1,. . . ,Sk form a path in Gs
c.

3. Representatives partition the open components w.r.t. their dfsNum.

open nodes ordered by dfsNum

current
node

S1 S2 Sk

r1 r2 rk



Sanders: Algorithms II - November 2, 2020 4-11

Lemma: Finished SCCs of Gc are SCCs of G

Consider a closed node v

and an arbitrary node w

in the SCC of v w.r.t. G.

To prove: w is closed and

in the same SCC of Gc as v.

Consider cycle C containing v, w.

Inv. 1: nodes of C are closed.

Closed nodes are finished.

Edges out of finished nodes have been explored.

Hence, all edges of C are in Gc.

v wC



Sanders: Algorithms II - November 2, 2020 4-12

Representation of Open Components

Two stacks ordered by dfsNum ascendingly

oReps: representatives of open components

oNodes: all open nodes

open nodes ordered by dfsNum

current
node

S1 S2 Sk

r1 r2 rk



Sanders: Algorithms II - November 2, 2020 4-13

init

component : NodeArray of NodeId // SCC representatives

oReps=〈〉 : Stack of NodeId // representatives of open SCCs

oNodes=〈〉 : Stack of NodeId // all nodes in open SCCs

All invariants are satisified.

(Neither open nor closed nodes)



Sanders: Algorithms II - November 2, 2020 4-14

root(s)

oReps.push(s) // new open

oNodes.push(s) // component

{s} is the only open component.

All invariants remain valid

open nodes ordered by dfsNum

current
node

S1

s



Sanders: Algorithms II - November 2, 2020 4-15

traverseTreeEdge(v,w)

oReps.push(w) // new open

oNodes.push(w) // component

{w} is a new open component.

dfsNum(w)> all others.

 All invariants remain valid

open nodes ordered by dfsNum

current
nodev

S1 S2 Sk

wr1 r2



Sanders: Algorithms II - November 2, 2020 4-16

traverseNonTreeEdge(v,w)

if w ∈ oNodes then

while w ≺ oReps.top do oReps.pop

w 6∈ oNodes w is closed
Lemma(∗)
 edge is not interesting

w ∈ oNodes: collapse open SCCs on the cycle

current
nodev

w

ri rk

Si Sk



Sanders: Algorithms II - November 2, 2020 4-17

backtrack(u,v)

if v = oReps.top then

oReps.pop // close

repeat // component

w:= oNodes.pop

component[w]:= v

until w = v

current
node

vuri

Si Sk

To prove: invariants remain valid. . .



Sanders: Algorithms II - November 2, 2020 4-18

backtrack(u,v)
if v = oReps.top then

oReps.pop // close

repeat // component

w:= oNodes.pop

component[w]:= v

until w = v

Inv. 1: edges from closed nodes lead to closed nodes.

current
node

OK

OK
no no

ri rk

Si Sk



Sanders: Algorithms II - November 2, 2020 4-19

backtrack(u,v)
if v = oReps.top then

oReps.pop // close

repeat // component

w:= oNodes.pop

component[w]:= v

until w = v

Inv. 2: open components S1,. . . ,Sk form a path in Gs
c

OK. (Sk may be removed)

current
node

vuri

Si Sk



Sanders: Algorithms II - November 2, 2020 4-20

backtrack(u,v)
if v = oReps.top then

oReps.pop // close

repeat // component

w:= oNodes.pop

component[w]:= v

until w = v

Inv. 3: representatives partition the open components w.r.t. their dfsNum.

OK. (Sk may be removed)

current
node

vuri

Si Sk



Sanders: Algorithms II - November 2, 2020 4-21

Example

marked finished

representative node

nonrepresentative node
unmarked

closed SCC

open SCC

nontraversed edge

traversed edge

root(a) traverse(a,b) traverse(b,c)

dcba f g h i kje



Sanders: Algorithms II - November 2, 2020 4-22

unmarked finishedmarked

representative node

nonrepresentative node

closed SCC

open SCC

nontraversed edge

traversed edge

root(a) traverse(a,b) traverse(b,c)

traverse(c,a)

dcb f g h i kjea



Sanders: Algorithms II - November 2, 2020 4-23

unmarked finishedmarked

representative node

nonrepresentative node

closed SCC

open SCC

nontraversed edge

traversed edge

backtrack(b,c) backtrack(a,b)

dcb f g h i kjea



Sanders: Algorithms II - November 2, 2020 4-24

unmarked finishedmarked

closed SCC

open SCC

nontraversed edge

traversed edge

representative node

nonrepresentative node

dcb f g h i kjea

backtrack(a,a)



Sanders: Algorithms II - November 2, 2020 4-25

nontraversed edge

traversed edge

representative node

nonrepresentative node
unmarked finishedmarked

closed SCC

open SCC

dcb f g h i kjea

root(d) traverse(d,e) traverse(f,g)traverse(e,f)



Sanders: Algorithms II - November 2, 2020 4-26

unmarked finishedmarked

closed SCC

open SCC

nontraversed edge

traversed edge

representative node

nonrepresentative node

backtrack(f,g) backtrack(e,f)

dcb f g h i kjea



Sanders: Algorithms II - November 2, 2020 4-27

unmarked finishedmarked

closed SCC

open SCC

nontraversed edge

traversed edge

representative node

nonrepresentative node

traverse(e,g) traverse(e,h) traverse(h,i)

dcb f g h i kjea



Sanders: Algorithms II - November 2, 2020 4-28

unmarked finishedmarked

closed SCC

open SCC

nontraversed edge

traversed edge

traverse(i,e)

representative node

nonrepresentative node

dcb f g h i kjea



Sanders: Algorithms II - November 2, 2020 4-29

unmarked finishedmarked

closed SCC

open SCC

nontraversed edge

traversed edge

traverse(j,c)traverse(i,j) traverse(j,k)

representative node

nonrepresentative node

dcb f g h i kjea



Sanders: Algorithms II - November 2, 2020 4-30

unmarked finishedmarked

closed SCC

open SCC

nontraversed edge

traversed edge

representative node

nonrepresentative node

traverse(k,d)

dcb f g h i kjea



Sanders: Algorithms II - November 2, 2020 4-31

unmarked finishedmarked

closed SCC

open SCC

nontraversed edge

traversed edge

backtrack(j,k) backtrack(i,j) backtrack(h,i)
backtrack(e,h) backtrack(d,e)

representative node

nonrepresentative node

dcb f g h i kjea



Sanders: Algorithms II - November 2, 2020 4-32

unmarked finishedmarked

closed SCC

open SCC

nontraversed edge

traversed edge

representative node

nonrepresentative node

backtrack(d,d)

dcb f g h i kjea



Sanders: Algorithms II - November 2, 2020 4-33

Summary: Computing SCCs

� Simple instantiation of the DFS template

� Nontrivial correctness proof

� Running time O(m+n): (at most n push/pop operations, resp.)

� A single iteration

Implementation details:

Mehlhorn, Näher, Sanders

Engineering DFS-Based Graph Algorithms

arxiv.org/abs/1703.10023



Sanders: Algorithms II - November 2, 2020 – Supplement 4-34

2-Connected Components (Undirected)

Components remain connected when removing a single node.

(Partitioning of the edges)

Possible in O(m+n) time with an algorithm similar to that for SCCs.



Sanders: Algorithms II - November 2, 2020 – Supplement 4-35

More DFS-based Linear Time Algorithms

� 3-connected components

� Planarity testing

� Embedding of planar graphs


