

Algorithmen II

Peter Sanders

Exercise:

Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:

http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

DFS Schema for G = (V, E)

unmark all nodes; init foreach $s \in V$ do if s is not marked then mark s // make *s* a root and grow // a new DFS-tree rooted at it. root(s) $\mathsf{DFS}(s,s)$ **Procedure** DFS(u, v : Nodeld) // Explore v coming from u. foreach $(v, w) \in E$ do if w is marked then traverseNonTreeEdge(v, w)traverseTreeEdge(v, w)else mark w $\mathsf{DFS}(v,w)$ backtrack(u, v) // return from v along the incoming edge

DFS Ordering

init: dfsPos=1 : 1..nroot(s): dfsNum[s]:=dfsPos++traverseTreeEdge(v,w): dfsNum[w]:=dfsPos++

 $u \prec v \Leftrightarrow \operatorname{dfsNum}[u] < \operatorname{dfsNum}[v]$.

Observation:

Nodes on the recursion stack are sorted w.r.t. \prec

Finishing Time

init: finishingTime=1 : 1..n

backtrack(u, v): finishTime[v]:= finishingTime++

Exercise

Strongly Connected Components

Consider the relation $\stackrel{*}{\leftrightarrow}$ where $u \stackrel{*}{\leftrightarrow} v$ if \exists path $\langle u, \dots, v \rangle$ and \exists path $\langle v, \dots, u \rangle$. **Observation:** $\stackrel{*}{\leftrightarrow}$ is an equivalence relation

The equivalence classes of $\stackrel{*}{\leftrightarrow}$ are called strongly connected components.

4-6

Strongly Connected Components – Abstract Algorithm

 $G_c := (V, \emptyset = E_c)$

foreach edge $e \in E$ do

invariant SCCs of G_c are known

 $E_c := E_c \cup \{e\}$

Shrunken Graph

 $G_c^s = (V^s, E_c^s)$

Nodes: SCCs of G_c .

Edges: $(C,D) \in E_c^s \Leftrightarrow \exists (c,d) \in E_c : c \in C \land d \in D$

Observation: the shrunken graph is acyclic

Effects of a New Edge e on G_c , G_c^s

internal to an SCC: Nothing changes

between two SCCs:

no cycle: new edge in G_c^s

closing a cycle: SCCs on the cycle collapse.

4-9

More Concretely: Finding SCCs with DFS

[Cheriyan/Mehlhorn 96, Gabow 2000]

 $V_c =$ marked nodes

 $E_c = edges explored so far$

Active nodes: marked but not yet finished.

SCCs of G_c :

not reached: unmarked nodes

open: contains active nodes

closed: all nodes finished

component[w] is the representative of an SCC.

Nodes of open (closed) components are called open (closed)

Invariants of G_c

- 1. Edges from closed nodes lead to closed nodes
- 2. Open components S_1, \ldots, S_k form a path in G_c^s .
- 3. Representatives partition the open components w.r.t. their dfsNum.

open nodes ordered by dfsNum

Lemma: Finished SCCs of G_c are SCCs of G

Consider a closed node v

and an arbitrary node w

in the SCC of v w.r.t. G.

To prove: w is closed and

in the same SCC of G_c as v.

Consider cycle C containing v, w.

Inv. 1: nodes of C are closed.

Closed nodes are finished.

Edges out of finished nodes have been explored.

Hence, all edges of C are in G_c .

Representation of Open Components

Two stacks ordered by dfsNum ascendingly

oReps: representatives of open components

oNodes: all open nodes

open nodes ordered by dfsNum

Sanders: Algorithms II - November 2, 2020 init

component : NodeArray of Nodeld $oReps = \langle \rangle$: Stack of Nodeld // representatives of open SCCs $oNodes = \langle \rangle$: Stack of Nodeld

All invariants are satisified.

(Neither open nor closed nodes)

// SCC representatives // all nodes in open SCCs

Sanders: Algorithms II - November 2, 2020 root(s)

oReps.push(s) oNodes.push(s)

 $\{s\}$ is the only open component. All invariants remain valid

```
// new open
// component
```


open nodes ordered by dfsNum

traverseTreeEdge(v, w)

oReps.push(w)
oNodes.push(w)

 $\{w\}$ is a new open component. dfsNum(w) > all others.

 \rightsquigarrow All invariants remain valid

// new open
// component

open nodes ordered by dfsNum


```
traverseNonTreeEdge(v, w)
```

if $w \in oNodes$ then

while $w \prec oReps.top do oReps.pop$

 $w \notin oNodes \rightsquigarrow w$ is closed $\stackrel{Lemma(*)}{\leadsto}$ edge is not interesting $w \in oNodes$: collapse open SCCs on the cycle

To prove: invariants remain valid...

backtrack(u, v) **if** v = oReps.top **then** oReps.pop **repeat** w := oNodes.pop component[w] := v**until** w = v

Inv. 1: edges from closed nodes lead to closed nodes.

backtrack(u, v) **if** v = oReps.top **then** oReps.pop **repeat** w := oNodes.pop component[w] := v**until** w = v

// close // component

Inv. 2: open components S_1, \ldots, S_k form a path in G_c^s OK. (S_k may be removed)

backtrack(u, v) **if** v = oReps.top **then** oReps.pop **repeat** w := oNodes.pop component[w] := v**until** w = v

// close // component

Inv. 3: representatives partition the open components w.r.t. their dfsNum. OK. (S_k may be removed)

Example

4-28

unmarked marked finished

representative node

nontraversed edge

→ traversed edge

Summary: Computing SCCs

- Simple instantiation of the DFS template
- Nontrivial correctness proof
- □ Running time O(m+n): (at most *n* push/pop operations, resp.)
- ☐ A single iteration
- Implementation details:
- Mehlhorn, Näher, Sanders
- Engineering DFS-Based Graph Algorithms
- arxiv.org/abs/1703.10023

Sanders: Algorithms II - November 2, 2020 – Supplement

4-34

2-Connected Components (Undirected)

Components remain connected when removing a single node.

(Partitioning of the edges)

Possible in O(m+n) time with an algorithm similar to that for SCCs.

Sanders: Algorithms II - November 2, 2020 – Supplement

4-35

More DFS-based Linear Time Algorithms

- 3-connected components
- Planarity testing
- Embedding of planar graphs