Algorithmen / Algorithms II

Peter Sanders

Exercise:

Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:
http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

5 Maximum Flows and Matchings

[mit Kurt Mehlhorn, Rob van Stee]
Books:
[Mehlhorn / Näher, The LEDA Platform of Combinatorial and
Geometric Computing, Cambridge University Press, 1999]
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/
LEDAbook/Graph_alg.ps
[Ahuja, Magnanti, Orlin, Network Flows, Prentice Hall, 1993]

Definitions: Network

\square Network = directed weighted graph with
source node s and sink node t
$\square s$ has no incoming edges, t has no outgoing edges
\square Weight c_{e} of an edge $e=$ capacity of e (nonnegative!)

Definitions: Flows

\square Flow $=$ function f_{e} on the edges, $0 \leq f_{e} \leq c_{e} \forall e$
$\forall v \in V \backslash\{s, t\}$: total incoming flow = total outgoing flow
\square Value of a flow val $(f)=$ total outgoing flow from $s=$ total flow going into t
\square Goal: find a flow with maximum value

Definitions: (Minimum) $s-t$ Cuts

An s - t cut is partition of V into S and T with $s \in S$ and $t \in T$.
The capacity of this cut is:

Duality Between Flows and Cuts

Theorem:[Elias/Feinstein/Shannon, Ford/Fulkerson 1956]

Value of an $s-t$ max-flow $=$ minimum capacity of an $s-t$ cut.
10

Proof: later

Applications

\square Oil pipes
\square Traffic flows on highways
\square Image Processing http://vision.csd.uwo.ca/maxflow-data

- segmentation
- stereo processing
- multiview reconstruction
- surface fitting
\square Disk/machine/tanker scheduling
\square Matrix rounding
\square ...

Current Research Challenge: AI versus Optimal Algorithms

Many image processing applications are currently taken over by deep convolutional neural networks.

+ Often better results
+ No ad-hoc definitions of s, t, c
- "Optimality" is thrown over board
- Lots of training examples needed

Is there a middle way?
Learn s, t, c then optimize?

Applications in our Group

\square multicasting using network coding
\square balanced k partitioningdisk scheduling

Option 1: Linear Programming

Flow variables x_{e} for each edge eFlow on each edge is at most its capacityIncoming flow at each vertex = outgoing flow from this vertex\square Maximize outgoing flow from starting vertex
We can do better!

Algorithms 1956-now

Year	Author	Running time	
1956	Ford-Fulkerson	$O(m n U)$	
1969	Edmonds-Karp	$O\left(m^{2} n\right)$	
1970	Dinic	$O\left(m n^{2}\right)$	
1973	Dinic-Gabow	$O(m n \log U)$	$n=$ number of nodes
1974	Karzanov	$O\left(n^{3}\right)$	$m=$ number of arcs
1977	Cherkassky	$O\left(n^{2} \sqrt{m}\right)$	$U=$ largest capacity
1980	Galil-Naamad	$O\left(m n \log ^{2} n\right)$	
1983	Sleator-Tarjan	$O(m n \log n)$	

Year	Author	Running time
1986	Goldberg-Tarjan	$O\left(m n \log \left(n^{2} / m\right)\right)$
1987	Ahuja-Orlin	$O\left(m n+n^{2} \log U\right)$
1987	Ahuja-Orlin-Tarjan	$O(m n \log (2+n \sqrt{\log U} / m))$
1990	Cheriyan-Hagerup-Mehlhorn	$O\left(n^{3} / \log n\right)$
1990	Alon	$O\left(m n+n^{8 / 3} \log n\right)$
1992	King-Rao-Tarjan	$O\left(m n+n^{2+\varepsilon}\right)$
1993	Philipps-Westbrook	$O\left(m n \log n / \log \frac{m}{n}+n^{2} \log ^{2+\varepsilon} n\right)$
1994	King-Rao-Tarjan	$O\left(m n \log n / \log \frac{m}{n \log n}\right)$ if $m \geq 2 n \log n$
1997	Goldberg-Rao	$O\left(\min \left\{m^{1 / 2}, n^{2 / 3}\right\} m \log \left(n^{2} / m\right) \log U\right)$
2014	Lee-Sidford	$O\left(m \sqrt{n} \log ^{2} U\right)$

Augmenting Paths (Rough Idea)

Find a path from s to t such that each edge has some spare capacity
On this path, saturate the edge with the smallest spare capacity
Adjust capacities for all edges (create residual graph) and repeat

A typical greedy algorithm

Sanders: Algorithms II - December 1,2020

Example

Sanders: Algorithms II - December 1,2020

Example

Sanders: Algorithms II - December 1,2020

Example

Sanders: Algorithms II - December I,2020

Example

Sanders: Algorithms II - December I,2020

Example

are we done?

Sanders: Algorithms II - December 1,2020

Example

Residual Graph

Given, network $G=(V, E, c)$, flow f
Residual graph $G_{f}=\left(V, E_{f}, c^{f}\right)$. For each $e \in E$ we have

$$
\begin{cases}e \in E_{f} \text { with } c_{e}^{f}=c_{e}-f(e) & \text { if } f(e)<c(e) \\ e^{\text {rev }} \in E_{f} \text { with } c_{e^{\text {rev }}}^{f}=f(e) & \text { if } f(e)>0\end{cases}
$$

Augmenting Paths

Find a path p from s to t such that each edge e has nonzero residual capacity c_{e}^{f}

$$
\Delta f:=\min _{e \in p} c_{e}^{f}
$$

foreach $(u, v) \in p$ do

$$
\begin{aligned}
& \text { if }(u, v) \in E \text { then } f_{(u, v)}+=\Delta f \\
& \text { else } f_{(v, u)}-=\Delta f
\end{aligned}
$$

Ford Fulkerson Algorithm

Function $\operatorname{FFMaxFlow}(G=(V, E), s, t, \mathrm{c}: E \rightarrow \mathbb{N}): E \rightarrow \mathbb{N}$
$f:=0$
while \exists path $p=(s, \ldots, t)$ in G_{f} do
augment f along p
return f
time $\mathrm{O}(m \cdot \operatorname{val}(f))$

Ford Fulkerson - Correctness

"Clearly" FF computes a feasible flow f. (Invariant)
Todo: flow value is maximal
At termination: no augmenting paths in G_{f} left.
Consider cut $(S, T:=V \backslash S$) with
$S:=\left\{v \in V: v\right.$ reachable from s in $\left.G_{f}\right\}$

A Basic Observations

Lemma 1: For any cut (S, T):

$$
\operatorname{val}(f)=\overbrace{\sum_{e \in E \cap(S \times T)} f_{e}}^{S \rightarrow T \text { edges }} \overbrace{\sum_{e \in E \cap(T \times S)} f_{e}}^{T \rightarrow S \text { edges }} .
$$

Ford Fulkerson - Correctness

Todo: val (f) is maximal when no augmenting paths in G_{f} left.

Consider cut $(S, T:=V \backslash S)$ with
$S:=\left\{v \in V: v\right.$ reachable from s in $\left.G_{f}\right\}$.
Observation: $\forall(u, v) \in E \cap(T \times S): f(u, v)=0$
otherwise $c^{f}(v, u)>0$ contradicting the definition of S.

$$
\begin{array}{rlr}
\operatorname{val}(f) & =\sum_{e \in E \cap(S \times T)} f_{e}-\sum_{e \in E \cap(T \times S)} f_{e} & \text { Lemma } 1 \\
& =\sum_{e \in E \cap(S \times T)} f_{e} & \text { Observation above } \\
& =\sum_{e \in E \cap(S \times T)} c_{(u, v)}=(S, T) \text { cut capacity } &
\end{array}
$$

see next slide

Max-Flow-Min-Cut theorem

Theorem: Max-flow = min-cut
Proof:
obvious: any-flow \leq max-flow \leq min-cut \leq any-cut
previous slide:
(S, T) flow $=(S, T)$ cut capacity
\Rightarrow
(S, T) flow $=$ max-flow $=$ min-cut

A Bad Example for Ford Fulkerson

A Bad Example for Ford Fulkerson

A Bad Example for Ford Fulkerson

An Even Worse Example for Ford Fulkerson
[U. Zwick, TCS 148, p. 165-170, 1995]
Let $r=\frac{\sqrt{5}-1}{2}$.
Consider the graph

And the augmenting paths

$$
\begin{aligned}
p_{0} & =\langle s, c, b, t\rangle \\
p_{1} & =\langle s, a, b, c, d, t\rangle \\
p_{2} & =\langle s, c, b, a, t\rangle \\
p_{3} & =\langle s, d, c, b, t\rangle
\end{aligned}
$$

The sequence of augmenting paths $p_{0}\left(p_{1}, p_{2}, p_{1}, p_{3}\right)^{*}$ is an infinite
sequence of positive flow augmentations.
The flow value does not converge to the maximum value 9 .

Blocking Flows

f_{b} is a blocking flow in H if
\forall paths $p=\langle s, \ldots, t\rangle: \exists e \in p: f_{b}(e)=c(e)$

Dinitz Algorithm

Function DinitzMaxFlow $(G=(V, E), s, t, c: E \rightarrow \mathbb{N}): E \rightarrow \mathbb{N}$
$f:=0$
while \exists path $p=(s, \ldots, t)$ in G_{f} do
$d=G_{f}$.reverseBFS $(t): V \rightarrow \mathbb{N}$
$L_{f}=\left(V,\left\{(u, v) \in E_{f}: d(v)=d(u)-1\right\}\right) / /$ layer graph
find a blocking flow f_{b} in L_{f}
augment $f+=f_{b}$
return f

Sanders: Algorithms II - December 1,2020

Dinitz - Correctness

analogous to Ford-Fulkerson

$$
\begin{aligned}
& \underset{5}{\text { (s) }} \frac{4}{2} \underset{4}{(b)}-\frac{2}{2}-\underset{3}{(\mathrm{C})} \xrightarrow[2]{10} \underset{2}{(a)} \underset{2}{4} \underset{1}{\text { (d) }} \xrightarrow[2]{4} \underset{0}{\text { t }} \\
& \text { unused } \\
& \overrightarrow{\text { used }} \text { saturäted }
\end{aligned}
$$

Computing Blocking Flows

Idea: Repeat search for augmented paths via DFS

Function blockingFlow $\left(L_{f}=(V, E)\right): E \rightarrow \mathbb{N}$

$$
p=\langle s\rangle: \text { Path; } \quad f_{b}=0: \text { Flow }
$$

loop
// Round
$v:=p$.last()
if $v=t$ then
// breakthrough
$\delta:=\min \left\{c(e)-f_{b}(e): e \in p\right\}$
foreach $e \in p$ do
$f_{b}(e)+=\delta$
if $f_{b}(e)=c(e)$ then remove e from E
$p:=\langle s\rangle$
else if $\exists e=(v, w) \in E$ then $p \cdot \operatorname{pushBack}(w) \quad / /$ extend
else if $v=s$ then return f_{b}
// done
else delete the last edge from p in p and E
// retreat

Example

Example

Example

Blocking Flows Analysis 1

running time $\#_{\text {extends }}+\#_{\text {retreats }}+n \cdot \#_{\text {breakthroughs }}$$\#_{\text {breakthroughs }} \leq m$$-\geq 1$ edge is saturated
$\square \#_{\text {retreats }} \leq m$

- one edge is removed
$\square \#_{\text {extends }} \leq \#_{\text {retreats }}+n \cdot \#_{\text {breakthroughs }}$
- a retreat cancels 1 extend, a breakthrough cancels $\leq n$ extends time is $O(m+n m)=O(n m)$

Blocking Flows Analysis 2

Unit capacities:

breakthroughs saturates all edges on p, i.e., amortized constant cost per edge.
time $O(m+n)$

Blocking Flows Analysis 3

Dynamic trees: breakthrough (!), retreat, extend in time $\mathrm{O}(\log n)$
time $O((m+n) \log n)$
"Theory alert": In practice, this seems to be slower (few breakthroughs, many retreat, extend ops.)

Dinitz Analysis 1

Lemma 1. $d(s)$ increases by at least one in each round.
Proof. not here

Dinitz Analysis 2

$\square \leq n$ rounds
\square time $\mathrm{O}(m n)$ each
time $\mathrm{O}\left(m n^{2}\right)$ (strongly polynomial)
time $\mathrm{O}(m n \log n)$ with dynamic trees

Dinitz Analysis 3 - Unit Capacities

Lemma 2. At most $2 \sqrt{m} B F$ computations:
Proof. Consider iteration $k=\sqrt{m}$.
Cut in layergraph induces cut in residual graph of capacity at most \sqrt{m}.

At most \sqrt{m} additional phases.

Total time: $\mathrm{O}((m+n) \sqrt{m})$
more detailed analysis: $\mathrm{O}\left(m \min \left\{m^{1 / 2}, n^{2 / 3}\right\}\right)$

Dinitz Analysis 4 - Unit Networks

Unit capacity $+\forall v \in V: \min \{$ indegree (v), outdegree $(v)\}=1$: time: $\mathrm{O}((m+n) \sqrt{n})$

Matching

$M \subseteq E$ is a matching in the undirected graph $G=(V, E)$ iff (V, M) has maximum degree ≤ 1.
M is maximal if $\nexists e \in E \backslash M: M \cup\{e\}$ is a matching.
M has maximum cardinality if \nexists matching $M^{\prime}:\left|M^{\prime}\right|>|M|$

Maximum Cardinality Bipartite Matching

in $(L \cup R, E)$. Model as a unit network maximum flow problem

$$
(\{s\} \cup L \cup R \cup\{t\},\{(s, u): u \in L\} \cup E \cup\{(v, t): v \in R\})
$$

Dinitz algorithm yields $\mathrm{O}((n+m) \sqrt{n})$ algorithm

Similar Performance for Weighted Graphs?

time: $\mathrm{O}\left(m \min \left\{m^{1 / 2}, n^{2 / 3}\right\} \log C\right)$ [Goldberg Rao 97]

Problem: Fat edges between layers ruin the argument

Idea: scale a parameter Δ from small to large contract SCCs of fat edges (capacity $>\Delta$)

Experiments [Hagerup, Sanders Tr"aff 98]:

Sometimes best algorithm usually slower than preflow push

Disadvantage of augmenting paths algorithms

Preflow-Push Algorithms

Preflow f : a flow where the flow conservation constraint is relaxed to

$$
\operatorname{excess}(v):=\overbrace{\sum_{(u, v) \in E} f_{(u, v)}}^{\text {inflow }}-\overbrace{\sum_{(v, w) \in E} f_{(v, w)}}^{\text {outflow }} \geq 0
$$

$v \in V \backslash\{s, t\}$ is active iff excess $(v)>0$
Procedure push $(e=(v, w), \boldsymbol{\delta})$
$\operatorname{assert} \delta>0 \wedge \quad \operatorname{excess}(v) \geq \delta$
assert residual capacity of $e \geq \delta$
$\operatorname{excess}(v)-=\delta$
$\operatorname{excess}(w)+=\delta$
if e is reverse edge then $f($ reverse $(e))-=\delta$
else $f(e)+=\delta$

Level Function

Idea: make progress by pushing towards t
Maintain
an approximation $d(v)$ of the BFS distance from v to t in G_{f}.
invariant $d(t)=0$
invariant $d(s)=n$
invariant $\forall(v, w) \in E_{f}: d(v) \leq d(w)+1 \quad / /$ no steep edges

Edge directions of $e=(v, w)$
steep: $d(w)<d(v)-1$
downward: $d(w)<d(v)$
horizontal: $d(w)=d(v)$
upward: $d(w)>d(v)$

Procedure genericPreflowPush $(\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{f})$
forall $e=(s, v) \in E$ do push $(e, c(e))$
// saturate
$d(s):=n$
$d(v):=0$ for all other nodes
while $\exists v \in V \backslash\{s, t\}: \operatorname{excess}(v)>0$ do // active node if $\exists e=(v, w) \in E_{f}: d(w)<d(v)$ then // eligible edge
choose some $\delta \leq \min \left\{\operatorname{excess}(v), c_{e}^{f}\right\}$ push $(e, \boldsymbol{\delta})$
// no new steep edges
else $d(v)++\quad / /$ relabel. No new steep edges
Obvious choice for $\delta: \delta=\min \left\{\operatorname{excess}(v), c_{e}^{f}\right\}$
Saturating push: $\delta=c_{e}^{f}$
nonsaturating push: $\delta<c_{e}^{f}$
To be filled in: How to select active nodes and eligible edges?

Sanders: Algorithms II - December 1,2020

Example

Sanders: Algorithms II - December 1, 2020
Example

Sanders: Algorithms II - December 1, 2020
Example

Sanders: Algorithms II - December 1,2020
Example

Sanders: Algorithms II - December 1, 2020

Example

Sanders: Algorithms II - December 1,2020
Example

Sanders: Algorithms II - December 1, 2020
Example

Sanders: Algorithms II - December 1, 2020

Example

Sanders: Algorithms II - December 1, 2020
Example

Sanders: Algorithms II - December 1, 2020
Example

Example

12 pushes in total

Partial Correctness

Lemma 3. When genericPreflowPush terminates
f is a maximal flow.
Proof.
f is a flow since $\forall v \in V \backslash\{s, t\}: \operatorname{excess}(v)=0$.

To show that f is maximal, it suffices to show that \nexists path $p=\langle s, \ldots, t\rangle \in G_{f}$ (Max-Flow Min-Cut Theorem): Since $d(s)=n, d(t)=0, p$ would have to contain steep edges.
That would be a contradiction.

Lemma 4. For any cut (S, T),

$$
\sum_{u \in S} \operatorname{excess}(u)=\sum_{e \in E \cap(T \times S)} f(e)-\sum_{e \in E \cap(S \times T)} f(e),
$$

Proof:

$$
\sum_{u \in S} \operatorname{excess}(u)=\sum_{u \in S}\left(\sum_{(v, u) \in E} f((v, u))-\sum_{(u, v) \in E} f((u, v))\right)
$$

Contributions of edge e to sum:
S to $T:-f(e)$
T to $S: f(e)$
within $S: f(e)-f(e)=0$
within $T: 0$

Lemma 5.

\forall active nodes $v: \operatorname{excess}(v)>0 \Rightarrow \exists$ ath $\langle v, \ldots, s\rangle \in G_{f}$ Intuition: what got there can always go back.

Proof. $S:=\left\{u \in V: \exists\right.$ path $\left.\langle v, \ldots u\rangle \in G_{f}\right\}, T:=V \backslash S$. Then

$$
\sum_{u \in S} \operatorname{excess}(u)=\sum_{e \in E \cap(T \times S)} f(e)-\sum_{e \in E \cap(S \times T)} f(e),
$$

$\forall(u, w) \in E_{f}: u \in S \Rightarrow w \in S$ by Def. of G_{f}, S
$\Rightarrow \forall e=(u, w) \in E \cap(T \times S): f(e)=0 \quad$ Otherwise $(w, u) \in E_{f}$
Hence, $\sum_{u \in S} \operatorname{excess}(u) \leq 0$
Only the negative excess of s can outweigh excess $(v)>0$. Hence $s \in S$.

Lemma 6.
$\forall v \in V: d(v)<2 n$
Proof.
Suppose v is lifted to $d(v)=2 n$.
By the Lemma 2, there is a (simple) path p to s in G_{f}.
p has at most $n-1$ nodes
$d(s)=n$.
Hence $d(v)<2 n$. Contradiction (no steep edges).

Lemma 7. \# Relabel operations $\leq 2 n^{2}$
Proof. $d(v) \leq 2 n$, i.e., v is relabeled at most $2 n$ times. Hence, at most $|V| \cdot 2 n=2 n^{2}$ relabel operations.

Lemma 8. \# saturating pushes $\leq n m$

Proof.

We show that there are at most n sat. pushes over any edge $e=(v, w)$.
A saturating push (e, δ) removes e from E_{f}. Only a push on (w, v) can reinsert e into E_{f}. For this to happen, w must be lifted at least two levels. Hence, at most $2 n / 2=n$ saturating pushes over (v, w)

Lemma 9. \# nonsaturating pushes $=\mathrm{O}\left(n^{2} m\right)$
if $\delta=\min \left\{\operatorname{excess}(v), c_{e}^{f}\right\}$
for arbitrary node and edge selection rules.
(arbitrary-preflow-push)
Proof. $\Phi:=\sum_{\{v: v \text { is active }\}} d(v)$.
(Potential)
$\Phi=0$ initially and at the end (no active nodes left!)

Operation	$\Delta(\Phi)$	How many times?	Total effect
relabel	1	$\leq 2 n^{2}$	$\leq 2 n^{2}$
saturating push	$\leq 2 n$	$\leq n m$	$\leq 2 n^{2} m$
nonsaturating push	≤-1		

$\Phi \geq 0$ always.

Searching for Eligible Edges

Every node v maintains a currentEdge pointer to its sequence of outgoing edges in G_{f}.
invariant no edge $e=(v, w)$ to the left of currentEdge is eligible
Reset currentEdge at a relabel $\quad(\leq 2 n \times)$
Invariant cannot be violated by a push over a reverse edge $e^{\prime}=(w, v)$
since this only happens when e^{\prime} is downward,
i.e., e is upward and hence not eligible.

Lemma 10.
Total cost for searching $\leq \sum_{v \in V} 2 n \cdot \operatorname{degree}(v)=4 n m=\mathrm{O}(n m)$

Theorem 11. Arbitrary Preflow Push finds a maximum flow in time $\mathrm{O}\left(n^{2} m\right)$.

Proof.

Lemma 3: partial correctness
Initialization in time $\mathrm{O}(n+m)$.
Maintain set (e.g., stack, FIFO) of active nodes.
Use reverse edge pointers to implement push.
Lemma 7: $2 n^{2}$ relabel operations
Lemma 8: $n m$ saturating pushes
Lemma 9: $\mathrm{O}\left(n^{2} m\right)$ nonsaturating pushes
Lemma 10: $\mathrm{O}(\mathrm{nm})$ search time for eligible edges

Total time $\mathrm{O}\left(n^{2} m\right)$

FIFO Preflow push

Examine a node: Saturating pushes until nonsaturating push or relabel.
Examine all nodes in phases (or use FIFO queue).
Theorem: time $\mathrm{O}\left(n^{3}\right)$
Proof: not here

Highest Level Preflow Push

Always select active nodes that maximize $d(v)$
Use bucket priority queue (insert, increaseKey, deleteMax) not monotone (!) but relabels "pay" for scan operations

Lemma 12. At most $n^{2} \sqrt{m}$ nonsaturating pushes.
Proof. later
Theorem 13. Highest Level Preflow Push finds a maximum flow in time $\mathrm{O}\left(n^{2} \sqrt{m}\right)$.

Sanders: Algorithms II - December 1,2020
Example

Sanders: Algorithms II - December 1,2020
Example

Sanders: Algorithms II - December 1, 2020
Example

Sanders: Algorithms II - December 1,2020
Example

Sanders: Algorithms II - December 1, 2020
Example

Example

9 pushes in total, 3 less than before

Proof of Lemma 12

$K:=\sqrt{m}$
tuning parameter
$d^{\prime}(v):=\frac{|\{w: d(w) \leq d(v)\}|}{K} \quad$ scaled number of dominated nodes

$$
\Phi:=\sum_{\{v: v \text { is active }\}} d^{\prime}(v) .
$$

(Potential)
$d^{*}:=\max \{d(v): v$ is active $\}$
(highest level)
phase:= all pushes between two consecutive changes of d^{*}
expensive phase: more than K pushes
cheap phase: otherwise

Claims:

1. $\leq 4 n^{2} K$ nonsaturating pushes in all cheap phases together
2. $\Phi \geq 0$ always, $\Phi \leq n^{2} / K$ initially (obvious)
3. a relabel or saturating push increases Φ by at most n / K.
4. a nonsaturating push does not increase Φ.
5. an expensive phase with $Q \geq K$ nonsaturating pushes decreases Φ by at least Q.

Lemma $7+$ Lemma $8+2 .+3 .+4 .: \Rightarrow$
total possible decrease $\leq\left(2 n^{2}+n m\right) \frac{n}{K}+\frac{n^{2}}{K}$

Operation	Amount
Relabel	$2 n^{2}$
Sat.push	$n m$

This $+5 .: \leq \frac{2 n^{3}+n^{2}+m n^{2}}{K}$ nonsaturating pushes in expensive phases
This $+1 .: \leq \frac{2 n^{3}+n^{2}+m n^{2}}{K}+4 n^{2} K=\mathrm{O}\left(n^{2} \sqrt{m}\right)$ nonsaturating
pushes overall for $K=\sqrt{m}$

Claims:

1. $\leq 4 n^{2} K$ nonsaturating pushes in all cheap phases together

We first show that there are at most $4 n^{2}$ phases
(changes of $d^{*}=\max \{d(v): v$ is active $\}$).
$d^{*}=0$ initially, $d^{*} \geq 0$ always.
Only relabel operations increase d^{*}, i.e.,
$\leq 2 n^{2}$ increases by Lemma 7 and hence
$\leq 2 n^{2}$ decreases
$\leq 4 n^{2}$ changes overall
By definition of a cheap phase, it has at most K pushes.

Claims:

1. $\leq 4 n^{2} K$ nonsaturating pushes in all cheap phases together
2. $\Phi \geq 0$ always, $\Phi \leq n^{2} / K$ initially (obvious)
3. a relabel or saturating push increases Φ by at most n / K.

Let v denote the relabeled or activated node.
$d^{\prime}(v):=\frac{|\{w: d(w) \leq d(v)\}|}{K} \leq \frac{n}{K}$
A relabel of v can increase only the d^{\prime}-value of v.
A saturating push on (u, w) may activate only w.

Claims:

1. $\leq 4 n^{2} K$ nonsaturating pushes in all cheap phases together
2. $\Phi \geq 0$ always, $\Phi \leq n^{2} / K$ initially (obvious)
3. a relabel or saturating push increases Φ by at most n / K.
4. a nonsaturating push does not increase Φ.
v is deactivated (excess (v) is now 0)
w may be activated
but $d^{\prime}(w) \leq d^{\prime}(v)$ (we do not push flow away from the sink)

Claims:

1. $\leq 4 n^{2} K$ nonsaturating pushes in all cheap phases together
2. $\Phi \geq 0$ always, $\Phi \leq n^{2} / K$ initially (obvious)
3. a relabel or saturating push increases Φ by at most n / K.
4. a nonsaturating push does not increase Φ.
5. an expensive phase with $Q \geq K$ nonsaturating pushes decreases Φ by at least Q.

During a phase d^{*} remains constant
Each nonsat. push decreases the number of active nodes at level d^{*} Hence, $\left|\left\{w: d(w)=d^{*}\right\}\right| \geq Q \geq K$ during an expensive phase
Each nonsat. push across (v, w) decreases Φ by
$\geq d^{\prime}(v)-d^{\prime}(w) \geq\left|\left\{w: d(w)=d^{*}\right\}\right| / K \geq K / K=1$

Claims:

1. $\leq 4 n^{2} K$ nonsaturating pushes in all cheap phases together
2. $\Phi \geq 0$ always, $\Phi \leq n^{2} / K$ initially (obvious)
3. a relabel or saturating push increases Φ by at most n / K.
4. a nonsaturating push does not increase Φ.
5. an expensive phase with $Q \geq K$ nonsaturating pushes decreases Φ by at least Q.

Lemma $7+$ Lemma $8+2 .+3 .+4 .: \Rightarrow$
total possible decrease $\leq\left(2 n^{2}+n m\right) \frac{n}{K}+\frac{n^{2}}{K}$

Operation	Amount
Relabel	$2 n^{2}$
Sat.push	$n m$

This $+5 .: \leq \frac{2 n^{3}+n^{2}+m n^{2}}{K}$ nonsaturating pushes in expensive phases
This $+1 .: \leq \frac{2 n^{3}+n^{2}+m n^{2}}{K}+4 n^{2} K=\mathrm{O}\left(n^{2} \sqrt{m}\right)$ nonsaturating
pushes overall for $K=\sqrt{m}$

MFIFO: Modified FIFO Selection Rule

pushFront after relabel.

pushBack when activated by a push N

Heuristic Improvements

Naive algorithm has needs $\Omega\left(n^{2}\right)$ even on a path graph. We can do better.
aggressive local relabeling:
$d(v):=1+\min \left\{d(w):(v, w) \in G_{f}\right\}$ (like a sequence of relabels)

Heuristic Improvements

Naive algorithm has best case $\Omega\left(n^{2}\right)$. Why? We can do better.
aggressive local relabeling: $d(v):=1+\min \left\{d(w):(v, w) \in G_{f}\right\}$ (like a sequence of relabels)
global relabeling: (initially and every $\mathrm{O}(m)$ edge inspections):
$d(v):=G_{f}$.reverseBFS (t) for nodes that can reach t in G_{f}.

Special treatment of nodes with $d(v) \geq n$. (Returning flow is easy)

Gap Heuristics. No node can connect to t across an empty level:
if $\{v: d(v)=i\}=\emptyset$ then foreach v with $d(v)>i$ do $d(v):=n$

Experimental results

We use four classes of graphs:
\square Random: n nodes, $2 n+m$ edges; all edges (s, v) and (v, t) exist
\square Cherkassky and Goldberg (1997) (two graph classes)
\square Ahuja, Magnanti, Orlin (1993)

Timings: Random Graphs

Rule	BASIC	Ln	LRH	GRH	GAP	LEDA
FF	5.84	6.02	4.75	0.07	0.07	-
	33.32	33.88	26.63	0.16	0.17	-
HL	6.12	6.3	4.97	0.41	0.11	0.07
	27.03	27.61	22.22	1.14	0.22	0.16
MF	5.36	5.51	4.57	$\mathbf{0 . 0 6}$	0.07	-
	26.35	27.16	23.65	0.19	0.16	-

FF $=$ FIFO node selection, $\mathrm{HL}=$ hightest level, MF=modified FIFO
$\operatorname{Ln}=d(v) \geq n$ is special,
$\mathrm{LRH}=$ local relabeling heuristic, $\mathrm{GRH}=$ global relabeling heuristics

Timings: CG1

Rule	BASIC	Ln	LRH	GRH	GAP	LEDA
FF	3.46	3.62	2.87	0.9	1.01	-
	15.44	16.08	12.63	3.64	4.07	-
HL	20.43	20.61	20.51	1.19	1.33	$\mathbf{0 . 8}$
	192.8	191.5	193.7	4.87	5.34	3.28
MF	3.01	3.16	2.3	0.89	1.01	-
	12.22	12.91	9.52	3.65	4.12	-

FF $=$ FIFO node selection, $\mathrm{HL}=$ hightest level, MF=modified FIFO
$\operatorname{Ln}=d(v) \geq n$ is special,
$\mathrm{LRH}=$ local relabeling heuristic, $\mathrm{GRH}=$ global relabeling heuristics

Timings: CG2

Rule	BASIC	Ln	LRH	GRH	GAP	LEDA
FF	50.06	47.12	37.58	1.76	1.96	-
	239	222.4	177.1	7.18	8	-
HL	42.95	41.5	30.1	0.17	0.14	$\mathbf{0 . 0 8}$
	173.9	167.9	120.5	0.36	0.28	0.18
MF	45.34	42.73	37.6	0.94	1.07	-
	198.2	186.8	165.7	4.11	4.55	-

FF $=$ FIFO node selection, $\mathrm{HL}=$ hightest level, MF=modified FIFO
$\operatorname{Ln}=d(v) \geq n$ is special,
$\mathrm{LRH}=$ local relabeling heuristic, $\mathrm{GRH}=$ global relabeling heuristics

Timings: AMO

Rule	BASIC	Ln	LRH	GRH	GAP	LEDA
FF	12.61	13.25	1.17	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 6}$	-
	55.74	58.31	5.01	0.1399	0.1301	-
HL	15.14	15.8	1.49	0.13	0.13	0.07
	62.15	65.3	6.99	0.26	0.26	0.14
MF	10.97	11.65	0.04999	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 6}$	-
	46.74	49.48	0.1099	0.1301	0.1399	-

FF $=$ FIFO node selection, $\mathrm{HL}=$ hightest level, MF=modified FIFO
$\mathrm{Ln}=d(v) \geq n$ is special,
$\mathrm{LRH}=$ local relabeling heuristic, $\mathrm{GRH}=$ global relabeling heuristics

Sanders: Algorithms II - December 1, 2020 - Supplement
Asymptotics, $n \in\{5000,10000,20000\}$

Gen	Rule	GRH				GAP				
rand	FF	0.16	0.41	1.16	0.15	0.42	1.05	-	-	-
	HL	1.47	4.67	18.81	0.23	0.57	1.38	0.16	0.45	1.09
	MF	0.17	0.36	1.06	0.14	0.37	$\mathbf{0 . 9 2}$	-	-	-
CG1	FF	3.6	16.06	69.3	3.62	16.97	71.29	-	-	-
	HL	4.27	20.4	77.5	4.6	20.54	80.99	2.64	12.13	$\mathbf{4 8 . 5 2}$
	MF	3.55	15.97	68.45	3.66	16.5	70.23	-	-	-
CG2	FF	6.8	29.12	125.3	7.04	29.5	127.6	-	-	-
	HL	0.33	0.65	1.36	0.26	0.52	1.05	0.15	0.3	$\mathbf{0 . 6 3}$
	MF	3.86	15.96	68.42	3.9	16.14	70.07	-	-	-
AMO	FF	0.12	0.22	0.48	0.11	0.24	0.49	-	-	-
	HL	0.25	0.48	0.99	0.24	0.48	0.99	0.12	0.24	0.52
	MF	0.11	0.24	0.5	0.11	0.24	0.48	-	-	-

Recent AE Results on Max-Flow

Faster and More Dynamic Maximum Flow by Incremental Breadth-First
Search, Goldberg, Hed, Kaplan, Kohli, Tarjan, Werneck, ESA 2015
\square Much faster on many (relatively easy) real world instances (image processing, graph partitioning,...) than preflow-push
\square Worst case performance guarantee $\mathrm{O}\left(m n^{2}\right)$ (as in Dinitz algorithm)
\square Adaptible to dynamic scenarios
\square Uses pseudoflows that allow excesses and deficits.
Open problem: close gaps between theory and practice!

Summary Flows and Matchings

\square Natural generalisation of shortest paths:
one path \rightsquigarrow many paths
\square Many applications
\square Most "difficult/general" graph problem solvable with combinatorial algorithms in polynomial time
\square Example for non-trivial algorithm analysis
\square potential method (\neq node potentials)
\square Algorithm Engineering: practical case \neq worst case. heuristics/details/input properties important
\square Data Structures: bucket queues, graph representation, (dynamic trees)

