Algorithmen / Algorithms II

Peter Sanders

Exercise:
Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:
http://algo2.iti.kit.edu/AlgorithmenII_WS20.php
5 Maximum Flows and Matchings

[mit Kurt Mehlhorn, Rob van Stee]

Books:

http://www.mpi-inf.mpg.de/~mehlhorn/ftp/LEDAbook/Graph_alg.ps

[Ahuja, Magnanti, Orlin, Network Flows, Prentice Hall, 1993]
Definitions: Network

- Network = directed weighted graph with source node s and sink node t
- s has no incoming edges, t has no outgoing edges
- Weight c_e of an edge $e = \text{capacity of } e$ (nonnegative!)
Definitions: Flows

- Flow = function f_e on the edges, $0 \leq f_e \leq c_e \forall e$
- $\forall v \in V \setminus \{s, t\}$: total incoming flow = total outgoing flow
- Value of a flow $\text{val}(f) = \text{total outgoing flow from } s = \text{total flow going into } t$
- Goal: find a flow with maximum value

![Flow Diagram]

10 10 8 4 12
s ---- 10 10 ---- t

8 4 2 6
4 4 8
4

12

Definitions: (Minimum) s-t Cuts

An s-t cut is partition of V into S and T with $s \in S$ and $t \in T$.

The **capacity** of this cut is:

$$\sum \left\{ c_{(u,v)} : u \in S, v \in T \right\}$$

![Diagram](image-url)
Duality Between Flows and Cuts

Theorem: [Elias/Feinstein/Shannon, Ford/Fulkerson 1956]

Value of an s-t max-flow $=$ minimum capacity of an s-t cut.

Proof: later
Applications

- Oil pipes
- Traffic flows on highways
- **Image Processing** http://vision.csd.uwo.ca/maxflow-data
 - segmentation
 - stereo processing
 - multiview reconstruction
 - surface fitting
- Disk/machine/tanker scheduling
- Matrix rounding
- ...
Current Research Challenge: AI versus Optimal Algorithms

Many image processing applications are currently taken over by deep convolutional neural networks.

+ Often better results
+ No ad-hoc definitions of s, t, c
 - “Optimality” is thrown over board
 - Lots of training examples needed

Is there a middle way?
Learn s, t, c then optimize?
Applications in our Group

- multicasting using network coding
- balanced k partitioning
- disk scheduling
Option 1: Linear Programming

- Flow variables x_e for each edge e
- Flow on each edge is at most its capacity
- Incoming flow at each vertex = outgoing flow from this vertex
- Maximize outgoing flow from starting vertex

We can do better!
Algorithms 1956–now

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1956</td>
<td>Ford-Fulkerson</td>
<td>$O(mnU)$</td>
</tr>
<tr>
<td>1969</td>
<td>Edmonds-Karp</td>
<td>$O(m^2n)$</td>
</tr>
<tr>
<td>1970</td>
<td>Dinic</td>
<td>$O(mn^2)$</td>
</tr>
<tr>
<td>1973</td>
<td>Dinic-Gabow</td>
<td>$O(mn \log U)$</td>
</tr>
<tr>
<td>1974</td>
<td>Karzanov</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>1977</td>
<td>Cherkassky</td>
<td>$O(n^2 \sqrt{m})$</td>
</tr>
<tr>
<td>1980</td>
<td>Galil-Naamad</td>
<td>$O(mn \log^2 n)$</td>
</tr>
<tr>
<td>1983</td>
<td>Sleator-Tarjan</td>
<td>$O(mn \log n)$</td>
</tr>
</tbody>
</table>

$n = \text{number of nodes}$
$m = \text{number of arcs}$
$U = \text{largest capacity}$
<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>Goldberg-Tarjan</td>
<td>$O(mn \log(n^2/m))$</td>
</tr>
<tr>
<td>1987</td>
<td>Ahuja-Orlin</td>
<td>$O(mn + n^2 \log U)$</td>
</tr>
<tr>
<td>1987</td>
<td>Ahuja-Orlin-Tarjan</td>
<td>$O(mn \log(2 + n\sqrt{\log U/m}))$</td>
</tr>
<tr>
<td>1990</td>
<td>Cheriyan-Hagerup-Mehlhorn</td>
<td>$O(n^3/\log n)$</td>
</tr>
<tr>
<td>1990</td>
<td>Alon</td>
<td>$O(mn + n^{8/3} \log n)$</td>
</tr>
<tr>
<td>1992</td>
<td>King-Rao-Tarjan</td>
<td>$O(mn + n^{2+\varepsilon})$</td>
</tr>
<tr>
<td>1993</td>
<td>Philipps-Westbrook</td>
<td>$O(mn \log n/\log \frac{m}{n} + n^2 \log^{2+\varepsilon} n)$</td>
</tr>
<tr>
<td>1994</td>
<td>King-Rao-Tarjan</td>
<td>$O(mn \log n/\log \frac{m}{nlogn})$ if $m \geq 2n \log n$</td>
</tr>
<tr>
<td>1997</td>
<td>Goldberg-Rao</td>
<td>$O(\min{m^{1/2}, n^{2/3}}m \log(n^2/m) \log U)$</td>
</tr>
<tr>
<td>2014</td>
<td>Lee-Sidford</td>
<td>$O(m\sqrt{n} \log^2 U)$</td>
</tr>
</tbody>
</table>
Augmenting Paths (Rough Idea)

Find a path from \(s \) to \(t \) such that each edge has some \textit{spare capacity}.

On this path, \textit{saturate} the edge with the smallest spare capacity.

\textbf{Adjust capacities} for all edges (create \textit{residual graph}) and repeat.

A typical \textit{greedy algorithm}.
Example
Example
Example
Example
Example

are we done?
Example

![Graph](image-url)
Residual Graph

Given, network $G = (V, E, c)$, flow f

Residual graph $G_f = (V, E_f, c^f)$. For each $e \in E$ we have

$$\begin{cases}
 e \in E_f \text{ with } c^f_e = c_e - f(e) & \text{if } f(e) < c(e) \\
 e^{\text{rev}} \in E_f \text{ with } c^{f}_{e^{\text{rev}}} = f(e) & \text{if } f(e) > 0
\end{cases}$$
Augmenting Paths

Find a path p from s to t such that each edge e has nonzero residual capacity c_e^f

$\Delta f := \min_{e \in p} c_e^f$

foreach $(u, v) \in p$ do
 if $(u, v) \in E$ then $f(u, v) + = \Delta f$
 else $f(v, u) - = \Delta f$
Ford Fulkerson Algorithm

Function `FFMaxFlow(G = (V, E), s, t, c : E → \mathbb{N}) : E → \mathbb{N}`

\[f := 0 \]

\[\textbf{while } \exists \text{ path } p = (s, \ldots, t) \text{ in } G_f \textbf{ do} \]

\[\text{augment } f \text{ along } p \]

\[\textbf{return } f \]

\[\text{time } O(m \cdot \text{val}(f)) \]
Ford Fulkerson – Correctness

“Clearly” FF computes a feasible flow f. (Invariant)

Todo: flow value is maximal

At termination: no augmenting paths in G_f left.

Consider cut $(S, T := V \setminus S)$ with

$S := \{v \in V : v \text{ reachable from } s \text{ in } G_f\}$
A Basic Observations

Lemma 1: For any cut \((S, T)\):

\[
\text{val}(f) = \sum_{e \in E \cap (S \times T)} f_e - \sum_{e \in E \cap (T \times S)} f_e.
\]
Ford Fulkerson – Correctness

Todo: $\text{val}(f)$ is maximal when no augmenting paths in G_f left.

Consider cut $(S, T := V \setminus S)$ with

$S := \{ v \in V : v \text{ reachable from } s \text{ in } G_f \}$.

Observation: $\forall (u, v) \in E \cap (T \times S): f(u, v) = 0$

otherwise $c^f(v, u) > 0$ contradicting the definition of S.

$$\text{val}(f) = \sum_{e \in E \cap (S \times T)} f_e - \sum_{e \in E \cap (T \times S)} f_e$$

Lemma 1

$$= \sum_{e \in E \cap (S \times T)} f_e$$

Observation above

$$= \sum_{e \in E \cap (S \times T)} c_{(u,v)} = (S, T) \text{ cut capacity}$$

see next slide
Max-Flow-Min-Cut theorem

Theorem: Max-flow = min-cut

Proof:

obvious: any-flow \leq max-flow \leq min-cut \leq any-cut

previous slide:

(S, T) flow $=$ (S, T) cut capacity

\Rightarrow

(S, T) flow $=$ max-flow $=$ min-cut
A Bad Example for Ford Fulkerson
A Bad Example for Ford Fulkerson

![Graph with nodes and edges labeled with capacities.](image)
A Bad Example for Ford Fulkerson

\[
\begin{array}{ccc}
100 & 1 & 100 \\
100 & & 100 \\
100 & & 100 \\
100 & & 100 \\
\end{array}
\]
An Even Worse Example for Ford Fulkerson

Let \(r = \frac{\sqrt{5} - 1}{2} \).

Consider the graph

And the augmenting paths

\(p_0 = \langle s, c, b, t \rangle \)

\(p_1 = \langle s, a, b, c, d, t \rangle \)

\(p_2 = \langle s, c, b, a, t \rangle \)

\(p_3 = \langle s, d, c, b, t \rangle \)

The sequence of augmenting paths \(p_0(p_1, p_2, p_1, p_3)^* \) is an infinite sequence of positive flow augmentations.

The flow value does not converge to the maximum value 9.
Blocking Flows

f_b is a blocking flow in H if

$$\forall \text{paths } p = \langle s, \ldots, t \rangle : \exists e \in p : f_b(e) = c(e)$$
Dinitz Algorithm

Function DinitzMaxFlow\(G = (V, E), s, t, c : E \rightarrow \mathbb{N} \) : \(E \rightarrow \mathbb{N} \)

\[
f := 0
\]

while \(\exists \) path \(p = (s, \ldots, t) \) in \(G_f \) **do**

\[
d = G_f.\text{reverseBFS}(t) : V \rightarrow \mathbb{N}
\]

\[
L_f = (V, \{(u, v) \in E_f : d(v) = d(u) - 1\}) \text{ // layer graph}
\]

find a **blocking flow** \(f_b \) in \(L_f \)

augment \(f += f_b \)

return \(f \)
Dinitz – Correctness

analogous to Ford-Fulkerson
Example

Graph representation with nodes labeled from s to t, and edges with weights labeled on them. The graph shows the flow of data or resources from the source node s to the terminal node t through nodes a, b, c, and d. The diagram includes unused, used, and saturated flows represented by different colors and styles of edges.
Computing Blocking Flows

Idea: Repeat search for augmented paths via DFS
Function blockingFlow($L_f = (V, E)$) : $E \rightarrow \mathbb{N}$

$p := \langle s \rangle : \text{Path}; \quad f_b := 0 : \text{Flow}$

loop \hfill // Round

$v := p\.last()$

if $v = t$ then \hfill // breakthrough

$\delta := \min \{ c(e) - f_b(e) : e \in p \}$

foreach $e \in p$ do

$f_b(e) += \delta$

if $f_b(e) = c(e)$ then remove e from E

$p := \langle s \rangle$

else if $\exists e = (v, w) \in E$ then $p\.pushBack(w)$ \hfill // extend

else if $v = s$ then return f_b \hfill // done

else delete the last edge from p in p and E \hfill // retreat
Example

A network diagram with nodes labeled a, b, c, d, s, t. The edges between the nodes are labeled with numbers and some are marked with "extend". The diagram has a path from s to t labeled "breakthrough".
Example

extend

extend

extend

breakthrough

extend

breakthrough

extend

extend
Example
Blocking Flows Analysis 1

- running time $\#_{extends} + \#_{retreats} + n \cdot \#_{breakthroughs}$

- $\#_{breakthroughs} \leq m$ -- ≥ 1 edge is saturated

- $\#_{retreats} \leq m$ -- one edge is removed

- $\#_{extends} \leq \#_{retreats} + n \cdot \#_{breakthroughs}$ -- a retreat cancels 1 extend, a breakthrough cancels $\leq n$ extends

time is $O(m + nm) = O(nm)$
Blocking Flows Analysis 2

Unit capacities:

breakthroughs saturates all edges on \(p \), i.e., amortized constant cost per edge.

time \(O(m + n) \)
Blocking Flows Analysis 3

Dynamic trees: breakthrough (!), retreat, extend in time $O(\log n)$

time $O((m + n) \log n)$

“Theory alert”: In practice, this seems to be slower
(few breakthroughs, many retreat, extend ops.)
Dinitz Analysis 1

Lemma 1. \(d(s) \) increases by at least one in each round.

Proof. not here
Dinitz Analysis 2

- \(\leq n \) rounds
- time \(O(mn) \) each

- time \(O(mn^2) \) (strongly polynomial)
- time \(O(mn \log n) \) with dynamic trees
Dinitz Analysis 3 – Unit Capacities

Lemma 2. At most $2\sqrt{m}$ BF computations:

Proof. Consider iteration $k = \sqrt{m}$.
Cut in layergraph induces cut in residual graph of capacity at most \sqrt{m}.
At most \sqrt{m} additional phases.

Total time: $O((m + n)\sqrt{m})$

more detailed analysis: $O\left(m \min \left\{ m^{1/2}, n^{2/3} \right\} \right)$
Dinitz Analysis 4 – Unit Networks

Unit capacity + ∀v ∈ V : \(\min\{\text{indegree}(v), \text{outdegree}(v)\} = 1\):

time: \(O((m + n)\sqrt{n})\)
Matching

$M \subseteq E$ is a matching in the undirected graph $G = (V, E)$ iff (V, M) has maximum degree ≤ 1.

M is maximal if $\not\exists e \in E \setminus M : M \cup \{e\}$ is a matching.

M has maximum cardinality if $\not\exists$ matching $M' : |M'| > |M|$
Maximum Cardinality Bipartite Matching

in \((L \cup R, E)\). Model as a unit network maximum flow problem

\[
(\{s\} \cup L \cup R \cup \{t\}, \{(s,u) : u \in L\} \cup E \cup \{(v,t) : v \in R\})
\]

Dinitz algorithm yields \(O((n + m)\sqrt{n})\) algorithm
Similar Performance for Weighted Graphs?

Problem: Fat edges between layers ruin the argument

\[
time: O\left(m \min \left\{ m^{1/2}, n^{2/3} \right\} \log C \right) \quad [\text{Goldberg Rao 97}]
\]

Idea: scale a parameter \(\Delta \) from small to large
contract SCCs of fat edges (capacity \(> \Delta \))

Experiments [Hagerup, Sanders Tr"aff 98]:
Sometimes best algorithm usually slower than preflow push
Disadvantage of augmenting paths algorithms
Preflow-Push Algorithms

Preflow f: a flow where the flow conservation constraint is relaxed to

$$\text{excess}(v) := \sum_{(u,v) \in E} f_{u,v} - \sum_{(v,w) \in E} f_{v,w} \geq 0.$$

$v \in V \setminus \{s,t\}$ is active iff $\text{excess}(v) > 0$

Procedure push($e = (v, w), \delta$)

- **assert** $\delta > 0 \wedge \text{excess}(v) \geq \delta$
- **assert** residual capacity of $e \geq \delta$
- $\text{excess}(v) - = \delta$
- $\text{excess}(w) + = \delta$
- **if** e is reverse edge **then** $f(\text{reverse}(e)) - = \delta$
- **else** $f(e) + = \delta$
Level Function

Idea: make progress by pushing towards t

Maintain an approximation $d(v)$ of the BFS distance from v to t in G_f.

invariant $d(t) = 0$

invariant $d(s) = n$

invariant $\forall (v, w) \in E_f : d(v) \leq d(w) + 1$ // no steep edges

Edge directions of $e = (v, w)$

steep: $d(w) < d(v) - 1$

downward: $d(w) < d(v)$

horizontal: $d(w) = d(v)$

upward: $d(w) > d(v)$
Procedure genericPreflowPush(G=(V,E), f)

forall \(e = (s, v) \in E \) do push\((e, c(e))\) // saturate

d(s):= n

d(v):= 0 for all other nodes

while \(\exists v \in V \setminus \{s, t\} : \text{excess}(v) > 0 \) do // active node

if \(\exists e = (v, w) \in E_f : d(w) < d(v) \) then // eligible edge

choose some \(\delta \leq \min \{\text{excess}(v), c_e^f\} \)

push\((e, \delta)\) // no new steep edges

else d(v)++ // relabel. No new steep edges

Obvious choice for \(\delta : \delta = \min \{\text{excess}(v), c_e^f\} \)

Saturating push: \(\delta = c_e^f \)

nonsaturating push: \(\delta < c_e^f \)

To be filled in: How to select active nodes and eligible edges?
Example
Example
Example

![Graph Diagram]

- **s** → **d**: cap 6
- **d** → **f**: excess 10
- **f** → **excess**: 10
- **excess** → **t**: excess 12
- **t** → **0**: 8
- **s** → **t**: cap 10
- **s** → **1**: 10
- **1** → **t**: 10
- **1** → **0**: 4
- **0** → **t**: 0

Edges with capacities and excess values are shown. The diagram illustrates a network flow problem.
Example
Example
Example
Example
Example

\[\begin{array}{c}
\text{cap} \\
\text{excess}
\end{array}\]
Example
Example

\[\begin{align*}
&\text{source} & 10 & 10 \\
&d & 10 & 10 \\
&cap & 10 & 10 \\
&f & 10 & 10 \\
&\text{excess} & 6 & 6 \\
&\text{sink} & 0 & 0 \\
&\end{align*}\]
Example

12 pushes in total
Partial Correctness

Lemma 3. When genericPreflowPush terminates \(f \) is a maximal flow.

Proof.
\(f \) is a flow since \(\forall v \in V \setminus \{s, t\} : \text{excess}(v) = 0 \).

To show that \(f \) is maximal, it suffices to show that there is no path \(p = \langle s, \ldots, t \rangle \in G_f \) (Max-Flow Min-Cut Theorem):
Since \(d(s) = n \), \(d(t) = 0 \), \(p \) would have to contain steep edges.
That would be a contradiction. \(\square \)
Lemma 4. For any cut (S, T),

$$\sum_{u \in S} \text{excess}(u) = \sum_{e \in E \cap (T \times S)} f(e) - \sum_{e \in E \cap (S \times T)} f(e),$$

Proof:

$$\sum_{u \in S} \text{excess}(u) = \sum_{u \in S} \left(\sum_{(v, u) \in E} f((v, u)) - \sum_{(u, v) \in E} f((u, v)) \right)$$

Contributions of edge e to sum:

S to T: $-f(e)$

T to S: $f(e)$

within S: $f(e) - f(e) = 0$

within T: 0
Lemma 5.
\(\forall \) active nodes \(v \) : \(\text{excess}(v) > 0 \Rightarrow \exists \) path \(\langle v, \ldots, s \rangle \in G_f \)

Intuition: what got there can always go back.

Proof. \(S := \{ u \in V : \exists \text{ path } \langle v, \ldots u \rangle \in G_f \} \), \(T := V \setminus S \). Then

\[
\sum_{u \in S} \text{excess}(u) = \sum_{e \in E \cap (T \times S)} f(e) - \sum_{e \in E \cap (S \times T)} f(e),
\]

\(\forall (u, w) \in E_f : u \in S \Rightarrow w \in S \) \hspace{1cm} \text{by Def. of } G_f, S
\Rightarrow \forall e = (u, w) \in E \cap (T \times S) : f(e) = 0 \hspace{1cm} \text{Otherwise} (w, u) \in E_f

Hence, \(\sum_{u \in S} \text{excess}(u) \leq 0 \)

Only the negative excess of \(s \) can outweigh \(\text{excess}(v) > 0 \).

Hence \(s \in S \). \(\square \)
Lemma 6.
\(\forall v \in V : d(v) < 2n \)

Proof.
Suppose \(v \) is lifted to \(d(v) = 2n \).
By the Lemma 2, there is a (simple) path \(p \) to \(s \) in \(G_f \).
\(p \) has at most \(n - 1 \) nodes
\(d(s) = n \).
Hence \(d(v) < 2n \). Contradiction (no steep edges). \(\square \)
Lemma 7. # Relabel operations $\leq 2n^2$

Proof. $d(v) \leq 2n$, i.e., v is relabeled at most $2n$ times. Hence, at most $|V| \cdot 2n = 2n^2$ relabel operations. \Box
Lemma 8. \# saturating pushes \(\leq nm \)

Proof.
We show that there are at most \(n \) sat. pushes over any edge \(e = (v, w) \).

A saturating push \((e, \delta) \) removes \(e \) from \(E_f \).

Only a push on \((w, v) \) can reinsert \(e \) into \(E_f \).

For this to happen, \(w \) must be lifted at least two levels.
Hence, at most \(2n/2 = n \) saturating pushes over \((v, w) \).
Lemma 9. \# nonsaturating pushes = \(O(n^2m)\) if \(\delta = \min \{\text{excess}(v), c_e^f\}\) for arbitrary node and edge selection rules. (arbitrary-preflow-push)

Proof. \(\Phi := \sum_{\{v:v \text{ is active}\}} d(v)\). (Potential)

\(\Phi = 0\) initially and at the end (no active nodes left!)

<table>
<thead>
<tr>
<th>Operation</th>
<th>(\Delta(\Phi))</th>
<th>How many times?</th>
<th>Total effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>relabel</td>
<td>1</td>
<td>(\leq 2n^2)</td>
<td>(\leq 2n^2)</td>
</tr>
<tr>
<td>saturating push</td>
<td>(\leq 2n)</td>
<td>(\leq nm)</td>
<td>(\leq 2n^2m)</td>
</tr>
<tr>
<td>nonsaturating push</td>
<td>(\leq -1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\Phi \geq 0\) always.
Searching for Eligible Edges

Every node \(v \) maintains a currentEdge pointer to its sequence of outgoing edges in \(G_f \).

Invariant no edge \(e = (v, w) \) to the left of currentEdge is eligible

Reset currentEdge at a relabel \((\leq 2n \times) \)

Invariant cannot be violated by a push over a reverse edge \(e' = (w, v) \)

since this only happens when \(e' \) is downward,
i.e., \(e \) is upward and hence not eligible.

Lemma 10.

Total cost for searching \(\leq \sum_{v \in V} 2n \cdot \text{degree}(v) = 4nm = O(nm) \)
Theorem 11. *Arbitrary Preflow Push finds a maximum flow in time* $O(n^2m)$.

Proof.

Lemma 3: partial correctness
Initialization in time $O(n + m)$.
Maintain set (e.g., stack, FIFO) of active nodes.
Use reverse edge pointers to implement push.
Lemma 7: $2n^2$ relabel operations
Lemma 8: nm saturating pushes
Lemma 9: $O(n^2m)$ nonsaturating pushes
Lemma 10: $O(nm)$ search time for eligible edges

Total time $O(n^2m)$
FIFO Preflow push

Examine a node: Saturating pushes until nonsaturating push or relabel.

Examine all nodes in phases (or use FIFO queue).

Theorem: time $O(n^3)$

Proof: not here
Highest Level Preflow Push

Always select active nodes that maximize $d(v)$

Use bucket priority queue (insert, increaseKey, deleteMax)
not monotone (!) but relabels “pay” for scan operations

Lemma 12. At most $n^2 \sqrt{m}$ nonsaturating pushes.

Proof: later

Theorem 13. Highest Level Preflow Push finds a maximum flow in time $O(n^2 \sqrt{m})$.
Example

\begin{tikzpicture}
 \node[circle, draw] (s) at (0,0) {s};
 \node[circle, draw] (d) at (1,1) {d};
 \node[circle, draw] (cap) at (2,2) {2};
 \node[circle, draw] (f) at (3,1) {2};
 \node[circle, draw] (1) at (4,2) {1};
 \node[circle, draw] (t) at (5,0) {t};

 \draw[->, thick] (s) to node[midway, above] {10} (cap);
 \draw[->, thick] (cap) to node[pos=0.6, above] {10} (f);
 \draw[->, thick] (f) to node[midway, above] {10} (1);
 \draw[->, thick] (s) to node[pos=0.6, left] {10} (d);
 \draw[->, thick] (d) to node[midway, left] {10} (cap);
 \draw[->, thick] (d) to node[midway, left] {4} (1);
 \draw[->, thick] (t) to node[pos=0.4, right] {12} (d);
 \draw[->, thick] (t) to node[pos=0.4, right] {8} (f);

 \node at (-1,1) {cap};
 \node at (-1,2) {f};
 \node at (6,1) {t};
\end{tikzpicture}
Example
Example

![Graph Diagram]

- **s** (source)
- **d** (sink)
- **cap** (capacity)
- **f** (flow)
- **excess**

The graph shows a network flow problem with capacities and flows on the edges. The values on the edges represent the capacities (cap), flows (f), and excess (excess) at each node.
Example

![Graph with nodes labeled s, d, cap, f, excess, and t connected by directed edges with capacities and flows labeled. The graph shows a network flow problem with specific edge capacities and flows assigned.]
Example

![Graph with nodes and edges labeled with capacities and excess values. The nodes are labeled as follows: s, d, cap, f, excess, t. The edges are labeled with capacities and excess values.]
Example

9 pushes in total, 3 less than before
Proof of Lemma 12

\[K := \sqrt{m} \quad \text{tuning parameter} \]
\[d'(v) := \frac{|\{w : d(w) \leq d(v)\}|}{K} \quad \text{scaled number of dominated nodes} \]
\[\Phi := \sum_{\{v : v \text{ is active}\}} d'(v). \quad \text{(Potential)} \]
\[d^* := \max \{d(v) : v \text{ is active}\} \quad \text{(highest level)} \]

phase: all pushes between two consecutive changes of \(d^* \)

expensive phase: more than \(K \) pushes

cheap phase: otherwise
Claims:

1. \(\leq 4n^2K \) nonsaturating pushes in all cheap phases together

2. \(\Phi \geq 0 \) always, \(\Phi \leq n^2/K \) initially (obvious)

3. a relabel or saturating push increases \(\Phi \) by at most \(n/K \).

4. a nonsaturating push does not increase \(\Phi \).

5. an expensive phase with \(Q \geq K \) nonsaturating pushes decreases \(\Phi \) by at least \(Q \).

Lemma 7 + Lemma 8 + 2. + 3. + 4. \(\Rightarrow \)

total possible decrease \(\leq (2n^2 + nm) \frac{n}{K} + \frac{n^2}{K} \)

This + 5. \(\leq \frac{2n^3 + n^2 + mn^2}{K} \) nonsaturating pushes in expensive phases

This + 1. \(\leq \frac{2n^3 + n^2 + mn^2}{K} + 4n^2K = O(n^2 \sqrt{m}) \) nonsaturating pushes overall for \(K = \sqrt{m} \) \(\square \)
Claims:

1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together

We first show that there are at most $4n^2$ phases
(changes of $d^* = \max \{d(v) : v \text{ is active}\}$).

$d^* = 0$ initially, $d^* \geq 0$ always.

Only relabel operations increase d^*, i.e.,
$\leq 2n^2$ increases by Lemma 7 and hence
$\leq 2n^2$ decreases

$\leq 4n^2$ changes overall

By definition of a cheap phase, it has at most K pushes.
Claims:

1. \(\leq 4n^2 K \) nonsaturating pushes in all cheap phases together

2. \(\Phi \geq 0 \) always, \(\Phi \leq n^2 / K \) initially \hspace{1cm} \text{(obvious)}

3. a relabel or saturating push increases \(\Phi \) by at most \(n / K \).

Let \(v \) denote the relabeled or activated node.

\[
d'(v) := \frac{|\{w : d(w) \leq d(v)\}|}{K} \leq \frac{n}{K}
\]

A relabel of \(v \) can increase only the \(d' \)-value of \(v \).

A saturating push on \((u, w)\) may activate only \(w \).
Claims:

1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together

2. $\Phi \geq 0$ always, $\Phi \leq n^2/K$ initially (obvious)

3. a relabel or saturating push increases Φ by at most n/K.

4. a nonsaturating push does not increase Φ.

v is deactivated ($\text{excess}(v)$ is now 0)

w may be activated

but $d'(w) \leq d'(v)$ (we do not push flow away from the sink)
Claims:

1. \(\leq 4n^2K \) nonsaturating pushes in all cheap phases together

2. \(\Phi \geq 0 \) always, \(\Phi \leq n^2/K \) initially (obvious)

3. a relabel or saturating push increases \(\Phi \) by at most \(n/K \).

4. a nonsaturating push does not increase \(\Phi \).

5. an expensive phase with \(Q \geq K \) nonsaturating pushes decreases \(\Phi \) by at least \(Q \).

During a phase \(d^\ast \) remains constant

Each nonsat. push decreases the number of active nodes at level \(d^\ast \)

Hence, \(|\{w : d(w) = d^\ast\}| \geq Q \geq K \) during an expensive phase

Each nonsat. push across \((v,w)\) decreases \(\Phi \) by

\[\geq d'(v) - d'(w) \geq |\{w : d(w) = d^\ast\}| / K \geq K / K = 1 \]
Claims:

1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together

2. $\Phi \geq 0$ always, $\Phi \leq n^2/K$ initially (obvious)

3. a relabel or saturating push increases Φ by at most n/K.

4. a nonsaturating push does not increase Φ.

5. an expensive phase with $Q \geq K$ nonsaturating pushes decreases Φ by at least Q.

Lemma 7 + Lemma 8 + 2. + 3. + 4. \implies

total possible decrease $\leq (2n^2 + nm) \frac{n}{K} + \frac{n^2}{K}$

This + 5. $\leq \frac{2n^3 + n^2 + mn^2}{K}$ nonsaturating pushes in expensive phases

This + 1. $\leq \frac{2n^3 + n^2 + mn^2}{K} + 4n^2K = O(n^2\sqrt{m})$ nonsaturating pushes overall for $K = \sqrt{m}$

\square
MFIFO: Modified FIFO Selection Rule

pushFront after relabel.

pushBack when activated by a push N
Heuristic Improvements

Naive algorithm has needs $\Omega \left(n^2\right)$ even on a path graph. We can do better.

aggressive local relabeling:

$$d(v) := 1 + \min \{d(w) : (v, w) \in G_f\}$$

(like a sequence of relabels)
Heuristic Improvements

Naive algorithm has best case $\Omega \left(n^2\right)$. Why? We can do better.

aggressive local relabeling: $d(v) := 1 + \min \{d(w) : (v, w) \in G_f\}$

(like a sequence of relabels)

global relabeling: (initially and every $O(m)$ edge inspections):

$d(v) := G_f.\text{reverseBFS}(t)$ for nodes that can reach t in G_f.

Special treatment of nodes with $d(v) \geq n$. (Returning flow is easy)

Gap Heuristics. No node can connect to t across an empty level:

if $\{v : d(v) = i\} = \emptyset$ then foreach v with $d(v) > i$ do $d(v) := n$
Experimental results

We use four classes of graphs:

- Random: \(n \) nodes, \(2n + m \) edges; all edges \((s, v)\) and \((v, t)\) exist

- Cherkassky and Goldberg (1997) (two graph classes)

- Ahuja, Magnanti, Orlin (1993)
Timings: Random Graphs

<table>
<thead>
<tr>
<th>Rule</th>
<th>BASIC</th>
<th>Ln</th>
<th>LRH</th>
<th>GRH</th>
<th>GAP</th>
<th>LEDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>5.84</td>
<td>6.02</td>
<td>4.75</td>
<td>0.07</td>
<td>0.07</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>33.32</td>
<td>33.88</td>
<td>26.63</td>
<td>0.16</td>
<td>0.17</td>
<td>—</td>
</tr>
<tr>
<td>HL</td>
<td>6.12</td>
<td>6.3</td>
<td>4.97</td>
<td>0.41</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>27.03</td>
<td>27.61</td>
<td>22.22</td>
<td>1.14</td>
<td>0.22</td>
<td>0.16</td>
</tr>
<tr>
<td>MF</td>
<td>5.36</td>
<td>5.51</td>
<td>4.57</td>
<td>0.06</td>
<td>0.07</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>26.35</td>
<td>27.16</td>
<td>23.65</td>
<td>0.19</td>
<td>0.16</td>
<td>—</td>
</tr>
</tbody>
</table>

\(n \in \{1000, 2000\}, m = 3n \)

FF=FIFO node selection, HL=highest level, MF=modified FIFO
Ln= \(d(v) \geq n \) is special,
LRH=local relabeling heuristic, GRH=global relabeling heuristics
Timings: CG1

<table>
<thead>
<tr>
<th>Rule</th>
<th>BASIC</th>
<th>Ln</th>
<th>LRH</th>
<th>GRH</th>
<th>GAP</th>
<th>LEDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>3.46</td>
<td>3.62</td>
<td>2.87</td>
<td>0.9</td>
<td>1.01</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>15.44</td>
<td>16.08</td>
<td>12.63</td>
<td>3.64</td>
<td>4.07</td>
<td>—</td>
</tr>
<tr>
<td>HL</td>
<td>20.43</td>
<td>20.61</td>
<td>20.51</td>
<td>1.19</td>
<td>1.33</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>192.8</td>
<td>191.5</td>
<td>193.7</td>
<td>4.87</td>
<td>5.34</td>
<td>3.28</td>
</tr>
<tr>
<td>MF</td>
<td>3.01</td>
<td>3.16</td>
<td>2.3</td>
<td>0.89</td>
<td>1.01</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>12.22</td>
<td>12.91</td>
<td>9.52</td>
<td>3.65</td>
<td>4.12</td>
<td>—</td>
</tr>
</tbody>
</table>

\(n \in \{1000, 2000\}, m = 3n \)

FF=FIFO node selection, HL=highest level, MF=modified FIFO

Ln= \(d(v) \geq n \) is special,

LRH=local relabeling heuristic, GRH=global relabeling heuristics
Timings: CG2

<table>
<thead>
<tr>
<th>Rule</th>
<th>BASIC</th>
<th>Ln</th>
<th>LRH</th>
<th>GRH</th>
<th>GAP</th>
<th>LEDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>50.06</td>
<td>47.12</td>
<td>37.58</td>
<td>1.76</td>
<td>1.96</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>239</td>
<td>222.4</td>
<td>177.1</td>
<td>7.18</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>HL</td>
<td>42.95</td>
<td>41.5</td>
<td>30.1</td>
<td>0.17</td>
<td>0.14</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>173.9</td>
<td>167.9</td>
<td>120.5</td>
<td>0.36</td>
<td>0.28</td>
<td>0.18</td>
</tr>
<tr>
<td>MF</td>
<td>45.34</td>
<td>42.73</td>
<td>37.6</td>
<td>0.94</td>
<td>1.07</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>198.2</td>
<td>186.8</td>
<td>165.7</td>
<td>4.11</td>
<td>4.55</td>
<td>—</td>
</tr>
</tbody>
</table>

$n \in \{1000, 2000\}, m = 3n$

FF=FIFO node selection, HL=highest level, MF=modified FIFO

Ln= $d(v) \geq n$ is special,

LRH=local relabeling heuristic, GRH=global relabeling heuristics
Timings: AMO

<table>
<thead>
<tr>
<th>Rule</th>
<th>BASIC</th>
<th>Ln</th>
<th>LRH</th>
<th>GRH</th>
<th>GAP</th>
<th>LEDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>12.61</td>
<td>13.25</td>
<td>1.17</td>
<td>0.06</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>55.74</td>
<td>58.31</td>
<td>5.01</td>
<td>0.1399</td>
<td>0.1301</td>
<td>—</td>
</tr>
<tr>
<td>HL</td>
<td>15.14</td>
<td>15.8</td>
<td>1.49</td>
<td>0.13</td>
<td>0.13</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>62.15</td>
<td>65.3</td>
<td>6.99</td>
<td>0.26</td>
<td>0.26</td>
<td>0.14</td>
</tr>
<tr>
<td>MF</td>
<td>10.97</td>
<td>11.65</td>
<td>0.04999</td>
<td>0.06</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>46.74</td>
<td>49.48</td>
<td>0.1099</td>
<td>0.1301</td>
<td>0.1399</td>
<td>—</td>
</tr>
</tbody>
</table>

\(n \in \{1000, 2000\}, m = 3n \)

FF=FIFO node selection, HL=highest level, MF=modified FIFO

Ln=\(d(v) \geq n \) is special,

LRH=local relabeling heuristic, GRH=global relabeling heuristics
Asymptotics, \(n \in \{5000, 10000, 20000\} \)

<table>
<thead>
<tr>
<th>Gen</th>
<th>Rule</th>
<th>GRH</th>
<th>GAP</th>
<th>LEDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>rand</td>
<td>FF</td>
<td>0.16</td>
<td>0.41</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>1.47</td>
<td>4.67</td>
<td>18.81</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>0.17</td>
<td>0.36</td>
<td>1.06</td>
</tr>
<tr>
<td>CG1</td>
<td>FF</td>
<td>3.6</td>
<td>16.06</td>
<td>69.3</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>4.27</td>
<td>20.4</td>
<td>77.5</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>3.55</td>
<td>15.97</td>
<td>68.45</td>
</tr>
<tr>
<td>CG2</td>
<td>FF</td>
<td>6.8</td>
<td>29.12</td>
<td>125.3</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>0.33</td>
<td>0.65</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>3.86</td>
<td>15.96</td>
<td>68.42</td>
</tr>
<tr>
<td>AMO</td>
<td>FF</td>
<td>0.12</td>
<td>0.22</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>0.25</td>
<td>0.48</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>0.11</td>
<td>0.24</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Recent AE Results on Max-Flow

- Much faster on many (relatively easy) real world instances (image processing, graph partitioning, . . .) than preflow-push

- Worst case performance guarantee \(O(mn^2)\) (as in Dinitz algorithm)

- Adaptable to dynamic scenarios

- Uses pseudoflows that allow excesses and deficits.

Open problem: close gaps between theory and practice!
Summary Flows and Matchings

- Natural generalisation of shortest paths: one path \rightsquigarrow many paths

- Many applications

- Most “difficult/general” graph problem solvable with combinatorial algorithms in polynomial time

- Example for non-trivial algorithm analysis

- Potential method (\neq node potentials)

- Algorithm Engineering: practical case \neq worst case. Heuristics/details/input properties important

- Data Structures: bucket queues, graph representation, (dynamic trees)