

Algorithmen / Algorithms II

Peter Sanders

Exercise:

Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:

http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

6 Randomised Algorithms

Using random (bits) to accelerate/simplify algorithms

Las Vegas: Guarantee a correct result – running time is a random variable already known:

auicksort

hashing

Monte Carlo: The result is incorrect with a failure probability pRepeating the algorithm k times decreases the failure-probability exponentially (p^k).

Further details in "Randomised Algorithms" by Thomas Worsch

6.1 Sorting – (Result-)Checking

Permutation-Property (sortedness: is trivial)

$$\langle e_1, \dots, e_n \rangle$$
 is a permutation of $\langle e'_1, \dots, e'_n \rangle$ exactly when
 $q(z) := \prod_{i=1}^n (z - \text{field}(\text{key}(e_i))) - \prod_{i=1}^n (z - \text{field}(\text{key}(e'_i))) = 0,$

Let \mathbb{F} be a field, and map : Key $\to \mathbb{F}$ is injective.

Observation: q has at most n zeros (roots).

Evaluating q at random position $x \in \mathbb{F}$.

$$\mathbb{P}\left[q \neq 0 \land q(x) = 0\right] \le \frac{n}{|\mathbb{F}|}$$

Linear time Monte Carlo algorithm Question: Which field $\mathbb F$ do we use?

Sort Checking II – with Lorenz Hübschle-Schneider

Is the finite sequence *E* a permutation of another sequence *E'*? Let *h* be a random hash function with destination range 0..U - 1, $h(S) := \sum_{e \in S} h(e)$ Checker: return h(E) = h(E')

Sort Checking II – with Lorenz Hübschle-Schneider

Is the finite sequence E a permutation of another sequence E'?

Let h be a random hash function with destination range 0..U - 1,

 $h(S) \coloneqq \sum_{e \in S} h(e)$

Checker: return h(E) = h(E')

Correct if E = E'.

Case $E \neq E'$: We show $\mathbb{P}[h(E) = h(E')] \leq \frac{1}{U}$

Let *e* be an element, that appears $k \times in E$ and $k' \neq k \times in E'$.

$$h(E) = h(E') \Leftrightarrow h(E \setminus e) + kh(e) = h(E' \setminus e) + k'h(e)$$
$$\Leftrightarrow h(e) = \frac{h(E' \setminus e) - h(E \setminus e)}{k - k'} =: x$$

 $\mathbb{P}[h(e) = x] \leq \frac{1}{U}$ because *x* is independent of h(e)

6.2 Hashing II

Perfect Hashing

Idea: given a set of inputs S make h injective on this set.

This needs $\Omega(n)$ bits of space !

Here: Fast Space Efficient Hashing

Represent a set of *n* elements (with associated information) using space $(1 + \varepsilon)n$.

Support operations insert, delete, lookup, (doall) efficiently.

Assume a truly random hash function h

([Dietzfelbinger, Weidling 2005] shows that this is justified.)

Related Work

Linear probing: $E[T_{\text{find}}] \approx \frac{1}{2\epsilon^2}$ Uniform hashing: $E[T_{\text{find}}] \approx \frac{1}{\epsilon}$

Dynamic Perfect Hashing, [Dietzfelbinger et al. 94] Worst case constant time

for lookup but ${\ensuremath{\mathcal E}}$ is not small.

6-7

Approaching the Information Theoretic Lower Bound:

[Brodnik Munro 99, Raman Rao 02]

Space $(1 + o(1)) \times$ lower bound without associated information [Botelho Pagh Ziviani 2007] static case.

Simple, fast, \approx 3bits/element [FiRe/FiPHa:Müller,S,Schulze,Zhou 14]

Cuckoo Hashing

[Pagh Rodler 01]

Table of size $(2 + \varepsilon)n$.

Two choices for each element.

Insert moves elements;

rebuild if necessary.

Very fast lookup and delete.

Expected constant insertion time.

Cuckoo Hashing – Rebuilds

When needed ?

Graph model.

Node: table cells

Undirected edge: element $x \rightsquigarrow$ edge $\{h_1(x), h_2(x)\}$

Directed: $(h_2(x), h_1(x))$ means element *x* is stored at cell $h_2(x)$

Lemma: insert(x) succeeds iff the component containing $h_1(x), h_2(x)$ contains no more edges than nodes.

6-9

6-10

Cuckoo Hashing – Rebuilds

Lemma: insert(x) succeeds iff the component containing $h_1(x), h_2(x)$ contains no more edges than nodes.

Proof outline: (if-part)

 $h_1(x)$ in tree: flip path to root

 $h_1(x)$ in pseudotree $p, h_2(x)$ in tree t:

flip cycle and path to root in *t*

Theorem: For truly random hash functions,

 $\mathbf{Pr}[\text{rebuild necessary}] = \mathbf{O}(1/n)$

Proof: via random graph theory

Sanders: Algorithms II - December 1, 2020 – Supplement

Random Graph Theory

6-12 [Erdős, Rényi 1959]

 $\mathscr{G}(n,m)$:= sample space of all graphs with *n* nodes, *m* edges.

A random graph from $\mathscr{G}(n,m)$ has certain properties with high probability, here $\geq 1 - O(1/n)$.

Famous: The evolution of component sizes with increasing *m*:

< $(1 - \varepsilon)n/2$: Trees and pseudotrees of size $O(\log n)$ > $(1 + \varepsilon)n/2$: A "giant" component of size $\Theta(n)$ (sudden emergence)

 $> (1 + \varepsilon)n \ln n/2$: One single component

Sanders: Algorithms II - December 1, 2020 – Supplement

6-13

Space Efficient Cuckoo Hashing

d-ary: [Fotakis, Pagh, Sanders, Spirakis 2003] *d* possible places.

Sanders: Algorithms II - December 1, 2020 – Supplement

6-14

Space Efficient Cuckoo Hashing

d-ary: [Fotakis, Pagh, Sanders, Spirakis 2003] *d* possible places.

blocked: [Dietzfelbinger, Weidling 2005] cells house *d* elements. Cache efficient !

blocked, *d*-ary, dynamic growing:

[Maier, Sanders 2017]

6-15

Recap – Randomised Algorithms

	asy,	efficient	algorithms
--	------	-----------	------------

- In many cases the best known procedures
- Sometimes deterministic solutions are (provably) impossible
- Often examples for non-trivial analysis
- Sometimes esoteric theory leads to tools that are relevant in practice, e.g. random graph evolution
 - Las Vegas versus Monte Carlo
- Bridge to algebra, e.g. Sort-Checker

Lookout – Randomised Algorithms

External	minimum	spanning	trees
		opaining	0000

- More quicksort (strings, parallel)
- Smallest enclosing circle
- Online paging