Algorithmen / Algorithms II

Peter Sanders

Exercise:

Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:
http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

6 Randomised Algorithms

Using random (bits) to accelerate/simplify algorithms
Las Vegas: Guarantee a correct result - running time is a random variable already known:
\square quicksort
\square hashing
Monte Carlo: The result is incorrect with a failure probability p
Repeating the algorithm k times decreases the failure-probability exponentially $\left(p^{k}\right)$.

Further details in "Randomised Algorithms" by Thomas Worsch

6.1 Sorting - (Result-)Checking

Permutation-Property (sortedness: is trivial)
$\left\langle e_{1}, \ldots, e_{n}\right\rangle$ is a permutation of $\left\langle e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\rangle$ exactly when

$$
q(z):=\prod_{i=1}^{n}\left(z-\operatorname{field}\left(\operatorname{key}\left(e_{i}\right)\right)\right)-\prod_{i=1}^{n}\left(z-\operatorname{field}\left(\operatorname{key}\left(e_{i}^{\prime}\right)\right)\right)=0
$$

Let \mathbb{F} be a field, and map : Key $\rightarrow \mathbb{F}$ is injective.
Observation: q has at most n zeros (roots).
Evaluating q at random position $x \in \mathbb{F}$.

$$
\mathbb{P}[q \neq 0 \wedge q(x)=0] \leq \frac{n}{|\mathbb{F}|}
$$

Linear time Monte Carlo algorithm
Question: Which field \mathbb{F} do we use?

Sort Checking II - with Lorenz Hübschle-Schneider

Is the finite sequence E a permutation of another sequence E^{\prime} ?
Let h be a random hash function with destination range $0 . . U-1$,
$h(S):=\sum_{e \in S} h(e)$
Checker: return $h(E)=h\left(E^{\prime}\right)$

Sort Checking II - with Lorenz Hübschle-Schneider

Is the finite sequence E a permutation of another sequence E^{\prime} ?
Let h be a random hash function with destination range $0 . . U-1$,
$h(S):=\sum_{e \in S} h(e)$
Checker: return $h(E)=h\left(E^{\prime}\right)$
Correct if $E=E^{\prime}$.
Case $E \neq E^{\prime}$: We show $\mathbb{P}\left[h(E)=h\left(E^{\prime}\right)\right] \leq \frac{1}{U}$
Let e be an element, that appears $k \times$ in E and $k^{\prime} \neq k \times$ in E^{\prime}.

$$
\begin{aligned}
h(E)=h\left(E^{\prime}\right) & \Leftrightarrow h(E \backslash e)+k h(e)=h\left(E^{\prime} \backslash e\right)+k^{\prime} h(e) \\
& \Leftrightarrow h(e)=\frac{h\left(E^{\prime} \backslash e\right)-h(E \backslash e)}{k-k^{\prime}}=: x
\end{aligned}
$$

$\mathbb{P}[h(e)=x] \leq \frac{1}{U}$ because x is independent of $h(e)$

6.2 Hashing II

Perfect Hashing

Idea: given a set of inputs S make h injective on this set.
This needs $\Omega(n)$ bits of space !

Here: Fast Space Efficient Hashing

Represent a set of n elements (with associated information) using space $(1+\varepsilon) n$.
Support operations insert, delete, lookup, (doall) efficiently.
Assume a truly random hash function h
([Dietzfelbinger, Weidling 2005] shows that this is justified.)

Related Work

Linear probing: $E\left[T_{\text {find }}\right] \approx \frac{1}{2 \varepsilon^{2}}$
Uniform hashing: $E\left[T_{\text {find }}\right] \approx \frac{1}{\varepsilon}$
Dynamic Perfect Hashing,
[Dietzfelbinger et al. 94]
Worst case constant time for lookup but ε is not small.

Approaching the Information Theoretic Lower Bound:

[Brodnik Munro 99,Raman Rao 02]

Space $(1+o(1)) \times$ lower bound without associated information [Botelho Pagh Ziviani 2007] static case.

Simple, fast, \approx 3bits/element [FiRe/FiPHa:Müller,S,Schulze,Zhou 14]

Cuckoo Hashing

[Pagh Rodler 01]
Table of size $(2+\varepsilon) n$.
Two choices for each element.
Insert moves elements;
rebuild if necessary.
Very fast lookup and delete.
Expected constant insertion time.

Cuckoo Hashing - Rebuilds

When needed?
Graph model.
Node: table cells
Undirected edge: element $x \rightsquigarrow$ edge $\left\{h_{1}(x), h_{2}(x)\right\}$

Directed: $\left(h_{2}(x), h_{1}(x)\right)$ means element x is stored at cell $h_{2}(x)$

Lemma: insert (x) succeeds iff the component containing $h_{1}(x), h_{2}(x)$ contains no more edges than nodes.

Cuckoo Hashing - Rebuilds

Lemma: insert (x) succeeds iff
the component containing $h_{1}(x), h_{2}(x)$
contains no more edges than nodes.

Proof outline: (if-part)

$h_{1}(x)$ in tree: flip path to root
$h_{1}(x)$ in pseudotree $p, h_{2}(x)$ in tree t :
flip cycle and path to root in t

Cuckoo Hashing - How Many Rebuilds?

Theorem: For truly random hash functions,
$\boldsymbol{P r}[$ rebuild necessary $]=\mathrm{O}(1 / n)$
Proof: via random graph theory

Sanders: Algorithms II - December 1, 2020 - Supplement

Random Graph Theory

[Erdős, Rényi 1959]
$\mathscr{G}(n, m):=$ sample space of all graphs with n nodes, m edges.
A random graph from $\mathscr{G}(n, m)$ has certain properties with high probability, here $\geq 1-\mathrm{O}(1 / n)$.

Famous: The evolution of component sizes with increasing m :
$<(1-\varepsilon) n / 2$: Trees and pseudotrees of size $\mathrm{O}(\log n)$
$>(1+\varepsilon) n / 2$: A "giant" component of size $\Theta(n)$ (sudden emergence)
$>(1+\varepsilon) n \ln n / 2$: One single component

Sanders: Algorithms II - December 1, 2020 - Supplement

Space Efficient Cuckoo Hashing

d-ary: [Fotakis, Pagh, Sanders, Spirakis 2003] d possible places.
Insertion: BFS, random walk, ...

Sanders: Algorithms II - December , 2020 - Supplement

Space Efficient Cuckoo Hashing

d-ary: [Fotakis, Pagh, Sanders, Spirakis 2003] d possible places.
blocked: [Dietzfelbinger, Weidling 2005] cells house d elements.
Cache efficient !
blocked, d-ary, dynamic growing:
[Maier, Sanders 2017]

Recap - Randomised Algorithms

\square Easy, efficient algorithms
\square In many cases the best known procedures
\square Sometimes deterministic solutions are (provably) impossible
\square Often examples for non-trivial analysis
\square Sometimes esoteric theory leads to tools that are relevant in practice, e.g. random graph evolution
\square Las Vegas versus Monte Carlo
\square Bridge to algebra, e.g. Sort-Checker

Lookout - Randomised Algorithms

External minimum spanning trees\square More quicksort (strings, parallel)
\square Smallest enclosing circle
\square Online paging

