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6 Randomised Algorithms

Using random (bits) to accelerate/simplify algorithms

Las Vegas: Guarantee a correct result — running time is a random
variable

already known:
] quicksort
] hashing

Monte Carlo: The result is incorrect with a failure probability p

Repeating the algorithm k times decreases the failure-probability

exponentially (pk).

Further details in “Randomised Algorithms” by Thomas Worsch
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6.1 Sorting — (Result-)Checking

Permutation-Property (sortedness: 1s trivial)

(e1,...,ey) is a permutation of (¢}, ... e ) exactly when

S

n

q(z) = [ [(z—field(key(e;))) — [ [ (z — field(key(e}))) = O,

i=1 i=1

Let I be a field, and map : Key — I¥ is injective.
Observation: g has at most n zeros (roots).
Evaluating g at random position x € .

n

Plg #0Ag(x) =0] < @

Linear time Monte Carlo algorithm
Question: Which field I do we use?
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Sort Checking II — with Lorenz Hiibschle-Schneider

Karlsruhe Institute of Technology

Is the finite sequence E a permutation of another sequence E’?
Let /» be a random hash function with destination range 0..UU — 1,

h(S):= Leesh(e)
Checker: return 1(E) = h(E")
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Sort Checking II — with Lorenz Hiibschle-Schneider

Is the finite sequence E a permutation of another sequence E’?
Let /» be a random hash function with destination range 0..UU — 1,
h(S):= Leesh(e)
Checker: return 1(E) = h(E")
Correctif E = E’.

2 _ / ]
Case E # E': We show P [h(E) = h(E")] < 5
Let e be an element, that appears kX in E and k' # kx in E'.

W(E) = h(E') < h(E\ e) + kh(e) = h(E'\ ¢) + K'h(e)

o hie) MENDHENS) _

Plh(e) =x] < % because x is independent of /i(e) =
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6.2 Hashing II

Perfect Hashing

Idea: given a set of inputs S make /4 injective on this set.

This needs Q (1) bits of space !
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Here: Fast Space Efficient Hashing

Represent a set of n elements (with associated information) using
space (1 + €)n.
Support operations insert, delete, lookup, (doall) efficiently.

Assume a truly random hash function &
([Dietzfelbinger, Weidling 2005] shows that this is justified.)
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Related Work P

Linear probing: E [Tfing] ~ 52

€2
Uniform hashing: E |Tfng| & %
Dynamic Perfect Hashing, \i/ \i/ \i/ Y \i/
[Dietzfelbinger et al. 94] e ¢ R o
Worst case constant time S d S
for lookup but € is not small. ®

Approaching the Information Theoretic Lower Bound:
[Brodnik Munro 99,Raman Rao 02]

Space (1 + o(1)) xlower bound without associated information
[Botelho Pagh Ziviani 2007] static case.

Simple, fast, &~ 3bits/element [FiRe/FiPHa:Miller,S,Schulze,Zhou 14]
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Cuckoo Hashing

[Pagh Rodler 01]

Table of size (2 + €)n.

Two choices for each element.
Insert moves elements;
rebuild if necessary.

Very fast lookup and delete.

Expected constant insertion time.

8 --W-ﬂ-/ ale

M
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Cuckoo Hashing — Rebuilds

When needed ? oo~ > 0——0(:

Graph model.

Node: table cells S: E E> 5 E
Undirected edge: element x ~~ ®
edge {/1(x), ho(x)} S.Z > *Q
®
element x is stored at cell /1> (x) \\.7 ; o> W

Directed: (hy(x),h1(x)) means
Lemma: insert(x) succeeds iff

2> rebuild!
the component containing A (x), hy(x) V.: V'-

contains no more edges than nodes.
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Cuckoo Hashing — Rebuilds

Lemma: insert(x) succeeds iff
the component containing /1 (x), o (x)

contains no more edges than nodes.
Proof outline: (if-part)
hi(x) in tree: flip path to root

hi(x) in pseudotree p, h;(x) in tree t:

AVARR VAR

flip cycle and path to root in ¢
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Cuckoo Hashing — How Many Rebuilds?

Theorem: For truly random hash functions,
Pr|rebuild necessary| = O(1/n)

Proof: via random graph theory
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Random Graph Theory [ErdSs, Rényi 1959]

%(n, m):= sample space of all graphs with n nodes, m edges.

A random graph from ¢ (n,m) has certain properties with high
probability, here > 1 — O(1/n).

Famous: The evolution of component sizes with increasing m:
< (1 —¢&)n/2: Trees and pseudotrees of size O(logn)

> (1+¢&)n/2: A*“giant” component of size ®(n) (sudden

emergence)

> (14 €)nlnn/2: One single component
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Space Efficient Cuckoo Hashing

d-ary: [Fotakis, Pagh, Sanders, Spirakis 2003] d possible places.

Insertion: BFS, randomwalk, ... 5

expected time: O(%) ? .
—d=4 ---ooe-

€ * #probes for insert

space utilization
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Space Efficient Cuckoo Hashing

Karlsruhe Institute of Technology

d-ary: [Fotakis, Pagh, Sanders, Spirakis 2003] d possible places.

blocked: [Dietzfelbinger, Weidling 2005] cells house d elements.

Cache efficient !

blocked, d-ary, dynamic growing:
[Maier, Sanders 2017]
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Recap — Randomised Algorithms

| Easy, efficient algorithms

L] In many cases the best known procedures

] Sometimes deterministic solutions are (provably) impossible
| Often examples for non-trivial analysis

| Sometimes esoteric theory leads to tools that are relevant in

practice, e.g. random graph evolution
[ | Las Vegas versus Monte Carlo

|| Bridge to algebra, e.g. Sort-Checker
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Lookout — Randomised Algorithms

| External minimum spanning trees
] More quicksort (strings, parallel)
| Smallest enclosing circle

] Online paging



