
Sanders: Algorithms II - December 1, 2020

Algorithmen / Algorithms II

Peter Sanders

Exercise:

Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:

http://algo2.iti.kit.edu/AlgorithmenII_WS20.php



Sanders: Algorithms II - December 1, 2020 6-1

6 Randomised Algorithms

Using random (bits) to accelerate/simplify algorithms

Las Vegas: Guarantee a correct result – running time is a random

variable

already known:

� quicksort

� hashing

Monte Carlo: The result is incorrect with a failure probability p

Repeating the algorithm k times decreases the failure-probability

exponentially (pk).

Further details in “Randomised Algorithms” by Thomas Worsch
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6.1 Sorting – (Result-)Checking

Permutation-Property (sortedness: is trivial)

〈e1, . . . ,en〉 is a permutation of 〈e′1, . . . ,e
′
n〉 exactly when

q(z) :=
n

∏
i=1

(z− field(key(ei)))−
n

∏
i=1

(z− field(key(e′i))) = 0,

Let F be a field, and map : Key → F is injective.

Observation: q has at most n zeros (roots).

Evaluating q at random position x ∈ F.

P [q 6= 0∧q(x) = 0]≤
n

|F|

Linear time Monte Carlo algorithm

Question: Which field F do we use?
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Sort Checking II – with Lorenz Hübschle-Schneider

Is the finite sequence E a permutation of another sequence E ′?

Let h be a random hash function with destination range 0..U −1,

h(S):= ∑e∈S h(e)

Checker: return h(E) = h(E ′)
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Sort Checking II – with Lorenz Hübschle-Schneider

Is the finite sequence E a permutation of another sequence E ′?

Let h be a random hash function with destination range 0..U −1,

h(S):= ∑e∈S h(e)

Checker: return h(E) = h(E ′)

Correct if E = E ′.

Case E 6= E ′: We show P [h(E) = h(E ′)]≤ 1
U

Let e be an element, that appears k× in E and k′ 6= k× in E ′.

h(E) = h(E ′)⇔ h(E \ e)+ kh(e) = h(E ′ \ e)+ k′h(e)

⇔ h(e) =
h(E ′ \ e)−h(E \ e)

k− k′
=: x

P [h(e) = x]≤ 1
U

because x is independent of h(e)
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6.2 Hashing II

Perfect Hashing

Idea: given a set of inputs S make h injective on this set.

This needs Ω(n) bits of space !
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Here: Fast Space Efficient Hashing

Represent a set of n elements (with associated information) using

space (1+ ε)n.

Support operations insert, delete, lookup, (doall) efficiently.

Assume a truly random hash function h

([Dietzfelbinger, Weidling 2005] shows that this is justified.)
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Related Work

Linear probing: E[Tfind]≈
1

2ε2

Uniform hashing: E[Tfind]≈
1
ε

Dynamic Perfect Hashing,

[Dietzfelbinger et al. 94]

Worst case constant time

for lookup but ε is not small.

Approaching the Information Theoretic Lower Bound:

[Brodnik Munro 99,Raman Rao 02]

Space (1+o(1))×lower bound without associated information

[Botelho Pagh Ziviani 2007] static case.

Simple, fast, ≈ 3bits/element [FiRe/FiPHa:Müller,S,Schulze,Zhou 14]
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Cuckoo Hashing
[Pagh Rodler 01]

Table of size (2+ ε)n.

Two choices for each element.

Insert moves elements;

rebuild if necessary.

Very fast lookup and delete.

Expected constant insertion time.

h1

h2
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Cuckoo Hashing – Rebuilds

When needed ?

Graph model.

Node: table cells

Undirected edge: element x 

edge {h1(x),h2(x)}

Directed: (h2(x),h1(x)) means

element x is stored at cell h2(x)

Lemma: insert(x) succeeds iff

the component containing h1(x),h2(x)

contains no more edges than nodes.

rebuild !
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Cuckoo Hashing – Rebuilds

Lemma: insert(x) succeeds iff

the component containing h1(x),h2(x)

contains no more edges than nodes.

Proof outline: (if-part)

h1(x) in tree: flip path to root

h1(x) in pseudotree p, h2(x) in tree t:

flip cycle and path to root in t
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Cuckoo Hashing – How Many Rebuilds?

Theorem: For truly random hash functions,

Pr[rebuild necessary] = O(1/n)

Proof: via random graph theory
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Random Graph Theory [Erdős, Rényi 1959]

G (n,m):= sample space of all graphs with n nodes, m edges.

A random graph from G (n,m) has certain properties with high

probability, here ≥ 1−O(1/n).

Famous: The evolution of component sizes with increasing m:

< (1− ε)n/2: Trees and pseudotrees of size O(logn)

> (1+ ε)n/2: A “giant” component of size Θ(n) (sudden

emergence)

> (1+ ε)n lnn/2: One single component
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Space Efficient Cuckoo Hashing

d-ary: [Fotakis, Pagh, Sanders, Spirakis 2003] d possible places.

Insertion: BFS, random walk, . . .

expected time: O
(

1
ε

)
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Space Efficient Cuckoo Hashing

d-ary: [Fotakis, Pagh, Sanders, Spirakis 2003] d possible places.

blocked: [Dietzfelbinger, Weidling 2005] cells house d elements.

Cache efficient !

blocked, d-ary, dynamic growing:

[Maier, Sanders 2017]
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Recap – Randomised Algorithms

� Easy, efficient algorithms

� In many cases the best known procedures

� Sometimes deterministic solutions are (provably) impossible

� Often examples for non-trivial analysis

� Sometimes esoteric theory leads to tools that are relevant in

practice, e.g. random graph evolution

� Las Vegas versus Monte Carlo

� Bridge to algebra, e.g. Sort-Checker
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Lookout – Randomised Algorithms

� External minimum spanning trees

� More quicksort (strings, parallel)

� Smallest enclosing circle

� Online paging


