Algorithmen / Algorithms II

Peter Sanders

Exercise:

Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:
http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

Sanders: Algorithms II - December , 2020

7 External Algorithms

7.1 The External Memory Model

M: Fast memory of size M
B : Block size

registers

Analysis: Count number of block accesses \quad B words
large memory

7.2 External Stacks

\square File containing blocks
$\square 2$ internal buffers

push: Write into buffer if space is available.
Otherwise, write buffer one into the file, (block-level push) and rename buffers - 1 and 2 swap places.
pop: Read from buffer if not empty.
Otherwise, read buffer one from the file.
(block-level pop)
Analysis: Amortized $\mathrm{O}(1 / B)$ I/Os per operation
Exercise 1: Proof
Exercise 2: Efficient implementation without unnecessary copies

7.3 External Sorting

n : Input size
M: Size of fast memory
B: Block size
registers

Procedure externalMerge (a, b, c :File of Element)

$$
x:=a \text {.readElement } \quad / / \text { Assume emptyFile.readElement }=\infty
$$

$y:=b$.readElement
for $j:=1$ to $|a|+|b|$ do
if $x \leq y$ then $\quad c$.writeElement $(x) ; \quad x:=a$.readElement
else $\quad c$.writeElement $(y) ; \quad y:=b$.readElement

External (Binary) Merging - I/O Analysis

Read file $a:\lceil|a| / B\rceil \leq|a| / B+1$
Read file $b:\lceil|b| / B\rceil \leq|b| / B+1$
Write file $c:\lceil(|a|+|b|) / B\rceil \leq(|a|+|b|) / B+1$

Total: $\leq 3+2 \frac{|a|+|b|}{B} \approx 2 \frac{|a|+|b|}{B}$
Condition: We need 3 buffer blocks, therefore $M>3 B$.

Run Formation

Sort input in chunks of size M.

$\mathrm{I} / \mathrm{Os}: \approx 2 \frac{n}{B}$

Sorting via External Binary Merging


```
merge
```

\qquad aaabbeeeeghiiiiklllmmmnnooppprsssssssttu

Procedure externalBinaryMergeSort
run formation
while more than one run left do merge pairs of runs
output remaining run
// I/Os: \approx // $2 n / B$
// $\left\lceil\log \frac{n}{M}\right\rceil \times$
// 2n/B

$$
/ / \sum: 2 \frac{n}{B}\left(1+\left\lceil\log \frac{n}{M}\right\rceil\right)
$$

Numerical Example: PC 2019

$n=2^{40}$ bytes
$M=2^{34}$ bytes
$B=2^{22}$ bytes
I/O needs 2^{-4} s
Time: $2 \frac{n}{B}\left(1+\left\lceil\log \frac{n}{M}\right\rceil\right)=2 \cdot 2^{17} \cdot(1+6) \cdot 2^{-4} \mathrm{~s}=2^{16} \mathrm{~s} \approx 32 \mathrm{~h}$
Idea: 7 iterations $\rightsquigarrow 2$ iterations

Multi-way Merge

Procedure multiwayMerge $\left(a_{1}, \ldots, a_{k}, c\right.$:File of Element)
for $i:=1$ to k do $x_{i}:=a_{i}$.readElement
for $j:=1$ to $\sum_{i=1}^{k}\left|a_{i}\right|$ do
find $i \in 1 . . k$ that minimizes $x_{i} \quad / /$ no I/Os!, $\mathrm{O}(\log k)$ time
c.writeElement $\left(x_{i}\right)$
$x_{i}:=a_{i}$.readElement

Multi-way Merge - Analysis

I/Os:

Read file $a_{i}: \approx\left|a_{i}\right| / B$
Write file $c: \approx \sum_{i=1}^{k}\left|a_{i}\right| / B$

Total: $\leq \approx 2 \frac{\sum_{i=1}^{k}\left|a_{i}\right|}{B}$
Condition: We need $k+1$ buffer blocks, therefore $k+1<M / B$ (simplified to $k<M / B$ in the following)

Internal work: (use priority queue!)

$$
\mathrm{O}\left(\log k \sum_{i=1}^{k}\left|a_{i}\right|\right)
$$

Sorting via Multi-way Merging

\square Sort $\lceil n / M\rceil$ runs with M elements each.
$2 n / B 1 / O s$
\square Merge M / B runs at a time.
$2 n / B \mathrm{I} / \mathrm{Os}$
\square Repeat until only one run remains. $\times\left\lceil\log _{M / B} \frac{n}{M}\right\rceil$ Merge phases

Total:

$$
\operatorname{sort}(n):=\frac{2 n}{B}\left(1+\left\lceil\log _{M / B} \frac{n}{M}\right\rceil\right) \mathrm{I} / \mathrm{Os}
$$

\qquad aaabbeeeeghiiiiklllmmmnooppprsssssssttu

Sorting via Multi-way Merging

Internal work:

More than one merge phase?

Not for the hierarchy of main memory and hard disk, since:

$$
\underbrace{\frac{M}{B}}_{>1000}>\underbrace{\frac{\mathrm{RAM} \text { Euro } / \mathrm{bit}}{\text { Disk Euro } / \mathrm{bit}}}_{\approx 150}
$$

More on External Sorting

Lower bound $\approx \frac{2^{(?)} n}{B}\left(1+\left\lceil\log _{M / B} \frac{n}{M}\right\rceil\right)$ I/Os
[Aggarwal Vitter 1988]
Upper bound $\approx \frac{2 n}{D B}\left(1+\left\lceil\log _{M / B} \frac{n}{M}\right\rceil\right)$ I/Os (expected) for D parallel disks
[Hutchinson Sanders Vitter 2005, Dementiev Sanders 2003]
Open question: deterministic?

External Priority Queues

Problem: Binary heaps require
$\Theta\left(\log \frac{n}{M}\right)$ I/Os for each deleteMin
We would like:
$\Theta\left(\frac{1}{B} \log _{M / B} \frac{n}{M}\right)$ I/Os amortized

Medium-sized PQs - $k m \ll M^{2} / B$ Insertions

Insert: Initially into insertion buffer.
Overflow \longrightarrow
sort; flush; smallest key in merge-PQ
Delete-Min: deleteMin from the $P Q$ with smallest min

Analysis - I/Os

deleteMin: each element is read $\leq 1 \times$, together with B others amortized $1 / B$ penalty for insert.

Analysis - Comparisons

(Measure for Internal Work)
deleteMin: $1+\mathrm{O}(\max (\log k, \log m))=\mathrm{O}(\log m)$
more exact argumentation: amortized $1+\log k$ for suitable PQ
insert: $\approx m \log m$ every m Ops. Amortized $\log m$
In total, only $\log \mathrm{km}$ amortized!

Large Queues

$\approx \frac{2 n}{B}\left(1+\left\lceil\log _{M / B} \frac{n}{M}\right\rceil\right)$
I/Os for n insertions
$\mathrm{O}(n \log n)$ work
[Sanders 1999]
deleteMin:
"amortized for free"
Details:
Algorithm Engineering
lecture

Experiments

Keys: random 32 bit integers
Associated information: 32 dummy bits
Deletion buffer size: 32
Group buffer size: 256
Merging degree k : 128
Compiler flags: Highly optimizing, nothing advanced
Operation Sequence:
$(\text { Insert-DeleteMin-Insert) })^{N}(\text { DeleteMin-Insert-DeleteMin) })^{N}$
Near optimal performance on all machines tried!

Sanders: Algorithms II - December 1, 2020 - Supplement

Alpha-21164, 533 MHz, 1997

AMD Ryzen 1800X, 16MB L3, 3.6 GHz, 2017

Open Problem:

Faster cache-efficient PQs

Multi-way merging \rightarrow Multi-way distribution?

Factor 2-3 again?

Minimal Spanning Trees

Semi-external Kruskal

Assumption: $M=\Omega(n)$ constant amount of machine words per node
Procedure seKruskal $(G=(1 . . n, E))$
sort E by decreasing weight

$$
/ / \operatorname{sort}(m) \mathrm{I} / \mathrm{Os}
$$

Tc: UnionFind (n)
foreach $(u, v) \in E$ in ascending order of weight do
if Tc.find $(u) \neq \operatorname{Tc}$. find (v) then
output $\{u, v\}$
Tc.union (u, v)
// link would suffice

External MST Computation

\square Reduce number of nodes through Contraction of MST edges
Details: Algorithm Engineering lecture, Sibeyn's Algorithm. Implementation \approx Sorter + ext. priority queue +1 screen of code. (STXXL library)
\square Use semi-external algorithm once $n<M$.

Sanders: Algorithms II - December , 2220 - Supplement
Example, Sibeyn's algorithm, $m \approx 2 n$

More on External Algorithms - Basic Toolbox?

External Hash Tables: works, but 1 I/O per access
Search Trees: $(a, 2 a)$-Trees with $a=\Theta(B) \rightsquigarrow \log _{B} n$ I/Os for basic operations. Bread-and-butter data structure for databases. By now also in file systems. A lot of tuning: Large leaves, caching, ...

BFS: OK for low graph diameter
DFS: Even harder. Heuristics for the semi-external case
Shortest Paths: similar to BFS

