Algorithmen / Algorithms II

Peter Sanders

Exercise:
Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:
http://algo2.iti.kit.edu/AlgorithmenII_WS20.php
8 Approximation Algorithms

A possibility to **tackle NP-hard problems**

Observation: Almost all interesting optimization problems are NP-hard

Options:

☐ Still try to find an optimal solution but risk that the algorithm doesn’t finish

☐ Ad-hoc heuristics. Will find a solution but how good is it?

☐ **Approximation algorithms:**

 Polynomial running time.

 Solutions *guaranteed* to be “close” to optimal.

☐ Redefine/specialize Problem...
Scheduling of independent weighted jobs on parallel machines

$x(j)$: machine that runs Job j

L_i: $\sum_{x(j)=i} t_j$, Load of machine i

Objective function: Minimize makespan

$L_{\text{max}} = \max_i L_i$

Details: identical machines, independent jobs, known running times, offline
List Scheduling

ListScheduling\((n, m, t) \)

\[J := \{1, \ldots, n\} \]

array \(L[1..m] = [0, \ldots, 0] \)

\textbf{while} \(J \neq \emptyset \) \textbf{do}

\hspace{1em} pick any \(j \in J \)

\hspace{1em} \(J := J \setminus \{j\} \)

\hspace{1em} // Shortest Queue:

\hspace{1em} pick \(i \) such that \(L[i] \) is minimized

\hspace{1em} \(x(j) := i \)

\hspace{1em} \(L[i] := L[i] + t_j \)

\textbf{return} \(x \)
Many small jobs

Lemma 1. If ℓ is the job that finishes last, then

$$L_{\text{max}} \leq \sum_j \frac{t_j}{m} + \frac{m-1}{m} t_\ell$$

Proof

$$L_{\text{max}} = t + t_\ell \leq \sum_{j \neq \ell} \frac{t_j}{m} + t_\ell = \sum_j \frac{t_j}{m} + \frac{m-1}{m} t_\ell$$

$$= t \cdot m \leq \text{all} - t_1$$
Lower bounds

Lemma 2. $L_{\text{max}} \geq \sum_j \frac{t_j}{m}$

Lemma 3. $L_{\text{max}} \geq \max_j t_j$
The approximation ratio

Definition:

A minimization algorithms achieves approximation ratio ρ with respect to a objective function f if for all inputs I, it finds a solution $\mathbf{x}(I)$, such that

$$\frac{f(\mathbf{x}(I))}{f(\mathbf{x}^*(I))} \leq \rho$$

where $\mathbf{x}^*(I)$ is the optimal solution for input I.
Theorem: ListScheduling achieves approximation ratio $2 - \frac{1}{m}$.

Proof:

\[
\frac{f(x)}{f(x^*)} \leq \frac{\sum_j t_j/m}{f(x^*)} + \frac{m-1}{m} \cdot \frac{t_\ell}{f(x^*)} \leq 1 + \frac{m-1}{m} \cdot \frac{t_\ell}{f(x^*)} \leq 1 + \frac{m-1}{m} = 2 - \frac{1}{m}
\]

(upper bound Lemma 1)

(lower bound Lemma 2)

(lower bound Lemma 3)
This bound is optimal

Input: \(m(m - 1) \) jobs of size 1 and one job of size \(m \).

List Scheduling: 2m−1

OPT: m

Therefore, the approximation ratio is \(\geq 2 - 1/m \).
More About Scheduling)

- 4/3 approximation: Sort jobs decreasing by size. Then list scheduling. Time $O(n \log n)$.

- Fast 7/6 approximation: Guess makespan (binary search). then Best Fit Decreasing.

- PTAS ... later ...

- Uniform machines: Machine i has speed v_i, job j needs time t_{ji}/v_i on machine j. \Rightarrow relatively easy generalization

- Unrelated machines: Job j needs time t_{ji} on machine j. 2 approximation. Very different algorithm.

- And many more: different objective functions, order restrictions, ...
Inapproximability of the Traveling Salesman Problem (TSP)

Given a graph $G = (V, V \times V)$, find a simple cycle $C = (v_1, v_2, \ldots, v_n, v_1)$ such that $n = |V|$ and $\sum_{(u,v) \in C} d(u, v)$ is minimized.

Theorem: Approximate TSP to any ratio a is NP-hard.

Proof idea: It is sufficient to show that $\text{HamiltonCycle} \leq_p a$-approximation of TSP
\(a\)-Approximation of TSP

Given:

Graph \(G = (V, V \times V)\) with edge weights \(d(u, v)\), parameter \(W\).

We need an algorithm with the following properties:

\([G, W]\) is accepted \(\rightarrow \exists\) tour with weight \(\leq aW\).

\([G, W]\) is rejected \(\rightarrow \emptyset\) tour with weight \(\leq W\).
HamiltonCycle \leq_p a Approximation of TSP

Let $G = (V, E)$ an arbitrary undirected graph.

Define $d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 1 + an & \text{else} \end{cases}$

\exists TSP tour with cost n

If and only if G has a Hamiltonian cycle

(otherwise: optimal cost $\geq (n - 1) \cdot 1 + (an + 1) = an + n > an$)

Decision algorithms for Hamiltonian cycle:

Is accepted

$\rightarrow \exists$ tour with weight $\leq an$

$\rightarrow \exists$ tour with weight $n \rightarrow \exists$ Hamiltonian path

otherwise \nexists Hamiltonian path
TSP with Triangle Inequality

G (undirected) satisfies triangle inequality

$\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$

Metric completion

Consider arbitrary undirected graph $G = (V, E)$ with weight function $c : E \rightarrow \mathbb{R}_+$. Define $d(u, v) := \text{Length of shortest path from } u \text{ to } v$

Example: (undirected) road graph \rightarrow distance table
Eulerian Path/Cycle

Consider arbitrary connected undirected (multi-)graph $G = (V, E)$ with $|E| = m$.

A path $P = \langle e_1, \ldots, e_m \rangle$ is called a Eulerian cycle if $\{e_1, \ldots, e_m\} = E$. (every edge is visited exactly once)

Theorem: G has Eulerian cycle iff G is connected and $\forall v \in V : \text{degree}(v)$ is even.

Eulerian cycles can be found in time $O(|E| + |V|)$.
2 Approximation by Minimum Spanning Tree

Lemma 4.
Total weight of an MST \leq
Total weight of every TSP tour

Algorithm:

$T := \text{MST}(G)$ // weight(T) \leqopt

$T' := T$ with every edge doubled // weight(T') \leq2opt

$T'' := \text{EulerianCycle}(T')$ // weight(T'') \leq 2opt

output removeDuplicates(T'') // shortcutting
Example

input weight: 1 2 doubled MST

MST

output

weight 10

Euler cycle

12131415161

optimal weight: 6
Proof of Weight $\text{MST} \leq \text{Weight TSP tour}$

Let T be the optimal TSP tour.
Removing an edge makes T lighter.
Now T is a spanning tree
that cannot be lighter than the MST

General technique: Relaxation

here: a TSP path is a special case of a spanning tree
More TSP

- In practice better 2 approximations, e.g. lightest edge first
- Relatively easy but impractical 3/2 approximation
 (MST + min. weight perfect matching + Eulerian cycle)
- PTAS for Euclidean TSP
- Guinea pig for virtually every optimization heuristic
- Optimal solutions for practical inputs. Rule of thumb:
 If it fits into memory, you can solve it.
 [http://www.tsp.gatech.edu/concorde.html]
 Six-figure number of code lines.
- TSP-like applications are usually more complicated
Pseudo-Polynomial Time Algorithms

\mathcal{A} is pseudo-polynomial time algorithms if

$$\text{Time}_{\mathcal{A}}(n) \in P(n)$$

where n is the number of input bits, if all numbers are in unary coding ($k \equiv 1^k$).
Example: Knapsack Problem

- n items with weight $w_i \in \mathbb{N}$ and value p_i.

 Wlog: $\forall i \in 1..n : w_i \leq W$

- Choose a subset x of items

- Such that $\sum_{i \in x} w_i \leq W$ and

- Maximize the value $\sum_{i \in x} p_i$
Dynamic Programming by Value

\[C(i, P) := \text{smallest capacity for items } 1, \ldots, i \text{ that add up to value } \geq P. \]

Lemma 5.

\[\forall 1 \leq i \leq n : C(i, P) = \min(C(i - 1, P), \ C(i - 1, P - p_i) + w_i) \]
Dynamic programming by value

Let \(\hat{P} \) be an upper bound for the value (e.g. \(\sum_i p_i \)).

Time: \(O(n\hat{P}) \) pseudo-polynomial

 e.g. fill \(0..n \times 0..\hat{P} \) table \(C(i, P) \) column-wise

Space: \(\hat{P} + O(n) \) machine words plus \(\hat{P}n \) bits.
Fully Polynomial Time Approximation Scheme

Algorithm \mathcal{A} is a (Fully) Polynomial Time Approximation Scheme for minimization problem Π if:

- Input: Instance I, error parameter ε
- Output quality: $f(x) \leq (1 + \varepsilon)\text{opt}$
- Time: Polynomial in $|I|$ (and $1/\varepsilon$)
Examples for bounds

<table>
<thead>
<tr>
<th>PTAS</th>
<th>FPTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n + 2^{1/\varepsilon}$</td>
<td>$n^2 + \frac{1}{\varepsilon}$</td>
</tr>
<tr>
<td>$n \log \frac{1}{\varepsilon}$</td>
<td>$n + \frac{1}{\varepsilon^4}$</td>
</tr>
<tr>
<td>$\frac{1}{n\varepsilon}$</td>
<td>n / ε</td>
</tr>
<tr>
<td>n^{42}/ε^3</td>
<td>:</td>
</tr>
<tr>
<td>$n + 2^{1000}/\varepsilon$</td>
<td>:</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>
FPTAS for Knapsack

\[P := \max_i p_i \quad // \text{maximum single value} \]
\[K := \frac{\varepsilon P}{n} \quad // \text{scaling factor} \]
\[p'_i := \left\lfloor \frac{p_i}{K} \right\rfloor \quad // \text{scaled values} \]
\[x' := \text{dynamicProgrammingByProfit}(p', w, C) \]
return \(x' \)
Lemma 6. \(p \cdot x' \geq (1 - \varepsilon)\text{opt}. \)

Proof: Consider the optimal solution \(x^* \).

\[
p \cdot x^* - Kp' \cdot x^* = \sum_{i \in x^*} \left(p_i - K \left\lfloor \frac{p_i}{K} \right\rfloor \right)
\]

\[
\leq \sum_{i \in x^*} \left(p_i - K \left(\frac{p_i}{K} - 1 \right) \right) = |x^*|K \leq nK,
\]

so, \(Kp' \cdot x^* \geq p \cdot x^* - nK \). Also,

\[
Kp' \cdot x^* \leq Kp' \cdot x' = \sum_{i \in x'} K \left\lfloor \frac{p_i}{K} \right\rfloor \leq \sum_{i \in x'} K \frac{p_i}{K} = p \cdot x'. \text{ Thus,}
\]

\[
p \cdot x' \geq Kp' \cdot x^* \geq p \cdot x^* - nK = \text{opt} - \varepsilon P \geq (1 - \varepsilon)\text{opt}
\]

\[\leq \text{opt}\]
Lemma 7. Running time $O(n^3/\varepsilon)$.

Proof. The running time $O\left(n^{\hat{P}'}\right)$ of dynamic programming dominates:

$$n^{\hat{P}'} \leq n \cdot \left(n \cdot \max_{i=1}^{n} p_i'\right) = n^2 \left\lfloor \frac{P}{K} \right\rfloor = n^2 \left\lfloor \frac{Pn}{\varepsilon P} \right\rfloor \leq \frac{n^3}{\varepsilon}.$$
The Best Known FPTAS

\[O\left(\min \left\{ n \log \frac{1}{\varepsilon} + \frac{\log^2 \frac{1}{\varepsilon}}{\varepsilon^3}, \ldots \right\} \right) \]

- Fewer buckets \(C_j \) (non-uniform)
- Sophisticated dynamic programming

[Kellerer, Pferschy 04]
Optimal Algorithms for the Knapsack Problem

Near linear running time for almost all inputs! In theory and practice.
