
Sanders: Algorithms II - February 12, 2021

Algorithmen / Algorithms II

Peter Sanders

Exercise:

Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:

http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

Sanders: Algorithms II - February 12, 2021 13-1

13 Online Algorithms [in part by Rob van Stee]

� Information is revealed to the algorithm in parts

� Algorithm needs to process each part before receiving the next

� There is no information about the future

(in particular, no probabilistic assumptions!)

� How well can an algorithm do

compared to an algorithm that knows everything?

� Lack of knowledge vs. lack of processing power

Sanders: Algorithms II - February 12, 2021 13-2

Examples

� Ski rental etc.

� Paging in a virtual memory system

� Routing in communication networks

� Scheduling machines in a factory, where orders arrive over time

� Google placing advertisements

pages

1 page

page access sequenceσ

k cache

large memory

Sanders: Algorithms II - February 12, 2021 13-3

Competitive analysis

� Idea: compare online algorithm ALG to offline algorithm OPT

� Worst-case performance measure

� Definition:

CALG = sup
σ

ALG(σ)

OPT(σ)

(we look for the input that results in worst relative performance)

� Goal:

find ALG with minimal CALG

Sanders: Algorithms II - February 12, 2021 13-4

A Typical Online Problem: Ski Rental

� Renting skis costs 50 euros, buying them costs 300 euros

� You do not know in advance how often you will go skiing

� Should you rent skis or buy them?

Sanders: Algorithms II - February 12, 2021 13-5

A Typical Online Problem: Ski Rental

� Renting skis costs 50 euros, buying them costs 300 euros

� You do not know in advance how often you will go skiing

� Should you rent skis or buy them?

� Suggested algorithm: buy skis on the sixth trip

� Two questions:

– How good is this algorithm?

– Can you do better?

Sanders: Algorithms II - February 12, 2021 13-6

Upper Bound for Ski Rental

� You plan to buy skis on the sixth trip

� If you make five trips or less, you pay optimal cost

(50 euros per trip)

� If you make at least six trips, you pay 550 euros

� In this case OPT pays at least 300 euros

� Conclusion: algorithm is
11
6

-competitive:

it never pays more than 11
6

times the optimal cost

Sanders: Algorithms II - February 12, 2021 13-7

Lower Bound for Ski Rental

� Suppose you buy skis earlier, say on trip x ≤ 5.

You pay 300+50(x−1), OPT pays only 50x

250+50x

50x
=

5

x
+1 ≥ 2.

� Suppose you buy skis later, on trip y ≥ 7.

You pay 300+50(y−1), OPT pays only 300

250+50y

300
=

5+ y

6
≥ 2.

� Idea: do not pay the large cost (buy skis) until you would have paid

the same amount in small costs (rent)

Sanders: Algorithms II - February 12, 2021 13-8

Paging

� Computers usually have a small amount of fast memory (cache)

� This can be used to store data (pages) that are often used

� Problem when the cache is full and a new page is requested

� Which page should be thrown out (evicted)?

pages

1 page

page access sequenceσ

k cache

large memory

Sanders: Algorithms II - February 12, 2021 13-9

Definitions

� k = size of cache (number of pages)

� We assume that access to the cache is free, since accessing main

memory costs much more

� Thus, a cache hit costs 0 and a miss (fault) costs 1

� The goal is to minimize the number of page faults

pages

1 page

page access sequenceσ

k cache

large memory

Sanders: Algorithms II - February 12, 2021 13-10

Paging Algorithms

algorithm which page to evict

LIFO Last In First Out newest

FIFO First In First Out oldest

LFU Least Frequently used requested least often

LRU Least Recently Used requested least recently

FWF Flush When Full all

LFD Longest Forward Distance (re)requested latest in the future

σ
LFD

Sanders: Algorithms II - February 12, 2021 13-11

Longest Forward Distance is Optimal

We show: any optimal offline algorithm can be changed to act like LFD

without increasing the number of page faults.

Inductive claim: given an algorithm ALG, we can create ALGi such that

� ALG and ALGi act identically on the first i−1 requests

� If request i causes a fault (for both algorithms),

ALGi evicts page with longest forward distance

� ALGi(σ)≤ ALG(σ)

iσ

LFD no more faults

ALG

ALGi

Sanders: Algorithms II - February 12, 2021 13-12

Using the Claim

� Start with a given request sequence σ and an optimal offline

algorithm ALG

� Use the claim for i = 1 on ALG to get ALG1, which evicts the LFD

page on the first request (if needed)

� Use the claim for i = 2 on ALG1 to get ALG2

� . . .

� Final algorithm ALG|σ |

is equal to OPT

s

σ

ALG2

OPT

ALG1

ALG| |

Sanders: Algorithms II - February 12, 2021 13-13

Proof of the Claim

not this time

Sanders: Algorithms II - February 12, 2021 13-14

Comparison of Algorithms

� OPT is not online, since it looks forward

� Which is the best online algorithm?

� LIFO is not competitive: consider an input sequence

p1, p2, . . . , pk−1, pk, pk+1, pk, pk+1, . . .

� LFU is also not competitive: consider

pm
1 , pm

2 , . . . , pm
k−1,(pk, pk+1)

m−1

Sanders: Algorithms II - February 12, 2021 13-15

A General Lower Bound

� To illustrate the problem, we show a lower bound for any online

paging algorithm ALG

� There are k+1 pages

� At all times, ALG has k pages in its cache

� There is always one page missing: request this page at each step

� OPT only faults once every k steps

⇒ lower bound of k on the competitive ratio

Sanders: Algorithms II - February 12, 2021 13-16

Resource Augmentation

� We will compare an online algorithm ALG to an optimal offline

algorithm which has a smaller cache

� We hope to get more realistic results in this way

� Size of offline cache = h < k

� This problem is known as (h,k)-paging

ALG

OPT

...

...

1 k

h1

Sanders: Algorithms II - February 12, 2021 13-17

Conservative Algorithms

� An algorithm is conservative if it has at most k page faults on any

request sequence that contains at most k distinct pages

� The request sequence may be arbitrarily long

� LRU and FIFO are conservative

� LFU and LIFO are not conservative (recall that they are not

competitive)

σ

Sanders: Algorithms II - February 12, 2021 13-18

Competitive Ratio

Theorem: Any conservative algorithm is k
k−h+1

-competitive

Proof: divide request sequence σ into phases.

� Phase 0 is the empty sequence

� Phase i > 0 is the maximal sequence following phase i−1 that

contains at most k distinct pages

Phase partitioning does not depend on algorithm. A conservative

algorithm has at most k faults per phase.

σ
1 2 3

Sanders: Algorithms II - February 12, 2021 13-19

Counting the Faults of OPT

Consider some phase i > 0, denote its first request by f

f

phase i

k distinct pages

OPT has h pages in cache including f

Thus OPT has at least k− (h−1) = k−h+1 faults on the grey

requests

Sanders: Algorithms II - February 12, 2021 13-20

Conclusion

� In each phase, a conservative algorithm has k faults

� To each phase except the last one, we can assign (charge)

k−h+1 faults of OPT

� Thus

ALG(σ)≤
k

k−h+1
·OPT(σ)+ r

where r ≤ k is the number of page faults of ALG in the last phase

� This proves the theorem

Sanders: Algorithms II - February 12, 2021 13-21

Notes

� For h = k/2, we find that conservative algorithms are

2-competitive

� The previous lower bound construction does not work

for h < k

� In practice, the “competitive ratio” of LRU is a small constant

� Resource augmentation can give better (more realistic) results

than pure competitive analysis

Sanders: Algorithms II - February 12, 2021 – Supplement 13-22

New Results (Panagiotou & Souza, STOC 2006)

� Restrict the adversary to get more “natural” input sequences

� Locality of reference: most consecutive requests to pages have

short distance

� Typical memory access patterns: consecutive requests have either

short or long distance compared to the cache size

Sanders: Algorithms II - February 12, 2021 – Supplement 13-23

Randomized Algorithms

� Another way to avoid the lower bound of k for paging is to use a

randomized algorithm

� Such an algorithm is allowed to use random bits in its decision

making

� Crucial is what the adversary knows about these random bits

Sanders: Algorithms II - February 12, 2021 – Supplement 13-24

Three Types of Adversaries

� Oblivious: knows only the probability distribution that ALG uses,

determines input in advance

� Adaptive online: knows random choices made so far, bases input

on these choices

� Adaptive offline: knows random choices in advance (!)

Randomization does not help against adaptive offline adversary

We focus on the oblivious adversary

Sanders: Algorithms II - February 12, 2021 – Supplement 13-25

Marking Algorithm

� marks pages which are requested

� never evicts a marked page

� When all pages are marked and there is a fault, unmark everything

(but mark the page which caused the fault)

(new phase)

Sanders: Algorithms II - February 12, 2021 – Supplement 13-26

Marking Algorithms

Only difference is eviction strategy

� LRU

� FWF

� RMARK: Evict an unmarked page choosen uniformly at random

Sanders: Algorithms II - February 12, 2021 – Supplement 13-27

Competitive Ratio of RMARK

Theorem: RMARK is 2Hk-competitive

where

Hk = 1+
1

2
+

1

3
+ · · ·+

1

k
≤ lnk+1

is the k-the harmonic number

Sanders: Algorithms II - February 12, 2021 – Supplement 13-28

Analysis of RMARK

Consider a phase with m new pages

(that are not cached in the beginning of the phase)

Miss probability when j+1st old page becomes marked

1−
old unmarked cached pages

old unmarked pages
≤ 1−

k−m− j

k− j
=

m

k− j

Overall expected number of faults (including new pages):

m+
k−m−1

∑
j=0

m

k− j
= m+m

k

∑
i=m+1

1

i
= m(1+Hk −Hm)≤ mHk

Sanders: Algorithms II - February 12, 2021 – Supplement 13-29

Lower Bound for OPT

new old

m pagesi

phase i

k distinct pages

phase i−1

� There are mi new pages in phase i

� Thus, in phases i−1 and i together, k+mi pages are requested

� OPT makes at least mi faults in phases i and i−1 for any i

� Total number of OPT faults is at least 1
2 ∑i mi

Sanders: Algorithms II - February 12, 2021 – Supplement 13-30

Upper Bound for RMARK

� Expected number of faults in phase i is at most miHk for RMARK

� Total expected number of faults is at most Hk ∑i mi

� OPT has at least 1
2 ∑i mi faults

� Conclusion: RMARK is 2Hk-competitive

Sanders: Algorithms II - February 12, 2021 – Supplement 13-31

Randomized Lower Bound

Theorem: No randomized can be better than Hk-competitive against

an oblivious adversary.

Proof: not here

Sanders: Algorithms II - February 12, 2021 – Supplement 13-32

Discussion

� Hk ≪ k

� The upper bound for RMARK holds against an oblivious adversary

(the input sequence is fixed in advance)

� No algorithm can be better than Hk-competitive

� Thus, RMARK is optimal apart from a factor of 2

� There is a (more complicated) algorithm that is Hk competitive

Sanders: Algorithms II - February 12, 2021 13-33

Why Competitive Analysis?

There are many models for “decision making in the absence of

complete information”

� Competitive analysis leads to algorithms that would not otherwise

be considered

� Probability distributions are rarely known precisely

� Assumptions about distributions must often be unrealistically crude

to allow for mathematical tractability

� Competitive analysis gives a guarantee on the performance of an

algorithm, which is essential in e.g. financial planning

Sanders: Algorithms II - February 12, 2021 13-34

Disadvantages of Competitive Analysis

� Results can be too pessimistic (adversary is too powerful)

– Resource augmentation

– Randomization

– Restrictions on the input

� Unable to distinguish between some algorithms that perform

differently in practice

– Paging: LRU and FIFO

– more refined models

