

Übung 7 – Algorithmen II

Daniel Seemaier, Tobias Heuer — daniel.seemaier@kit.edu, tobias.heuer@kit.edu http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

Institut für Theoretische Informatik - Algorithmik II

```
sweath - current weight:
    PROPERTY STATE
or( idget0 eid = graph.edgeBegin( current ); eid != graph.edgeEnd( current ); ++eid ){
  const Edge & edge = graph.getEdge( eid );
 COUNTING( statistic data.inc( DijkstraStatisticData::TOUCHED EDGES ); )
 if ( edge. forward ) {
    COUNTING( statistic data.inc( DijkstraStatisticData::RELAXED EDGES ); )
   Weight new weight = edge.weight + current weight;
  GUARANTEE( new weight >= current weight, std::runtime error, "Weight overflow detected
  if( !priority queue.isReached( edge.target ) ){
     COUNTING( statistic data.inc( DijkstraStatisticData::SUCCESSFULLY RELAXED EDGES )
    COUNTING( statistic data.inc( DijkstraStatisticData: REACHED MODES )
   priority queue.push( edge.target, new weight ):
} else {
  if( priority queue.getCurrentKey( edge.target ) > new welling
     COUNTING( Statistic data.inc( DijkstrastatisticData | tuccastamus v del aces | tuccastamus v
     priority queue.decreasekey( edge target, new weight)
```

Themenübersicht

Übungsinhalt

- Approximationsalgorithmen
 - (schwierige Probleme gut abschätzen)
 - Grundlagen (Gütemaß, Klassen)
 - Minimum Metric TSP
- Parametrisierte Algorithmen

(schwierige Probleme in Spezialfällen exakt lösen)

- fixed parameter tractable
- Beispiel: Schiebepuzzle
- Parallelverarbeitung
 - Modelle
 - Verbindungsstrukturen
 - Anwendungen
 - Präfixsumme
 - Paralleles Sortieren
 - Fffizienz

Approximationsalgorithmen **Grundlagen**

Warum Lösungen abschätzen?

- es gibt "schwierige" Probleme (z.B. TSP mit exponentieller Laufzeit)
 - → exakte Berechnung nicht möglich zu unseren Lebzeiten
- vernünftige Näherungen effizient berechnen
 - ightarrow exakte/optimale Ergebnisse nicht immer wichtig
 - ightarrow "gute" Lösungen genügen oft
 - ightarrow aber Abstand zur korrekten Lösung wissenswert

Weglänge "lang"

Weglänge $8 + 16\sqrt{2}$

Weglänge 24

■ Ein Algorithmus *ALG* hat einen Approximationsfaktor ρ , wenn gilt

$$\frac{w\left(ALG(I)\right)}{w\left(OPT(I)\right)} \le \rho$$

f.a. Probleminstanzen *I*, *OPT* optimale Lösung, *w* Bewertungsfunktion (für Minimierungsprobleme $\Rightarrow \rho > 1$, für Maximierungsprobleme $\Rightarrow \rho < 1$)

Beispiel:

- **ALG** schätzt Distanz von Strecke x auf nächste Zweierpotenz $2^{\lceil \log |x| \rceil}$
- lacktriangle OPT bestimmt korrekte Distanz |x|

$$\Rightarrow \frac{w(ALG)}{w(OPT)} = \frac{2^{\lceil \log |x| \rceil}}{|x|} \le \frac{2^{\log |x|+1}}{|x|} = \frac{2|x|}{|x|} = 2 = \rho$$
(Zahlenbeispiel: $|x| = 2^{10} + 1 \quad \Rightarrow \quad \frac{2^{11}}{2^{10} + 1} = 2 - \frac{2}{2^{10} + 1} \approx 2$)

Klassen

Approximationsprobleme klassifzierbar durch

- Laufzeit T(n, ε)
- Approximationsfaktor $\rho(n, \varepsilon)$

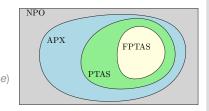
Klassen an Approximationsproblemen

$$\rho = const.$$
, T polynomiell in n

$$\rho = 1 \pm \varepsilon$$
, bel. $\varepsilon \in (0, 1)$, T poly. in n

FPTAS (fully polynomial time approximation scheme)

$$\rho=1\pm\varepsilon$$
, bel. $\varepsilon\in(0,1),\ T$ poly. in $n,\,\frac{1}{\varepsilon}$



Beispiele:

$$\Rightarrow T(n,\varepsilon) = n^{\frac{1}{\varepsilon}}, \, \rho(n,\varepsilon) = 2$$

$$\Rightarrow T(n,\varepsilon) = n^{\frac{1}{\varepsilon}}, \, \rho(n,\varepsilon) = 1 + \varepsilon$$

$$\Rightarrow T(n,\varepsilon) = \frac{1}{\varepsilon}n, \, \rho(n,\varepsilon) = 1 + 2\varepsilon$$

Klassen

Approximationsprobleme klassifzierbar durch

- Laufzeit T(n, ε)
- Approximations faktor $\rho(n, \varepsilon)$

Klassen an Approximationsproblemen

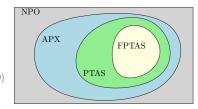
APX (approximable)

$$\rho = const.$$
, T polynomiell in n

PTAS (polynomial time approximation scheme)

$$\rho = 1 \pm \varepsilon$$
, bel. $\varepsilon \in (0, 1)$, T poly. in n

FPTAS (fully polynomial time approximation scheme) $\rho = 1 \pm \varepsilon$, bel. $\varepsilon \in (0, 1)$, T poly. in n, $\frac{1}{\varepsilon}$



Beispiele:

$$\Rightarrow T(n,\varepsilon) = n^{\frac{1}{\varepsilon}}, \, \rho(n,\varepsilon) = 2$$

$$\Rightarrow T(n,\varepsilon) = n^{\frac{1}{\varepsilon}}, \, \rho(n,\varepsilon) = 1 + \varepsilon$$

$$\Rightarrow T(n,\varepsilon) = \frac{1}{\varepsilon}n, \, \rho(n,\varepsilon) = 1 + 2\varepsilon$$

(APX)

Klassen

Approximationsprobleme klassifzierbar durch

- Laufzeit $T(n, \varepsilon)$
- Approximations faktor $\rho(n, \varepsilon)$

Klassen an Approximationsproblemen

APX (approximable)

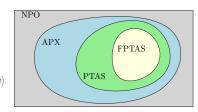
$$\rho = const.$$
, T polynomiell in n

PTAS (polynomial time approximation scheme)

$$\rho=1\pm\varepsilon$$
, bel. $\varepsilon\in(0,1)$, T poly. in n

FPTAS (fully polynomial time approximation scheme)

$$\rho = 1 \pm \varepsilon$$
, bel. $\varepsilon \in (0, 1)$, T poly. in $n, \frac{1}{\varepsilon}$



Beispiele:

$$\Rightarrow T(n,\varepsilon) = n^{\frac{1}{\varepsilon}}, \, \rho(n,\varepsilon) = 2$$
$$\Rightarrow T(n,\varepsilon) = n^{\frac{1}{\varepsilon}}, \, \rho(n,\varepsilon) = 1 + \varepsilon$$

$$(n, \varepsilon) = 1 + \varepsilon$$

$$\Rightarrow T(n,\varepsilon) = \frac{1}{\varepsilon}n, \, \rho(n,\varepsilon) = 1 + 2\varepsilon$$

Klassen

Approximationsprobleme klassifzierbar durch

- Laufzeit T(n, ε)
- Approximations faktor $\rho(n, \varepsilon)$

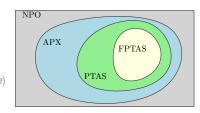
Klassen an Approximationsproblemen

$$\rho = const.$$
, T polynomiell in n

$$\rho = 1 \pm \varepsilon$$
, bel. $\varepsilon \in (0, 1)$, T poly. in n

FPTAS (fully polynomial time approximation scheme)

$$\rho = 1 \pm \varepsilon$$
, bel. $\varepsilon \in (0, 1)$, T poly. in $n, \frac{1}{\varepsilon}$



Beispiele:

$$\Rightarrow T(n,\varepsilon) = n^{\frac{1}{\varepsilon}}, \rho(n,\varepsilon) = 2$$
$$\Rightarrow T(n,\varepsilon) = n^{\frac{1}{\varepsilon}}, \rho(n,\varepsilon) = 1 + \varepsilon$$

$$n, \varepsilon) = 1 + \varepsilon$$
 (PTAS)

$$\Rightarrow T(n,\varepsilon) = \frac{1}{\varepsilon}n, \, \rho(n,\varepsilon) = 1 + 2\varepsilon$$

(APX)

Karkruher Institut für Technologie

Minimum Metric TSP (NP-hart)

Problemstellung

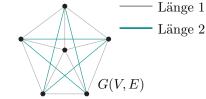
- Gegeben eine Menge an Punkten V in der Ebene
- Vollständiger Graph
- Kantengewichte erfüllen Dreiecks-Ungleichung
- Finde Kreis minimaler Länge der alle Punkte abläuft

Minimum Metric TSP (NP-hart)

- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T (w(T) < w(OPT))
- verdopple Kanten von $T \rightarrow T'$ (w(T') < 2w(OPT))
- bestimme Eulerkreis *EK* auf T' (w(EK) = w(T'))
- wandle EK zu Hamiltonkreis HK (w(HK) < w(EK) < 2w(OPT))

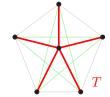
Minimum Metric TSP (NP-hart)

- **Graph** G = (V, E) (vollständig, ungerichtet)
- bestimme MST T ($w(T) \le w(OPT)$)
- verdopple Kanten von $T \to T'$ ($w(T') \le 2w(OPT)$)
- **bestimme** Eulerkreis EK auf T' (w(EK) = w(T'))
- wandle EK zu Hamiltonkreis HK (w(HK) ≤ w(EK) ≤ 2w(OPT))



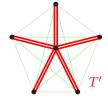
Minimum Metric TSP (NP-hart)

- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T ($w(T) \le w(OPT)$)
- verdopple Kanten von $T \to T'$ ($w(T') \le 2w(OPT)$)
- **bestimme** Eulerkreis EK auf T' (w(EK) = w(T'))
- wandle EK zu Hamiltonkreis HK (w(HK) ≤ w(EK) ≤ 2w(OPT))



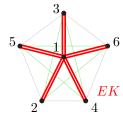
Minimum Metric TSP (NP-hart)

- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T ($w(T) \le w(OPT)$)
- verdopple Kanten von $T \to T'$ ($w(T') \le 2w(OPT)$)
- **bestimme** Eulerkreis EK auf T' (w(EK) = w(T'))
- wandle EK zu Hamiltonkreis HK (w(HK) ≤ w(EK) ≤ 2w(OPT))



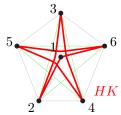
Minimum Metric TSP (NP-hart)

- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T ($w(T) \le w(OPT)$)
- verdopple Kanten von $T \rightarrow T'$ (w(T') < 2w(OPT))
- bestimme Eulerkreis *EK* auf T' (w(EK) = w(T'))
- wandle EK zu Hamiltonkreis HK



Minimum Metric TSP (NP-hart)

- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T ($w(T) \le w(OPT)$)
- verdopple Kanten von $T \rightarrow T'$ (w(T') < 2w(OPT))
- bestimme Eulerkreis *EK* auf T' (w(EK) = w(T'))
- wandle EK zu Hamiltonkreis HK



Minimum Metric TSP (NP-hart)

Wiederholung 2-Approximation (Algorithmus)

- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T ($w(T) \le w(OPT)$)
- verdopple Kanten von $T \rightarrow T'$ (w(T') < 2w(OPT))
- bestimme Eulerkreis *EK* auf T'(w(EK) = w(T'))
- wandle EK zu Hamiltonkreis HK

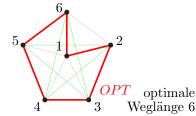
(w(HK) < w(EK) < 2w(OPT))



Weglänge 10

Minimum Metric TSP (NP-hart)

- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T ($w(T) \le w(OPT)$)
- verdopple Kanten von $T \to T'$ ($w(T') \le 2w(OPT)$)
- **bestimme** Eulerkreis EK auf T' (w(EK) = w(T'))
- wandle EK zu Hamiltonkreis HK (w(HK) ≤ w(EK) ≤ 2w(OPT))



Minimum Metric TSP

3/2-Approximation (Algorithmus) (Christofides-Heuristik)

- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T
- bestimme Knoten *U* mit ungeradem Grad in *T*
- finde minimales perfektes Matching M auf (U, E)(alle Knoten gematcht, Summe der Gewichte der Matchingkanten minimal)
- füge Kanten M zu $T \rightarrow T'$ (w(T') = w(T) + w(M) < w(OPT) + w(M))
- bestimme Eulerkreis EK auf T' (alle Knoten haben geraden Grad)
- wandle EK zu Hamiltonkreis HK $(w(HK) \le w(EK) = w(T') \le w(OPT) + w(M))$

Minimum Metric TSP

3/2-Approximation (Algorithmus) (Christofides-Heuristik)

- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T
- bestimme Knoten *U* mit ungeradem Grad in *T*
- finde minimales perfektes Matching M auf (U, E)(alle Knoten gematcht, Summe der Gewichte der Matchingkanten minimal)
- füge Kanten M zu $T \rightarrow T'$ $(w(T') = w(T) + w(M) \le w(OPT) + w(M))$
- bestimme Eulerkreis EK auf T' (alle Knoten haben geraden Grad)
- wandle EK zu Hamiltonkreis HK $(w(HK) \le w(EK) = w(T') \le w(OPT) + w(M))$



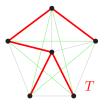
Länge 1

Länge 2

Minimum Metric TSP

3/2-Approximation (Algorithmus) (Christofides-Heuristik)

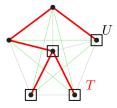
- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T
- bestimme Knoten U mit ungeradem Grad in T
- finde minimales perfektes Matching M auf (U, E)
 (alle Knoten gematcht, Summe der Gewichte der Matchingkanten minimal)
- füge Kanten M zu $T \to T'$ $(w(T') = w(T) + w(M) \le w(OPT) + w(M))$
- bestimme Eulerkreis *EK* auf *T'* (alle Knoten haben geraden Grad)
- wandle EK zu Hamiltonkreis HK $(w(HK) \le w(EK) = w(T') \le w(OPT) + w(M))$



Minimum Metric TSP

3/2-Approximation (Algorithmus) (Christofides-Heuristik)

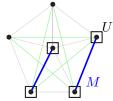
- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T
- bestimme Knoten *U* mit ungeradem Grad in *T*
- finde minimales perfektes Matching M auf (U, E)(alle Knoten gematcht, Summe der Gewichte der Matchingkanten minimal)
- füge Kanten M zu $T \rightarrow T'$ $(w(T') = w(T) + w(M) \le w(OPT) + w(M))$
- bestimme Eulerkreis EK auf T' (alle Knoten haben geraden Grad)
- wandle EK zu Hamiltonkreis HK $(w(HK) \le w(EK) = w(T') \le w(OPT) + w(M))$



Minimum Metric TSP

3/2-Approximation (Algorithmus) (Christofides-Heuristik)

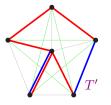
- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T
- bestimme Knoten U mit ungeradem Grad in T
- finde minimales perfektes Matching M auf (U, E)
 (alle Knoten gematcht, Summe der Gewichte der Matchingkanten minimal)
- füge Kanten M zu $T \rightarrow T'$ $(w(T') = w(T) + w(M) \le w(OPT) + w(M))$
- bestimme Eulerkreis EK auf T' (alle Knoten haben geraden Grad)
- wandle EK zu Hamiltonkreis HK $(w(HK) \le w(EK) = w(T') \le w(OPT) + w(M))$



Minimum Metric TSP

3/2-Approximation (Algorithmus) (Christofides-Heuristik)

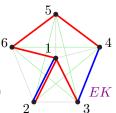
- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T
- bestimme Knoten *U* mit ungeradem Grad in *T*
- finde minimales perfektes Matching M auf (U, E)(alle Knoten gematcht, Summe der Gewichte der Matchingkanten minimal)
- füge Kanten M zu $T \rightarrow T'$ $(w(T') = w(T) + w(M) \le w(OPT) + w(M))$
- bestimme Eulerkreis EK auf T' (alle Knoten haben geraden Grad)
- wandle EK zu Hamiltonkreis HK $(w(HK) \le w(EK) = w(T') \le w(OPT) + w(M))$



Minimum Metric TSP

3/2-Approximation (Algorithmus) (Christofides-Heuristik)

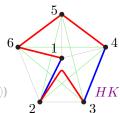
- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T
- bestimme Knoten *U* mit ungeradem Grad in *T*
- finde minimales perfektes Matching M auf (U, E)(alle Knoten gematcht, Summe der Gewichte der Matchingkanten minimal)
- füge Kanten M zu $T \rightarrow T'$ $(w(T') = w(T) + w(M) \le w(OPT) + w(M))$
- bestimme Eulerkreis EK auf T' (alle Knoten haben geraden Grad)
- wandle EK zu Hamiltonkreis HK $(w(HK) \le w(EK) = w(T') \le w(OPT) + w(M))$



Minimum Metric TSP

3/2-Approximation (Algorithmus) (Christofides-Heuristik)

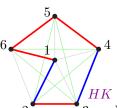
- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T
- bestimme Knoten *U* mit ungeradem Grad in *T*
- finde minimales perfektes Matching M auf (U, E)(alle Knoten gematcht, Summe der Gewichte der Matchingkanten minimal)
- füge Kanten M zu $T \rightarrow T'$ $(w(T') = w(T) + w(M) \le w(OPT) + w(M))$
- bestimme Eulerkreis EK auf T' (alle Knoten haben geraden Grad)
- wandle EK zu Hamiltonkreis HK $(w(HK) \le w(EK) = w(T') \le w(OPT) + w(M))$



Minimum Metric TSP

3/2-Approximation (Algorithmus) (Christofides-Heuristik)

- Graph G = (V, E) (vollständig, ungerichtet)
- bestimme MST T
- bestimme Knoten *U* mit ungeradem Grad in *T*
- finde minimales perfektes Matching M auf (U, E)(alle Knoten gematcht, Summe der Gewichte der Matchingkanten minimal)
- füge Kanten M zu $T \rightarrow T'$ (w(T') = w(T) + w(M) < w(OPT) + w(M))
- bestimme Eulerkreis EK auf T' (alle Knoten haben geraden Grad)
- wandle EK zu Hamiltonkreis HK $(w(HK) \le w(EK) = w(T') \le w(OPT) + w(M))$



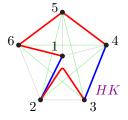
Weglänge 6

Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow$$
 $w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$

- Bestimmung von w(M)
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T) (erzeugt durch Überspringen aller Knoten V \ U in OPT)
 - definiere alternierende perfekte Matchings M_1 , M_2 auf HK' (existiert, da |U| gerade, $HK' = M_1 \cup M_2$)
 - $\Rightarrow w(M) \leq w(M_1)$, $w(M) \leq w(M_2)$ (*M* min. Matching!
 - $\Rightarrow 2 \cdot w(M) \le w(M_1) + w(M_2) = w(HK') \le w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung)
- $\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$

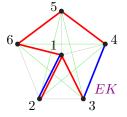


Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow \ \textit{w}(\textit{HK}) \leq \textit{w}(\textit{EK}) = \textit{w}(\textit{T}') = \textit{w}(\textit{T}) + \textit{w}(\textit{M}) \leq \textit{w}(\textit{OPT}) + \textit{w}(\textit{M})$$

- Bestimmung von w(M)
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T) (erzeugt durch Überspringen aller Knoten V \ U in OPT)
 - definiere alternierende perfekte Matchings M_1 , M_2 auf HK' (existiert, da |U| gerade, $HK' = M_1 \cup M_2$)
 - $\Rightarrow w(M) \leq w(M_1)$, $w(M) \leq w(M_2)$ (M min. Matching!)
 - \Rightarrow 2 · $w(M) \le w(M_1) + w(M_2) = w(HK') \le w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung)
- $\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$



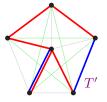
Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow \ w(HK) \leq w(EK) = w(T') = w(T) + w(M) \leq w(OPT) + w(M)$$

- Bestimmung von w(M)
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T) (erzeugt durch Überspringen aller Knoten V \ U in OPT)
 - definiere alternierende perfekte Matchings M_1 , M_2 auf HK' (existiert, da |U| gerade, $HK' = M_1 \cup M_2$)
 - $\Rightarrow w(M) \leq w(M_1)$, $w(M) \leq w(M_2)$ (M min. Matching!)
 - $\Rightarrow 2 \cdot w(M) \le w(M_1) + w(M_2) = w(HK') \le w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung

$$\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$$



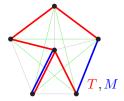
Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$$

- - sei *HK'* Hamiltonkreis auf *U* (U: Knoten mit ungeradem Grad in T)
 - definiere alternierende perfekte Matchings M_1 , M_2 auf HK'

$$\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$$



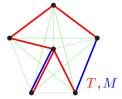
Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$$

- Bestimmung von w(M)
 - sei *HK'* Hamiltonkreis auf *U* (U: Knoten mit ungeradem Grad in T) (erzeugt durch Überspringen aller Knoten *V* \ *U* in *OPT*)
 - definiere alternierende perfekte Matchings M_1 , M_2 auf HK' (existiert, da |U| gerade, $HK' = M_1 \cup M_2$)
 - $\Rightarrow w(M) \leq w(M_1)$, $w(M) \leq w(M_2)$ (M min. Matching!)
 - $\Rightarrow 2 \cdot w(M) \le w(M_1) + w(M_2) = w(HK') \le w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung

$$\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$$



Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$$

- Bestimmung von w(M):
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T) (erzeugt durch Überspringen aller Knoten V \ U in OPT)
 - definiere alternierende perfekte Matchings M₁, M₂ auf HK' (existiert, da |U| gerade, HK' = M₁ ∪ M₂)
 - $\Rightarrow w(M) \le w(M_1), w(M) \le w(M_2)$ (M min. Matching!)
 - $\Rightarrow \ 2 \cdot w(M) \leq w(M_1) + w(M_2) = w(HK') \leq w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung)

$$\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$$

Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$$

- Bestimmung von w(M):
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T) (erzeugt durch Überspringen aller Knoten V \ U in OPT)
 - definiere alternierende perfekte Matchings M_1 , M_2 auf HK' (existiert, da |U| gerade, $HK' = M_1 \cup M_2$)
 - $\Rightarrow w(M) \le w(M_1), w(M) \le w(M_2)$ (M min. Matching!)
 - $\Rightarrow \ 2 \cdot w(M) \leq w(M_1) + w(M_2) = w(HK') \leq w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung)

$$\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$$



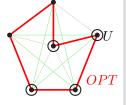
Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$$

- Bestimmung von w(M):
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T) (erzeugt durch Überspringen aller Knoten V \ U in OPT)
 - definiere alternierende perfekte Matchings M₁, M₂ auf HK' (existiert, da |U| gerade, HK' = M₁ ∪ M₂)
 - $\Rightarrow w(M) \le w(M_1), w(M) \le w(M_2)$ (M min. Matching!)
 - $\Rightarrow \ 2 \cdot w(M) \leq w(M_1) + w(M_2) = w(HK') \leq w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung)

$$\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$$



Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$$

- Bestimmung von w(M):
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T) (erzeugt durch Überspringen aller Knoten V \ U in OPT)
 - definiere alternierende perfekte Matchings M_1 , M_2 auf HK' (existiert, da |U| gerade, $HK' = M_1 \cup M_2$)
 - $\Rightarrow w(M) \le w(M_1), w(M) \le w(M_2)$ (M min. Matching!)
 - $\Rightarrow \ 2 \cdot w(M) \leq w(M_1) + w(M_2) = w(HK') \leq w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung)

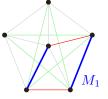
$$\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$$

Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

- Abschätzungen: (analog zu vorherigem Beweis)
 - $\Rightarrow w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$
- Bestimmung von w(M):
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T)
 (erzeugt durch Überspringen aller Knoten V \ U in OPT)
 - definiere alternierende perfekte Matchings M_1 , M_2 auf HK' (existiert, da |U| gerade, $HK' = M_1 \cup M_2$)
 - $\Rightarrow w(M) \le w(M_1), w(M) \le w(M_2)$ (M min. Matching!)
 - $\Rightarrow \ 2 \cdot w(M) \leq w(M_1) + w(M_2) = w(HK') \leq w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung)

$$\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$$



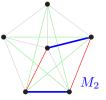
Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$$

- Bestimmung von w(M):
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T)
 (erzeugt durch Überspringen aller Knoten V \ U in OPT)
 - definiere alternierende perfekte Matchings M_1 , M_2 auf HK' (existiert, da |U| gerade, $HK' = M_1 \cup M_2$)
 - $\Rightarrow w(M) \le w(M_1), w(M) \le w(M_2)$ (M min. Matching!)
 - $\Rightarrow \ 2 \cdot w(M) \leq w(M_1) + w(M_2) = w(HK') \leq w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung)

$$\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$$



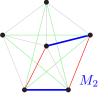
Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$$

- Bestimmung von w(M):
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T)
 (erzeugt durch Überspringen aller Knoten V \ U in OPT)
 - definiere alternierende perfekte Matchings M₁, M₂ auf HK' (existiert, da |U| gerade, HK' = M₁ ∪ M₂)
 - \Rightarrow $w(M) \le w(M_1), w(M) \le w(M_2)$ (*M* min. Matching!)
 - \Rightarrow 2· $w(M) \le w(M_1) + w(M_2) = w(HK') \le w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung)

$$\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$$



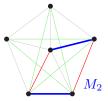
Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$$

- Bestimmung von w(M):
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T)
 (erzeugt durch Überspringen aller Knoten V \ U in OPT)
 - definiere alternierende perfekte Matchings M₁, M₂ auf HK' (existiert, da |U| gerade, HK' = M₁ ∪ M₂)
 - \Rightarrow $w(M) \le w(M_1)$, $w(M) \le w(M_2)$ (*M* min. Matching!)
 - $\Rightarrow \ 2 \cdot w(M) \leq w(M_1) + w(M_2) = w(HK') \leq w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung)

$$\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$$



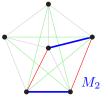
Minimum Metric TSP

3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$$

- Bestimmung von w(M):
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T) (erzeugt durch Überspringen aller Knoten V \ U in OPT)
 - definiere alternierende perfekte Matchings M₁, M₂ auf HK' (existiert, da |U| gerade, HK' = M₁ ∪ M₂)
 - $\Rightarrow w(M) \le w(M_1), w(M) \le w(M_2)$ (M min. Matching!)
 - $\Rightarrow \ 2 \cdot w(M) \leq w(M_1) + w(M_2) = w(HK') \leq w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung)

$$\Rightarrow w(HK) \leq \frac{3}{2}w(OPT)$$

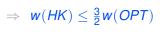


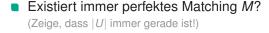
Minimum Metric TSP

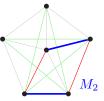
3/2-Approximation (Beweis) (Christofides-Heuristik)

$$\Rightarrow w(HK) \le w(EK) = w(T') = w(T) + w(M) \le w(OPT) + w(M)$$

- Bestimmung von w(M):
 - sei HK' Hamiltonkreis auf U (U: Knoten mit ungeradem Grad in T) (erzeugt durch Überspringen aller Knoten $V \setminus U$ in OPT)
 - definiere alternierende perfekte Matchings M_1 , M_2 auf HK'(existiert, da |U| gerade, $HK' = M_1 \cup M_2$)
 - $\Rightarrow w(M) \leq w(M_1), w(M) \leq w(M_2)$ (M min. Matching!)
 - $\Rightarrow 2 \cdot w(M) < w(M_1) + w(M_2) = w(HK') < w(OPT)$ (Überspringen gerader Knoten und Dreiecks-Ungleichung)







Wissenswert (nicht erschöpfend!)

- Approximationsfaktor ρ
- APX, PTAS, FPTAS, pseudopolynomiell
- es gibt nicht gut approximierbare Probleme (z.B. minimum TSP)

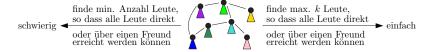
Typische Fragestellungen

- **Zu** welcher Klasse gehört Algorithmus X mit $T(n, \varepsilon)$, $\rho(n, \varepsilon)$?
- **Z**eigen/Widerlegen Sie Approximationsfaktor ρ für Algorithmus X.
- lacktriangle (Bestimmen Sie einen Algorithmus mit Approximationsfaktor ho)

fixed parameter tractable (FPT)

Warum Probleme parametrisieren?

- es aibt "schwierige" Probleme (z.B. Minimum Independent Set)
 - → allgemeine Instanzen haben zu lange Berechnungszeit
- Kann man Spezialfälle eventuell effizient berechnen?
 - → Identifizierung zusätzlicher Parameter k der Problemstellung
 - \rightarrow falls "Komplexität" in diesen Parametern k steckt, effiziente Lösungen für k = const.!



Parametrisierte Algorithmen Definition

Ein Problem heißt fixed parameter tractable, wenn es eine Laufzeit

$$T(n,k) = \mathcal{O}(f(k) \cdot p(n))$$

hat, mit $f(\cdot)$ berechenbar, $p(\cdot)$ Polynom.

 $(f(\cdot) \text{ darf nicht von } n \text{ abhängen und } p(\cdot) \text{ nicht von } k$; häufig Entscheidungsprobleme)

Techniken

Tiefenbeschränkte Suche

- erschöpfendes Aufzählen und Testen aller Möglichkeiten
 - → mit geeignetem Suchbaum beschränkter Tiefe (k gibt Hinweis, wie weit man in die Tiefe gehen muss)

Kernbildung

- Probleminstanz auf (schwierigen) Problemkern reduzieren
- Problemkern mit anderer Technik lösen.

Schiebepuzzle

Problemstellung

- gegeben $n \times n$ Schiebepuzzle, $k \in \mathbb{N}$
- entscheide, ob das Puzzle in $\leq k$ Zügen gelöst werden kann
 - adas Puzzle ist gelöst, wenn die Teile sortiert sind
 - Loch wird pro Zug eine Position horizontal oder vertikal verschoben

Algorithmus A

- es gibt \leq 4 Möglichkeiten in jedem Zug, k Züge
 - baue Suchbaum (Höhe k, Verzweigungsgrad ≤ 4)
 → Baumgröße O(4^k)
 - teste jeden Knoten auf korrekte Lösung
 - ightarrow Aufwand $\mathcal{O}(\mathit{n}^2) \in \mathcal{O}(\mathit{poly}(\mathit{n}))$

\Rightarrow	Gesamtaufwand: $\mathcal{O}(4^k n^2) \Rightarrow \text{FPT}$
	(T(n,k) - 4T(n,k-1) + poly(n))

24	8	13	12	20
11	2		17	21
7	15	14	19	5
6	10	3	9	1
4	23	11	18	22

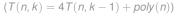
Schiebepuzzle

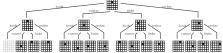
Problemstellung

- gegeben $n \times n$ Schiebepuzzle, $k \in \mathbb{N}$
- entscheide, ob das Puzzle in $\leq k$ Zügen gelöst werden kann
 - das Puzzle ist gelöst, wenn die Teile sortiert sind
 - Loch wird pro Zug eine Position horizontal oder vertikal verschoben

Algorithmus A

- es gibt < 4 Möglichkeiten in jedem Zug, k Züge
 - baue Suchbaum (Höhe k, Verzweigungsgrad ≤ 4) \rightarrow Baumgröße $\mathcal{O}(4^k)$
 - teste jeden Knoten auf korrekte Lösung
 - \rightarrow Aufwand $\mathcal{O}(n^2) \in \mathcal{O}(poly(n))$
- Gesamtaufwand: $\mathcal{O}(4^k n^2) \Rightarrow \text{FPT}$

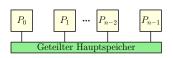




Parallelverarbeitung

PRAM (Shared Memory)

- synchrone Prozessoren
- gemeinsamer Speicher
- Speicherkonflikte



(symmetrisch) gemeinsamer Speicher

Verteilter Speicher (Distributed Memory)

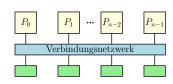
B(ulk)S(ynchronous)P(arallel)

- kollektiver Nachrichtenaustausch aller Rechner
- BSP* berücksichtigt Nachrichtenlänge

Parallelverarbeitung Modelle

PRAM (Shared Memory)

- synchrone Prozessoren
- gemeinsamer Speicher
- Speicherkonflikte



(symmetrisch) gemeinsamer Speicher

Verteilter Speicher (Distributed Memory)

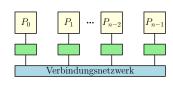
B(ulk)S(ynchronous)P(arallel)

- kollektiver Nachrichtenaustausch aller Rechner
- BSP* berücksichtigt Nachrichtenlänge

Parallelverarbeitung Modelle

PRAM (Shared Memory)

- synchrone Prozessoren
- gemeinsamer Speicher
- Speicherkonflikte



(symmetrisch) gemeinsamer Speicher

Verteilter Speicher (Distributed Memory)

B(ulk)S(ynchronous)P(arallel)

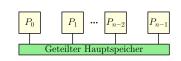
- kollektiver Nachrichtenaustausch aller Rechner
- BSP* berücksichtigt Nachrichtenlänge

PRAM

Speicherkonflikte

PRAM

- klassifiziert nach Lese- (read) und Schreibzugriff (write)
- betrachte gleichzeitigen (concurrent) oder exklusiven Zugriff (exclusive)
 - FRFW
 - ERCW (schwachsinn)
 - CREW
 - CRCW
 - **common**: alle müssen den gleichen Wert schreiben
 - arbitrary: Wert eines zufälligen Prozessorspriority: Wert mit kleinster Prozessor-ID
 - **combine**: Aggregation der Werte (z.B. Summe)



Struktur

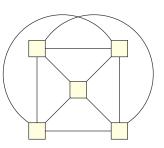
Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - Simplex
 - Telefon
 - Duplex

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn $* * * 1 * * \leftrightarrow * * * 0 * *$

$$***1**\leftrightarrow ***0**$$



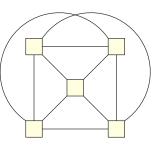
Struktur

Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn $* * * 1 * * \leftrightarrow * * * 0 * *$



Struktur

Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn

$$***1** \leftrightarrow ***0**$$

Kosten

Struktur

Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn $* * * 1 * * \leftrightarrow * * * 0 * *$

Kosten

Struktur

Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn $* * * 1 * * \leftrightarrow * * * 0 * *$

Kosten

Struktur

Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn

Kosten

Struktur

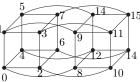
Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$

Duplex $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn $* * * 1 * * \leftrightarrow * * * 0 * *$



Kosten

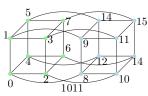
Struktur

Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn $* * * 1 * * \leftrightarrow * * * 0 * *$



Kosten

Struktur

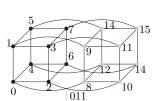
Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn

$$***1** \leftrightarrow ***0**$$



Kosten

Struktur

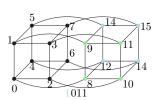
Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn

$$***1** \leftrightarrow ***0**$$



Kosten

Struktur

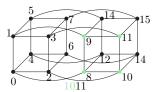
Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn

$$***1** \leftrightarrow ***0**$$



Kosten

Struktur

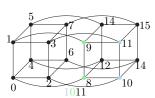
Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - Simplex $i \rightarrow j$
 - Telefon $i \leftrightarrow j$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn

$$***1** \leftrightarrow ***0**$$



Kosten

Struktur

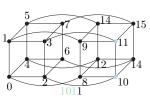
Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn $* * * 1 * * \leftrightarrow * * * 0 * *$

$$***1** \leftrightarrow ***0**$$



Struktur

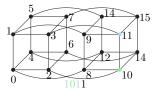
Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn $* * * 1 * * \leftrightarrow * * * 0 * *$

$$***1** \leftrightarrow ***0**$$



Kosten

Struktur

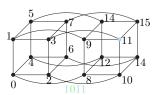
Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - **Simplex** $i \rightarrow j$
 - **Telefon** $i \leftrightarrow i$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

Hyperwürfel

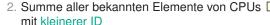
- p log p Verbindungen
- klare Nummerierung von Nachbarn $* * * 1 * * \leftrightarrow * * * 0 * *$

$$***1** \leftrightarrow ***0**$$



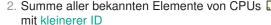
Kosten

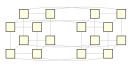
- jede CPU speichert zwei Werte
 - Summe aller bekannten Elemente



- ist in Schritt *k* das eigene *k*-te Bit 1 so gilt: Summe aller Elemente beim Kommunikationspartner kommt von CPUs mit kleinerer ID
- sonst: erhaltene Daten gehören zu CPUs größerer ID
- $T(n,p) = (T_{start} + n \cdot T_{byte}) \cdot \log p$

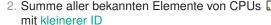
- jede CPU speichert zwei Werte
 - Summe aller bekannten Elemente

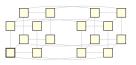




- ist in Schritt *k* das eigene *k*-te Bit 1 so gilt: Summe aller Elemente beim Kommunikationspartner kommt von CPUs mit kleinerer ID
- sonst: erhaltene Daten gehören zu CPUs größerer ID
- $T(n,p) = (T_{start} + n \cdot T_{byte}) \cdot \log p$

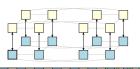
- jede CPU speichert zwei Werte
 - Summe aller bekannten Elemente





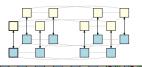
- ist in Schritt *k* das eigene *k*-te Bit 1 so gilt: Summe aller Elemente beim Kommunikationspartner kommt von CPUs mit kleinerer ID
- sonst: erhaltene Daten gehören zu CPUs größerer ID
- $T(n,p) = (T_{start} + n \cdot T_{byte}) \cdot \log p$

- jede CPU speichert zwei Werte
 - Summe aller bekannten Elemente
 - 2. Summe aller bekannten Elemente von CPUs mit kleinerer ID



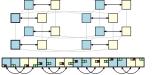
- ist in Schritt k das eigene k-te Bit 1 so gilt: Summe aller Elemente beim Kommunikationspartner kommt von CPUs mit kleinerer ID
- sonst: erhaltene Daten gehören zu CPUs größerer ID
- $T(n,p) = (T_{start} + n \cdot T_{byte}) \cdot \log p$

- jede CPU speichert zwei Werte
 - Summe aller bekannten Elemente
 - 2. Summe aller bekannten Elemente von CPUs mit kleinerer ID



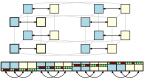
- ist in Schritt k das eigene k-te Bit 1 so gilt: Summe aller Elemente beim Kommunikationspartner kommt von CPUs mit kleinerer ID
- sonst: erhaltene Daten gehören zu CPUs größerer ID
- $T(n,p) = (T_{start} + n \cdot T_{byte}) \cdot \log p$

- jede CPU speichert zwei Werte
 - Summe aller bekannten Elemente
 - 2. Summe aller bekannten Elemente von CPUs mit kleinerer ID



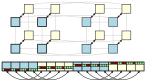
- ist in Schritt *k* das eigene *k*-te Bit 1 so gilt: Summe aller Elemente beim Kommunikationspartner kommt von CPUs mit kleinerer ID
- sonst: erhaltene Daten gehören zu CPUs größerer ID
- $T(n,p) = (T_{start} + n \cdot T_{byte}) \cdot \log p$

- jede CPU speichert zwei Werte
 - Summe aller bekannten Elemente
 - 2. Summe aller bekannten Elemente von CPUs mit kleinerer ID



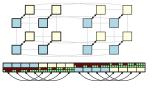
- ist in Schritt *k* das eigene *k*-te Bit 1 so gilt: Summe aller Elemente beim Kommunikationspartner kommt von CPUs mit kleinerer ID
- sonst: erhaltene Daten gehören zu CPUs größerer ID
- $T(n,p) = (T_{start} + n \cdot T_{byte}) \cdot \log p$

- jede CPU speichert zwei Werte
 - Summe aller bekannten Elemente
 - 2. Summe aller bekannten Elemente von CPUs mit kleinerer ID



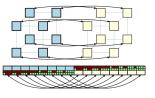
- ist in Schritt k das eigene k-te Bit 1 so gilt: Summe aller Elemente beim Kommunikationspartner kommt von CPUs mit kleinerer ID
- sonst: erhaltene Daten gehören zu CPUs größerer ID
- $T(n,p) = (T_{start} + n \cdot T_{byte}) \cdot \log p$

- jede CPU speichert zwei Werte
 - Summe aller bekannten Elemente
 - 2. Summe aller bekannten Elemente von CPUs mit kleinerer ID



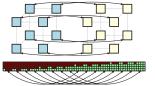
- ist in Schritt k das eigene k-te Bit 1 so gilt: Summe aller Elemente beim Kommunikationspartner kommt von CPUs mit kleinerer ID
- sonst: erhaltene Daten gehören zu CPUs größerer ID
- $T(n,p) = (T_{start} + n \cdot T_{byte}) \cdot \log p$

- jede CPU speichert zwei Werte
 - Summe aller bekannten Elemente
 - 2. Summe aller bekannten Elemente von CPUs mit kleinerer ID



- ist in Schritt k das eigene k-te Bit 1 so gilt: Summe aller Elemente beim Kommunikationspartner kommt von CPUs mit kleinerer ID
- sonst: erhaltene Daten gehören zu CPUs größerer ID
- $T(n, p) = (T_{start} + n \cdot T_{byte}) \cdot \log p$

- jede CPU speichert zwei Werte
 - Summe aller bekannten Elemente
 - 2. Summe aller bekannten Elemente von CPUs mit kleinerer ID



- ist in Schritt k das eigene k-te Bit 1 so gilt: Summe aller Elemente beim Kommunikationspartner kommt von CPUs mit kleinerer ID
- sonst: erhaltene Daten gehören zu CPUs größerer ID
- $T(n, p) = (T_{start} + n \cdot T_{byte}) \cdot \log p$

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

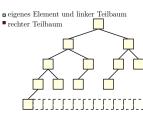
Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts



Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

eigenes Element und linker Teilbaum rechter Teilbaum

Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

eigenes Element und linker Teilbaum rechter Teilbaum

Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

eigenes Element und linker Teilbaum rechter Teilbaum

Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

eigenes Element und linker Teilbaum rechter Teilbaum

Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

eigenes Element und linker Teilbaum rechter Teilbaum

Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

eigenes Element und linker Teilbaum rechter Teilbaum

Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

eigenes Element und linker Teilbaum rechter Teilbaum

Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

eigenes Element und linker Teilbaum rechter Teilbaum

Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

eigenes Element und linker Teilbaum rechter Teilbaum

Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

eigenes Element und linker Teilbaum rechter Teilbaum

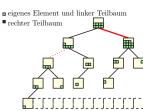
Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts



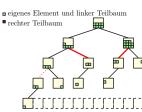
Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts



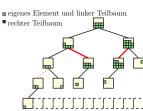
Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts



Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

eigenes Element und linker Teilbaum rechter Teilbaum

Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

PRAM Präfixsumme

- viele komplexere Algorithmen nutzen Reduktionsschemata in Baumform
- hier Beispiel Präfixsumme (Fibonacci-Baum)
- zweiphasig, aufwärts und abwärts

eigenes Element und linker Teilbaum rechter Teilbaum

Aufwärtsphase

- Prozessoren aggregieren Daten aus Teilbäumen
- speichere Summe kleinerer (linker Teilbaum) und größerer (rechter Teilaum) Elemente (getrennt voneinander)
- leite Summe aller Elemente an Vorgängerknoten

- gesammelte Daten werden verteilt
- bisher in Abwärtsphase empfangene Daten; eigene Daten und Daten des linken Teilbaums nur nach rechts

Paralleler Quicksort

- - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme

 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der

Paralleler Quicksort

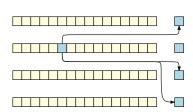
- 1. ein PE stellt Pivot (zufällig)
- 2. Broadcast
- 3. lokaler Vergleich
- 4. kleine Elemente durchnummerieren
 - → Präfixsumme
- 5. umverteilen
 - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme kleiner Elemente
 - Position kleine Elemente ist Präfixsummenwert
 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der Präfixsumme für große Elemente
- 6. Prozessoren aufspalten (Problematisch bei unbalancierter Verteilung
- 7. parallele Rekursion

Paralleler Quicksort

- 1. ein PE stellt Pivot (zufällig)
- Broadcast

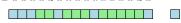
- - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme

 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der



Paralleler Quicksort

- 1. ein PE stellt Pivot (zufällig)
- 2. Broadcast
- 3. lokaler Vergleich
- 4. kleine Elemente durchnummerierer
 - → Präfixsumme
- 5. umverteiler
 - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme kleiner Elemente
 - Position kleine Elemente ist Präfixsummenwer
 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der Präfixsumme für große Elemente
- Prozessoren aufspalten (Problematisch bei unbalancierter Verteilung)
- 7. parallele Rekursion



Paralleler Quicksort

Rekursives Verfahren

- 1. ein PE stellt Pivot (zufällig)
- 2. Broadcast
- 3. lokaler Vergleich
- 4. kleine Elemente durchnummerieren
 - → Präfixsumme

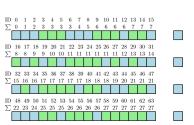
19 20 21 22 23 24 25 26 27 28 29

- 5. umverteiler
 - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme kleiner Elemente
 - Position kleine Elemente ist Präfixsummenwer
 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der Präfixsumme für große Elemente
- Prozessoren aufspalten (Problematisch bei unbalancierter Verteilung)
- 7. parallele Rekursion

Übung 7 – Algorithmen II

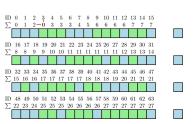
Paralleler Quicksort

- 1. ein PE stellt Pivot (zufällig)
- 2. Broadcast
- 3. lokaler Vergleich
- 4. kleine Elemente durchnummerieren
 - → Präfixsumme
- 5. umverteilen
 - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme kleiner Elemente
 - Position kleine Elemente ist Präfixsummenwer
 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der Präfixsumme für große Elemente
- Prozessoren aufspalten (Problematisch bei unbalancierter Verteilung)
- 7. parallele Rekursion



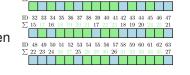
Paralleler Quicksort

- 1. ein PE stellt Pivot (zufällig)
- Broadcast
- 3. lokaler Vergleich
- 4. kleine Elemente durchnummerieren
 - → Präfixsumme
- umverteilen
 - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme kleiner Flemente
 - Position kleine Flemente ist Präfixsummenwert
 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der Präfixsumme für große Elemente



Paralleler Quicksort

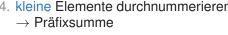
- 1. ein PE stellt Pivot (zufällig)
- 2. Broadcast
- 3. lokaler Vergleich
- 4. kleine Elemente durchnummerieren
 - → Präfixsumme

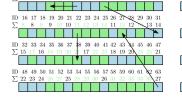


- 5. umverteilen
 - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme kleiner Elemente
 - Position kleine Elemente ist Präfixsummenwert
 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der Präfixsumme für große Elemente
- Prozessoren aufspalten (Problematisch bei unbalancierter Verteilung)
- 7. parallele Rekursion

Paralleler Quicksort

- 1. ein PE stellt Pivot (zufällig)
- Broadcast
- 3. lokaler Vergleich
- 4. kleine Elemente durchnummerieren





- umverteilen
 - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme kleiner Flemente
 - Position kleine Flemente ist Präfixsummenwert
 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der Präfixsumme für große Elemente

Paralleler Quicksort

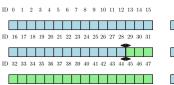
- 1. ein PE stellt Pivot (zufällig)
- Broadcast
- 3. lokaler Vergleich
- 4. kleine Elemente durchnummerieren
 - → Präfixsumme
- umverteilen
 - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme kleiner Flemente
 - Position kleine Flemente ist Präfixsummenwert
 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der Präfixsumme für große Elemente

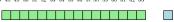
Paralleler Quicksort

- 1. ein PE stellt Pivot (zufällig)
- Broadcast
- 3. lokaler Vergleich
- 4. kleine Elemente durchnummerieren
 - → Präfixsumme
- umverteilen
 - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme kleiner Flemente
 - Position kleine Flemente ist Präfixsummenwert
 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der Präfixsumme für große Elemente

Paralleler Quicksort

- 1. ein PE stellt Pivot (zufällig)
- Broadcast
- 3. lokaler Vergleich
- 4. kleine Elemente durchnummerieren
- → Präfixsumme
- umverteilen
 - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme kleiner Flemente
 - Position kleine Flemente ist Präfixsummenwert
 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der Präfixsumme für große Elemente
- 6. Prozessoren aufspalten (Problematisch bei unbalancierter Verteilung)





Paralleler Quicksort

- 1. ein PE stellt Pivot (zufällig)
- 2. Broadcast
- 3. lokaler Vergleich
- 4. kleine Elemente durchnummerieren
 - → Präfixsumme
- 5. umverteilen
 - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme kleiner Elemente
 - Position kleine Elemente ist Präfixsummenwert
 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der Präfixsumme für große Elemente
- 6. Prozessoren aufspalten (Problematisch bei unbalancierter Verteilung)
- 7. parallele Rekursion

Parallele Programmierung

Ein Einstieg

Einstieg in parallele Programmierung?

- OpenMP
 - www.openmp.org
 - enthalten im GCC Compiler
 - Parallelität über Preprozessorflags (#pragma omp parallel)
- Intel Thread Building Block Library (TBB)
 - https://software.intel.com/en-us/tbb
 - mehr objektorientierter als OpenMP
 - enthält konkurrente Datenstrukturen und viele parallele Primitive
 - Konkurrente Queues, Arrays, . . .
 - Parallel Sort, For, While, ...
 - Komplexe Dataflow-Graphen
 - Geschachtelter und rekursiver Parallelismus
- Message Passing Interface (MPI)
 - https://www.mcs.anl.gov/research/projects/mpi/
 - Standard f
 ür verteilte Programmierung
 - implementiert die g\u00e4ngisten Kommunikationsprimitiven (c-Style Interface)

Ende!

Feierabend!