

Übung 5 – Algorithmen II

Hans-Peter Lehmann, Daniel Seemaier – {hans-peter.lehmann, daniel.seemaier}@kit.edu http://algo2.iti.kit.edu/AlgorithmenII_WS21.php

Institut für Theoretische Informatik - Algorithmik II

```
sweath - current weight:
    PROPERTY STATE
or( idget0 eid = graph.edgeBegin( current ); eid != graph.edgeEnd( current ); ++eid ){
  const Edge & edge = graph.getEdge( eid );
 COUNTING( statistic data.inc( DijkstraStatisticData::TOUCHED EDGES ); )
 if ( edge. forward ) {
    COUNTING( statistic data.inc( DijkstraStatisticData::RELAXED EDGES ); )
   Weight new weight = edge.weight + current weight;
  GUARANTEE( new weight >= current weight, std::runtime error, "Weight overflow detected
  if( !priority queue.isReached( edge.target ) ){
     COUNTING( statistic data.inc( DijkstraStatisticData::SUCCESSFULLY RELAXED EDGES )
    COUNTING( statistic data.inc( DijkstraStatisticData::REACHED MODES )
   priority queue.push( edge.target, new weight ):
} else {
  if( priority queue.getCurrentKey( edge.target ) > new wellphill
     COUNTING( Statistic data.inc( DijkstrastatisticData | tuccastamus v del aces | tuccastamus v
     priority queue.decreasekey( edge target, new weight)
```

Themenübersicht

- Parallelverarbeitung
 - Maschinenmodelle
 - Hyperwürfel Präfixsumme
 - Paralleler Quicksort
- Flüsse
 - Ford Fulkerson
 - Dinitz

Parallelverarbeitung

PRAM (Shared Memory)

- synchrone Prozessoren
- gemeinsamer Speicher
- Speicherkonflikte

(symmetrisch) gemeinsamer Speicher

Verteilter Speicher (Distributed Memory)

BulkSynchronousParallel

- kollektiver Nachrichtenaustausch aller Rechner
- BSP* berücksichtigt Nachrichtenlänge

Verbindungsnetzwerke

Struktur

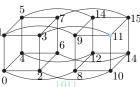
Vollverkabelt

- nur für geringe Anzahl an Rechnern
- $\frac{p \cdot (p-1)}{2}$ Verbindungen nötig
- Varianten
 - Simplex $i \rightarrow j$
 - Telefon $i \leftrightarrow j$
 - **Duplex** $i \rightarrow j, k \rightarrow i$

→ / →

Hyperwürfel

- p log p Verbindungen
- klare Nummerierung von Nachbarn



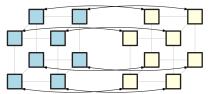
Kosten

■ Kostenmaß Kommunikation $T_{comm} = T_{start} + I \cdot T_{byte}$

Anwendungen

Präfixsumme - Hypercube

- Jede CPU speichert zwei Werte
 - 1. Summe aller bekannten Elemente
 - Summe aller bekannten Elemente von CPUs mit kleinerer ID



- In Schritt k tauschen CPUs entlang der k-ten Dimension ihre Summen aus.
 - ID[k] = 1: Summe aller Elemente beim Kommunikationspartner kommt von CPUs mit kleinerer $ID \rightarrow gehört$ zur Präfixsumme

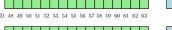
- ID[k] = 0: Erhaltene Daten gehören zu CPUs größerer ID
 → gehört nicht zur Präfixsumme
- $T(n, p) = (T_{start} + I \cdot T_{byte}) \cdot \log p$

Anwendungen

Paralleler Quicksort

Rekursives Verfahren

- 1. ein PE stellt Pivot zufällig
- 2. Broadcast
- 3. lokaler Vergleich
- 4. kleine Elemente durchnummerieren
 - → Präfixsumme
- 5. umverteilen
 - Präfixsumme für große Elemente folgt direkt aus ID und Präfixsumme kleiner Elemente
 - Position kleine Elemente ist Präfixsummenwert
 - Position großer Elemente ist Anzahl kleiner Elemente plus Wert der Präfixsumme für große Elemente
- 6. Prozessoren aufspalten Problematisch bei unbalancierter Verteilung
- 7. parallele Rekursion



Parallele Programmierung

Karlsruher Institut für Technologie

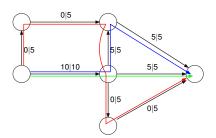
Ein Einstieg

Einstieg in parallele Programmierung?

- OpenMP
 - www.openmp.org
 - enthalten im GCC Compiler
 - Parallelität über Preprozessorflags #pragma omp parallel
- Intel Thread Building Block Library (TBB)
 - https://software.intel.com/en-us/tbb
 - mehr objektorientiert als OpenMP
 - enthält konkurrente Datenstrukturen und viele parallele Primitive
 - Konkurrente Queues, Arrays, . . .
 - Parallel Sort, For, While, . . .
 - Komplexe Dataflow-Graphen
 - Geschachtelter und rekursiver Parallelismus
- Message Passing Interface (MPI)
 - https://www.mcs.anl.gov/research/projects/mpi/
 - Standard f
 ür verteilte Programmierung
 - implementiert die g\u00e4ngisten Kommunikationsprimitiven (c-Style Interface)

Ford Fulkerson

Flüsse und Ford Fulkerson



Residualgraph

- Verwalten von Restkapazitäten
- Modellierung und Erkennung von "Gegenflüssen"
- $c^f(e) = c(e) f(e)$: Restkapazität Hier: Fluss f(e) und Gesamtkapazität c(e)
- $c^t(e^{rev}) = f(e)$: Fluss über Kante eHier: Restkapazität und Gesamtkapazität von e
- Keine 0-Gewicht Kanten
- Flüsse über Kanten e und e^{rev} erlaubt
 - Fluss über Kante → Update beider Kanten

Flüsse und Ford Fulkerson

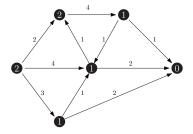


Dinitz Algorithmus

DinitzDistanz Label

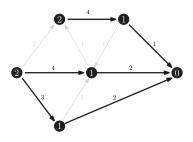
- Geben Distanz im Residualgraphen (hop-based) zur Senke *t* an
- Rückwärtsgerichtete Breitensuche
 - Start bei Knoten t
 - Layer: Knoten mit gleicher Distanz zu s im BFS-Baum
 - Knoten in einem Layer: gleiches Label
- Layered graph

auch: kürzeste Wege Netzwerk, Schichtgraph



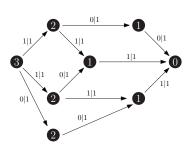
Schichtgraph für Graph G = (V, E)

- Knotenmenge V_S = V
- $E' = \{e = (u, v) \in E | f(e) < c(e), \\ d(u) = d(v) + 1\} \\ E'^{rev} = \{e^{rev} = (v, u)^{rev} | f(v, u) > 0, \\ d(u) = d(v) + 1\} \\ Kantenmenge E_S = E' \cup E'^{rev}$
- betrachte Analogie zu Edmonds-Karp (kürzeste erhöhende Wege)



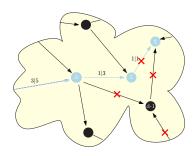
Blockierender Fluss

- Kein weiterer Fluss möglich
 - "Auf jedem Weg durch den Graphen mindestens eine Kante bis zur maximalen Kapazität ausgelastet ist"
- Blocking flow als atomare Operation
 - Berechnung auf Schichtgraph
 - Kein Residualgraph
 - Kein Rückfluss möglich
- i.A. nicht maximal auf Schichtgraph und Redisualgraph



Blockierender Fluss: Operationen

- Blocking flow: Berechnung basiert auf Tiefensuche von Knoten s
- Drei Operationen
 - extend gehe einen Knoten n\u00e4her ans Ziel (Schichtgraph)
 - retreat Sackgasse gefunden, gehe zurück, lösche Kante
 - breakthrough Tiefensuche hat Senke erreicht, lösche saturierte Kanten



Karlsruher Institut für Technologie

Kosten pro Blockierendem Fluss

- #breakthrough ≤ m
 - Jedes breakthrough saturiert mindestens eine Kante
 - ightarrow Kein breakthrough über saturierte Kante mehr möglich
- Laufzeit O(n)
- #retreat $\leq m$
 - Jedes retreat löscht eine Kante
 - Laufzeit O(1)
- #extends \leq #retreats $+ n \cdot$ #breakthrough
 - Retreat: Vorher ein extend Ohne breakthrough nur retreats
 - Breakthrough: Vorher ≤ n erfolgreiche extends Schichtgraph schließt Kreise aus
 - Laufzeit O(1)
- Blockierender Fluss in O(nm)

Dinitz Laufzeit

- Pro Phase
 - **R**ückwärtsgerichtete Breitensuche: **Laufzeit** O(n+m)
 - Blockierender Fluss: Laufzeit O(nm)
- Phase in O(nm)
- #Phasen $\leq n$ (Beweis, wie in Vorlesung, nicht hier)

(Lemma 1: Jede Phase erhöht Label von s um mindestens 1)

 \rightarrow Gesamtlaufzeit $O(n^2m)$

Ende!

Feierabend!