

Übung 12 – Algorithmen II

 $\label{lem:moritz_laupichler} Moritz\ Laupichler,\ Hans-Peter\ Lehmann - \{moritz.laupichler,\ hans-peter.lehmann\}@kit.edu\ http://algo2.iti.kit.edu/AlgorithmenII_WS22.php$

Institut für Theoretische Informatik - Algorithmik II

```
sweath - current weight:
    PROPERTY STATE
or( idget0 eid = graph.edgeBegin( current ); eid != graph.edgeEnd( current ); ++eid ){
 const Edge & edge = graph.getEdge( eid );
 COUNTING( statistic data.inc( DijkstraStatisticData::TOUCHED EDGES ); )
if( edge. forward ){
   COUNTING( statistic data.inc( DijkstraStatisticData::RELAXED EDGES ); )
   Weight new weight = edge.weight + current weight;
  GUARANTEE( new weight >= current weight, std::runtime error, "Weight overflow detected
 if( !priority queue.isReached( edge.target ) ){
     COUNTING( statistic data.inc( DijkstraStatisticData::SUCCESSFULLY RELAXED EDGES )
    COUNTING( statistic data.inc( DijkstraStatisticData::REACHED MODES )
   priority queue.push( edge.target, new weight ):
} else {
  if( priority queue.getCurrentKey( edge.target ) > new wellphill
     COUNTING( Statistic data.inc( DijkstrastatisticData | tuccastamus v 400 Aven | Nove
     priority queue.decreasekey( edge target, new weight)
```

Themenübersicht

- Stringology
 - Multikey Quicksort
 - Suche mit Suffix-Arrays
- Blatt 05, A4
- Blatt 05, A6

Multikey Quicksort

Bentley, Sedgewick (1997)

Three-way Radix Quicksort

- sortiert Elemente mit mehreren Schlüsseln wie msd-Radixsort
 - ightarrow z.B. Stellen einer Zahl, Zeichen eines Strings
- für einen Schlüssel wird *Quicksort* mit drei Fällen ausgeführt
 - → kleiner als, gleich, größer als das Pivotelement

Multikey Quicksort Ablauf

Function mkgSort(S: Array of String, i : Integer) : Array of String if $|S| \leq 1$ then return SBasisfall choose $p \in S$ uniformly at random Pivotelement return concatenation of Rekursion

```
mkgSort( \langle e \in S : e[i] < p[i] \rangle, i ),
mkgSort( \langle e \in S : e[i] = p[i] \rangle, i + 1 ).
mkgSort( \langle e \in S : e[i] > p[i] \rangle, i)
```

S	В	Е	Н	A	М	Т	М	Н	S	Н	A	Н	U	N
A	I	Н	A	R	Ι	A	0	A	E	U	U	Α	Н	A
A	Е	R	U	М	E	S	R	N	E	N	A	L	R	С
L	N	Ε	S		S	S	D	D		D		L		Н
	E					Е						E		Т

in-place Multikey Quicksort

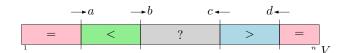
in-place bei Quicksort für Integer

- teilt Elemente in kleiner gleich und größer als Pivotelement p
- zwei Zeiger a, b wandern von außen "in die Mitte"
 - \rightarrow Invariante: $V[i < a] \le p, V[i > b] > p$
 - Wähle Pivot p und tausche mit erstem Element, setze a = 2, b = n
 - $a \rightarrow a+1$, solange $V[a] \le p$, $b \rightarrow b-1$, solange V[b] > p,
 - Tausch, wenn V[a] > p und $V[b] \le p$
 - Ende, wenn a > b

in-place Multikey Quicksort Partitionierung

in-place bei Multikey Quicksort

- teilt Elemente in kleiner, gleich und größer als Pivotelement p
- zwei Zeiger b, c wandern von außen "in die Mitte"
- gleiche Elemente werden mit Zeiger a, d "außen" gesammelt
- \rightarrow Invariante: $V[i \in [a, b) \ a \neq b] \leq p$, $V[i < a \lor i > d] = p$, $V[i \in (c, d] \ c \neq d] > p$



in-place Multikey Quicksort

Partitionierung

in-place bei Multikey Quicksort Algorithmus

- Wähle Pivot p und tausche mit erstem Element, setze a = b = 2. c = d = n
- **■** $b \to b+1$, solange $V[b] \le p$, wenn V[b] = p: Tausch mit V[a], $a \to a+1$, $c \to c-1$, solange $V[c] \ge p$, wenn V[c] = p: Tausch mit V[d], $d \to d-1$
- Tausch, wenn V[b] > p und V[c] < p
- **Ende**, wenn b > c

<u>p</u>														n	S
S	В	E	Н	Α	М	Т	М	Н	S	Н	Α	Н	U	N	
Α	I	Н	Α	R	I	Α	0	Α	E	U	U	Α	Н	Α	
Α	E	R	U	М	E	S	R	N	E	N	A	L	R	С	
L	N	Ε	S		S	S	D	D		D		L		Н	
	Е			,		Ε			,		'	Ε		Т	

in-place Multikey Quicksort

Partitionierung

in-place bei Multikey Quicksort Umgruppierung

- $r = \min(a 1, b a)$
 - Tausch von r Zeichen zwischen [1, r) und [b r, b)
- $r = \min(d c, n d)$ Tausch von r Zeichen zwischen [c + 1, c + r) und [n r + 1, n + 1)

1		a			c	b						d		n	.S
Н	Н	Е	В	A	Α	Т	М	S	S	U	М	N	Н	Н	
A	Α	Н	I	R	U	Α	0	Α	Ε	Н	Ι	Α	U	Α	
N	U	R	E	M	Α	S	R	A	E	R	Ε	С	N	L	
D	S	Ε	N			S	D	L			S	Н	D	L	
	•		Ε			Ε			•			Т		Е	

in-place Multikey Quicksort Zusammenfassung

- Three-way Radix Quicksort
 Partitionierung in kleiner, gleich, größer über alle Stellen analog zu msd-Radixsort
- effizient $\mathcal{O}(|S| \log |S| + d)$ d = Summe der Länge der unterscheidenden Präfixe
- in-place Partitionierung möglich durch geschicktes Speichern und Verschieben der gleichen Elemente
- sehr einfache Implementierung

Suffix-Arrays

Wiederholung

Suffix-Array SA von T indiziert alle Suffixe in sortierter Reihenfolge Im Beispiel $\mathcal{O}(n^3)$

```
i SA[i]
1 15
              a b
         habarber$
   h e r
        а
          rber$
```

Suche mit Suffix-Arrays Ablauf

Suche: P = bar

n = Textlänge, m = Pattern-Länge

- Naiv: $\mathcal{O}(n \cdot m)$
- **KMP**: $\mathcal{O}(n+m)$
- Mit Suffix-Arrays zunächst: $\mathcal{O}(m \cdot \log n)$
- Optimiert: $\mathcal{O}(m + \log n)$

Ablauf

11

```
Suche: P = bar
                            i SA[i]
(SA bestimmen)
                            1 15 $
  finde Start binäre Suche
                             8 abarber $
  I = 1, r = n
                                 arbarhabarber$
  while (I < r) do
    q = \lfloor \frac{l+r}{2} \rfloor
                            5 5 arhabarber $
    if (P > T_{SA[q]..SA[q]+m-1})
                             1 barbarhabarber$
      then I = a + 1
                             9 barber $
      else r = q
                                 barhabarber$
  s = 1
  if (P \neq T_{SA[s]..SA[s]+m-1})
    then break
                           11 7 habarber $
  finde Ende binäre Suche
  l=s, r=n
                           13 3 rbarhabarber $
  while (I < r) do
    q = \lceil \frac{l+r}{2} \rceil
    if (P = T_{SA[q]..SA[q]+m-1})
                                                            s = 6, t = 8
```

Zusammenfassung

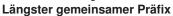
- Verlagerung des Aufwands von Anfrage in Vorverarbeitung
 - \rightarrow einmal Suffix-Array generieren in $\mathcal{O}(n)$,
 - danach Anfragen in $\mathcal{O}(m \log n)$ möglich, statt in $\mathcal{O}(m+n)$

gut, wenn auf einem Text viele Anfragen stattfinden

- Ausnutzung der Eigenschaften des Suffix-Arrays
 - → jeder Substring ist Präfix eines Suffix
 - → alle Substrings liegen "sortiert" vor mögliche Ausnahme: Substring ist Präfix von Substring

das Suffix-Array indiziert alle Suffixe in sortierter Reihenfolge

LCP-Array



Definition:

■ LCP[i]: Länge des längsten gemeinsamen Präfixes von je zwei lexikographisch benachbarten Suffixen A[SA[i - 1]...n] und A[SA[i]...n]

Erweiterung auf beliebige Suffixe

- LCP[i][j]: Länge des längsten gemeinsamen Präfix beliebiger lexikographischer Suffixe A[SA[i]...n] und A[SA[j]...n]
- Konstruktion: $\mathcal{O}(n \log n)$ Zeit und Platz
- Zugriff: $\mathcal{O}(1)$

Schnelle Suche mit Suffix-Arrays

Erster Ansatz

Suche: P = bar

- Ziel: kein wiederholtes Vergleichen von Zeichen aus P
- Nutze LCP-Array um Suche zu beschleunigen
- Starte Suche bei mlr
 - *I* := LCP(*L*, *P*)
 - r := LCP(R, P)
 - $mlr := \min(I, r)$
 - Update von *I*, *r*, keine Neuberechnung
- Oft $\mathcal{O}(m + \log n)$
- Worst case $\mathcal{O}(m \log n)$

- i SA[i] 1 15 \$
- 2 8 a b a r b e r \$
- 3 2 arbarnabarb
- cne 5 5 arhabarber \$
- L=6 1 b a r b a r h a b a r b e r \$
- q = 7 9 b a r b e r \$
 - 8 4 barhabarber\$
- R = 9 12 b e r \$
 - 10 **13** e r \$
 - 11 7 h a b a r b e r \$
 - 12 **14 r** \$
 - 13 3 rbarhabarber \$
 - 14 11 r b e r \$
 - 15 6 r h a b a r b e r \$

Schnelle Suche mit Suffix-Arrays

Redundante Vergleiche

Problem

■ Falls $I \neq r \rightarrow$ wiederholtes Vergleichen

```
i SA[i]
   7 9 barber $
L = 8 4 b a r h a b a r b e r $
  11 7 habar
```

Definition

 Vergleich eines Zeichens aus P ist redundant, falls das Zeichen vorher schon einmal überprüft wurde.

Ziel

- Beschränke rendundante Vergleiche auf $\mathcal{O}(1)$ pro Iteration
- Vergleiche bei max(I, r) beginnen

Suche mit Suffix-Arrays Ablauf

Ansatz

- if (I = r)start at mlr Update I, r, L, R
- if $(I > r \land \mathsf{LCP}[L, q] > I)$ L := q + 1Update /
- if $(I > r \land \mathsf{LCP}[L, q] < I)$ R := qr := LCP[L, q]
- if $(I > r \land \mathsf{LCP}[L, q] = I)$ start at I

Ablauf

Suche: P = barberac

- \bullet if (I=r)
 - start at mlr Update I, r, L, R
- if $(I > r \land \mathsf{LCP}[L, q] > I)$ L := q + 1
 - Update /
- if $(I > r \land \mathsf{LCP}[L, q] < I)$
 - R := qr := LCP[L, q]
- if $(I > r \land \mathsf{LCP}[L, q] = I)$ start at I
- Laufzeit

l = 4, r = 4

■ LCP + SA: $\mathcal{O}(m + \log n)$ Vergleiche

barb|arhabarber

barberaba...

barberabc...

barberacc...

barbercbc\$

Zusammenfassung

- Verlagerung des Aufwands von Anfrage in Vorverarbeitung
 - \rightarrow einmal Suffix-Array generieren in $\mathcal{O}(n)$,
 - \rightarrow danach Anfragen in $\mathcal{O}(m \log n)$ möglich, statt in $\mathcal{O}(m+n)$

gut, wenn auf einem Text viele Anfragen stattfinden

- Verhindern redundanter Vergleiche
 - \rightarrow einmal Suffix-Array generieren in $\mathcal{O}(n)$,
 - \rightarrow einmal LCP-Array generieren in $\mathcal{O}(n)$,
 - \rightarrow einmal erweitertes LCP-Array generieren in $\mathcal{O}(n \log n)$,
 - \rightarrow danach Anfragen in $\mathcal{O}(m + \log n)$

Ende!

Feierabend!