

Algorithmen II

Peter Sanders

Übungen:

Moritz Laupichler, Nikolai Maas

Institut für Theoretische Informatik

Web:

algo2.iti.kit.edu/AlgorithmenII_WS23.php

1 Algorithm Engineering

A detailed definition

In genera

[with Kurt Mehlhorn, Rolf Möhring, Petra Mutzel, Dorothea Wagner]

- A few examples, usually sorting
- A little bit on experimental methodology

(Caricatured) Traditional View: Algorithm Theory

Gaps Between Theory & Practice

Theory		\longleftrightarrow		Practice
simple		appl. model		complex
simple		machine model		real
complex		algorithms	FOR	simple
advanced		data structures		arrays,
worst case m	ıax	complexity measure		inputs
asympt.	$\overline{(\cdot)}$	efficiency	42% co	nstant factors

Algorithmics as Algorithm Engineering

Algorithmics as Algorithm Engineering

Bridge gaps between theory Theory Experiment and practice 'mplementation Algorithm Engineering Analysis

Algorithmics as Algorithm Engineering

Bridge gaps between theory and practice

Integrated interdisciplinary

research

Theory Experiment mplementation Algorithm Engineering Analysis

1-7

Algorithmics as Algorithm Engineering

Bits of History

1843 – Algorithms in theory and practice

1950s,1960s Still infancy

1970s,1980s Paper and pencil algorithm theory.

Exceptions exist, e.g., [D. Johnson], [J. Bentley]

1986 Term used by [T. Beth], lecture "Algorithmentechnik" in Karlsruhe.

1988 Library of Efficient Data Types and Algorithms (LEDA) [K. Mehlhorn]

1997 – Workshop on Algorithm Engineering

→ ESA applied track [G. Italiano]

1997 Term used in US policy paper [Aho, Johnson, Karp, et. al]

1998 Alex workshop in Italy → ALENEX

Realistic Models

Theory	\longleftrightarrow	Practice	
simple ##	appl. model	complex	
simple	machine model	real	

- ☐ Careful refinements
- ☐ Try to preserve (partial) analyzability / simple results

Design

of algorithms that work well in practice

- reuse
- constant factors
- exploit easy instances

Analysis

Constant factors matter

Example: quicksort

Beyond worst case analysis

☐ Practical algorithms might be difficult to analyze (randomization, meta heuristics,...)

Implementation

sanity check for algorithms!

Challenges

Semantic gaps:

Abstract algorithm

 \leftrightarrow

C++...

 \leftrightarrow

hardware

Experiments

- Sometimes a good surrogate for analysis
- Too much rather than too little output data
- ☐ Reproducibility (10 years!)
- Software engineering

Stay tuned.

Algorithm Libraries — Challenges

Software	engine	ering
----------	--------	-------

Standardization,

e.g. java.util, C++ STL and BOOST

Performance

 \leftrightarrow

generality

 \leftrightarrow

simplicity

Applications are a priori unknown

Result checking, verification

Problem Instances

Benchmark instances are essential for development of practical algorithms

Example: Sorting Benchmark (Indy)

100 byte records, 10 byte random keys, with file I/O

Category	data volume	performance	improvement
GraySort	100 000 GB	564 GB / min	17×
MinuteSort	955 GB	955 GB / min	> 10×
JouleSort	100 000 GB	3 400 Recs/Joule	???×
JouleSort	1 000 GB	17 500 Recs/Joule	5.1×
JouleSort	100 GB	39 800 Recs/Joule	3.4×
JouleSort	10 GB	43 500 Recs/Joule	5.7×

Also: PennySort

GraySort: inplace multiway mergesort, exact splitting

JouleSort

- ☐ Intel Atom N330
- ☐ 4 GB RAM
- □ 4×256 GBSSD (SuperTalent)

Algorithm similar to GraySort

Applications that "Change the World"

Algorithmics has the potential to SHAPE applications (not just the other way round)

[G. Myers]

Bioinformatics: sequencing, proteomics, phylogenetic trees,...

Information Retrieval: Searching, ranking,...

Traffic Planning: navigation, flow optimization, adaptive toll, disruption management

Geographic Information Systems: agriculture, environmental protection, disaster management, tourism,...

Machine Learning/AI: translation, chatbots,...

Conclusion:

Algorithm Engineering ↔ **Algorithm Theory**

Algorithm engineering is a wider view on algorithmics (but no revolution. None of the ingredients is really new)
Rich methodology
Better coupling to applications
Experimental algorithmics ≪ algorithm engineering
Algorithm theory ⊂ algorithm engineering
Sometimes different theoretical questions
Algorithm theory may still yield the strongest, deepest and most persistent results within algorithm engineering

More On Experimental Methodology

Scientific Method:

- Experiment need a possible outcome that falsifies a hypothesis
- Reproducible
 - Keep data/code for at least 10 years
 - + documentation (aka laboratory journal (Laborbuch))
 - Clear and detailed description in papers / TRs
 - Share instances and code

Quality Criteria

- □ Beat the state of the art, globally (not your own toy codes or the toy codes used in your community!)
- ☐ Clearly demonstrate this!
 - Both codes use same data ideally from accepted benchmarks (not just your favorite data!)
 - Comparable machines or fair (conservative) scaling
 - Avoid uncomparabilities like:
 "Yeah we have worse quality but are twice as fast"
 - Real world data wherever possible
 - As much different, fresh inputs as possible
 - its fine if you are better just on some (important) inputs

Not Here but Important

Describing the setup (machine, compiler, OS, instances, repetitions,...)
 Finding sources of measurement errors
 Reducing measurement errors (averaging, median,unloaded machine...)

Measurements in the creative phase of experimental algorithmics.

The Starting Point

- ☐ (Several) Algorithm(s)
- □ A few quantities to be measured: time, space, solution quality, comparisons, cache faults,... There may also be measurement errors.
- \square An unlimited number of potential inputs. \leadsto condense to a few characteristic ones (size, $|V|, |E|, \ldots$ or problem instances from applications)

Usually there is not a lack but an abundance of data

The Process

Waterfall model?

- 1. Design
- 2. Measurement
- 3. Interpretation

Perhaps the paper should at least look like that.

The Process

☐ Eventually stop asking questions (Advisors/Referees listen!)
☐ Build measurement tools
☐ Automate (re)measurements
☐ Choice of Experiments driven by risk and opportunity
☐ Distinguish mode
Explorative: many different parameter settings, interactive, shore
turnaround times

Consolidating: many large instances, standardized measurement conditions, batch mode, many machines

Of Risks and Opportunities

Example: Hypothesis = my algorithm is the best

Big risk: untried main competitor

Small risk: tuning of a subroutine that takes 20 % of the time.

Big opportunity: use algorithm for a new application

→ new input instances