

Algorithmen II

Peter Sanders

Übungen:

Moritz Laupichler, Nikolai Maas

Institut für Theoretische Informatik

Web:

algo2.iti.kit.edu/AlgorithmenII_WS23.php

5 Maximum Flows and Matchings

[mit Kurt Mehlhorn, Rob van Stee]

Folien auf Englisch

Literatur:

[Mehlhorn / Näher, The LEDA Platform of Combinatorial and Geometric Computing, Cambridge University Press, 1999]

http://www.mpi-inf.mpg.de/~mehlhorn/ftp/
LEDAbook/Graph_alg.ps

[Ahuja, Magnanti, Orlin, Network Flows, Prentice Hall, 1993]

Definitions: Network

- □ Network = directed weighted graph withsource node s and sink node t
- \square s has no incoming edges, t has no outgoing edges
- ☐ Weight c_e of an edge e = capacity of e (nonnegative!)

Definitions: Flows

- □ Flow = function f_e on the edges, $\forall e: 0 \leq f_e \leq c_e$ $\forall v \in V \setminus \{s,t\}$: total incoming flow = total outgoing flow
- □ Value of a flow $\mathbf{val}(f) =$ total outgoing flow from s = total flow going into t
- \square Goal: find a flow with maximum value

Definitions: (Minimum) *s-t* **Cuts**

An s-t cut is partition of V into S and T with $s \in S$ and $t \in T$. The capacity of this cut is:

Duality Between Flows and Cuts

Theorem: [Elias/Feinstein/Shannon, Ford/Fulkerson 1956]

Value of an s-t max-flow = minimum capacity of an s-t cut.

Proof: later

Applications

- ☐ Oil pipes
- ☐ Traffic flows on highways
- Image Processing http://vision.csd.uwo.ca/maxflow-data
 - segmentation
 - stereo processing
 - multiview reconstruction
 - surface fitting
- disk/machine/tanker scheduling
- matrix rounding
- □ ...

Current Research Challenge: AI versus Optimal Algorithms

Many image processing applications are currently taken over by deep convolutional neural networks.

- + Often better results
- + No ad-hoc definitions of s, t, c
- "Optimality" is thrown over board
- Lots of training examples needed

Is there a middle way?

Learn *s*, *t*, *c* then optimize?

Applications in our Group

Option 1: linear programming

- \square Flow variables x_e for each edge e
- Flow on each edge is at most its capacity
- ☐ Incoming flow at each vertex = outgoing flow from this vertex
- Maximize outgoing flow from starting vertex

We can do better!

Algorithms 1956–now

Year	Author	Running time	
1956	Ford-Fulkerson	O(mnU)	
1969	Edmonds-Karp	$O(m^2n)$	
1970	Dinic	$O(mn^2)$	
1973	Dinic-Gabow	$O(mn \log U)$	
1974	Karzanov	$O(n^3)$	n = number of nodes
1977	Cherkassky	$O(n^2\sqrt{m})$	m = number of arcs
1980	Galil-Naamad	$O(mn\log^2 n)$	U= largest capacity
1983	Sleator-Tarjan	$O(mn\log n)$	
1986	Goldberg-Tarjan	$O(mn\log(n^2/m)$))
1987	Ahuja-Orlin	$O(mn + n^2 \log U$	I)

Year	Author	Running time
1987	Ahuja-Orlin-Tarjan	$O(mn\log(2+n\sqrt{\log U}/m))$
1990	Cheriyan-Hagerup-Mehlhorn	$O(n^3/\log n)$
1990	Alon	$O(mn + n^{8/3}\log n)$
1992	King-Rao-Tarjan	$O(mn + n^{2+\varepsilon})$
1993	Philipps-Westbrook	$O(mn\log n/\log \frac{m}{n} + n^2\log^{2+\varepsilon} n)$
1994	King-Rao-Tarjan	$O(mn\log n/\log \frac{m}{n\log n})$ if $m \ge 2n\log n$
1997	Goldberg-Rao	$O(\min\{m^{1/2}, n^{2/3}\} m \log(n^2/m) \log U)$
2014	Lee-Sidford	$O(m\sqrt{n}\log^2 U)$
2020	v. d. Brand et al.	$O(m + n^{\frac{3}{2}} \log U \log^{?} m)$
2021	Gao-Liu-Peng	$O(m^{\frac{3}{2} - \frac{1}{328}} \log U \log^{?} m)$
2022	v.d. Brand et al.	$O(m^{\frac{3}{2}-\frac{1}{58}}\log U\log^{?}m)$
2022	Chen, Kyng et al.	$O(m^{1+o(1)}\log U)$

Augmenting Paths (Rough Idea)

Find a path from *s* to *t* such that each edge has some spare capacity

On this path, saturate the edge with the smallest spare capacity

Adjust capacities for all edges (create residual graph) and repeat

A typical greedy algorithm

are we done?

Residual Graph

Given, network G = (V, E, c), flow f

Residual graph $G_f = (V, E_f, c^f)$. For each $e \in E$ we have

$$\begin{cases} e \in E_f \text{ with } c_e^f = c_e - f(e) & \text{if } f(e) < c(e) \\ e^{\text{rev}} \in E_f \text{ with } c_{e^{\text{rev}}}^f = f(e) & \text{if } f(e) > 0 \end{cases}$$

Augmenting Paths

Find a path p from s to t such that each edge e has nonzero residual capacity c_e^f

$$\begin{split} \Delta f &:= \min_{e \in p} c_e^f \\ & \textbf{foreach} \ (u,v) \in p \ \textbf{do} \\ & \textbf{if} \ (u,v) \in E \ \textbf{then} \ f_{(u,v)} + = \Delta f \\ & \textbf{else} \ f_{(v,u)} - = \Delta f \end{split}$$

Ford Fulkerson Algorithm

```
Function FFMaxFlow(G=(V,E),s,t,c:E\to\mathbb{N}): E\to\mathbb{N} f:=0 while \exists \mathrm{path}\ p=(s,\ldots,t)\ \mathrm{in}\ G_f do augment f along p return f time \mathrm{O}(m\mathrm{val}(f))
```


Ford Fulkerson – Correctness

"Clearly" FF computes a feasible flow f. (Invariant)

Todo: flow value is maximal

At termination: no augmenting paths in G_f left.

Consider cut $(S,T:=V\setminus S)$ with

 $S:=\left\{v\in V:v \text{ reachable from } s \text{ in } G_f\right\}$

A Basic Observations

Lemma 1: For any cut (S, T):

$$\mathbf{val}(f) = \sum_{e \in E \cap S \times T} f_e - \sum_{e \in E \cap T \times S} f_e .$$

Ford Fulkerson – Correctness

Todo: val(f) is maximal when no augmenting paths in G_f left.

Consider cut $(S, T := V \setminus S)$ with

 $S:=\{v\in V: v \text{ reachable from } s \text{ in } G_f\}.$

Observation: $\forall (u, v) \in E \cap T \times S : f(u, v) = 0$

otherwise $c^f(v, u) > 0$ contradicting the definition of S.

$$\begin{aligned} \mathbf{val}(f) &= \sum_{e \in E \cap S \times T} f_e - \sum_{e \in E \cap T \times S} f_e \\ &= \sum_{e \in E \cap S \times T} f_e \\ &= \sum_{e \in E \cap S \times T} c_{(u,v)} = (S,T) \text{ cut capacity} \end{aligned}$$
 Observation above

see next slide

Max-Flow-Min-Cut theorem

Theorem: Max-flow = min-cut

Proof:

obvious: any-flow \leq max-flow \leq min-cut \leq any-cut

previous slide:

(S,T) flow =(S,T) cut capacity

 \Rightarrow

(S,T) flow = max-flow = min-cut

A Bad Example for Ford Fulkerson

A Bad Example for Ford Fulkerson

A Bad Example for Ford Fulkerson

An Even Worse Example for Ford Fulkerson [U. Zwick, TCS 148, p. 165–170, 1995]

$$\text{Let } r = \frac{\sqrt{5} - 1}{2}.$$

Consider the graph

And the augmenting paths

$$p_0 = \langle s, c, b, t \rangle$$

$$p_1 = \langle s, a, b, c, d, t \rangle$$

$$p_2 = \langle s, c, b, a, t \rangle$$

$$p_3 = \langle s, d, c, b, t \rangle$$

The sequence of augmenting paths $p_0(p_1, p_2, p_1, p_3)^*$ is an infinite sequence of positive flow augmentations.

The flow value does not converge to the maximum value 9.

Blocking Flows

 f_b is a blocking flow in H if

$$\forall \text{paths } p = \langle s, \dots, t \rangle : \exists e \in p : f_b(e) = c(e)$$

Dinitz Algorithm

```
Function DinitzMaxFlow(G=(V,E),s,t,c:E\to\mathbb{N}):E\to\mathbb{N} f:=0 while \exists \mathrm{path}\ p=(s,\ldots,t)\ \mathrm{in}\ G_f do d=G_f.\mathrm{reverseBFS}(t):V\to\mathbb{N} L_f=(V,\left\{(u,v)\in E_f:d(v)=d(u)-1\right\}) // layer graph find a blocking flow f_b in L_f augment f+=f_b return f
```


Dinitz – Correctness

analogous to Ford-Fulkerson

Computing Blocking Flows

Idea: repeated DFS for augmenting paths (not using DFS algorithm schema)


```
Function blockingFlow(L_f = (V, E)): E \to \mathbb{N}
     p=\langle s\rangle: Path; f_b=0: Flow
                                                                     // Round
     loop
          \mathbf{v} := p.\mathsf{last}()
          if v = t then
                                                             // breakthrough
               \delta := \min \{ c(e) - f_b(e) : e \in p \}
               foreach e \in p do
                    f_b(e) + = \delta
                    if f_b(e) = c(e) then remove e from E
               p := \langle s \rangle
          else if \exists e = (v, w) \in E then p.pushBack(w)
                                                                     // extend
          else if v = s then return f_b
                                                                        // done
                                                                     // retreat
          else delete the last edge from p in p and E
```


Blocking Flows Analysis 1

- \square running time $\#_{extends} + \#_{retreats} + n \cdot \#_{breakthroughs}$
- \square #_{breakthroughs} $\leq m$

 $- \ge 1$ edge is saturated

 $\square \#_{retreats} \leq m$

- one edge is removed
- $\square \#_{extends} \leq \#_{retreats} + n \cdot \#_{breakthroughs}$
 - a retreat cancels 1 extend, a breakthrough cancels $\leq n$ extends

time is O(m+nm) = O(nm)

Blocking Flows Analysis 2

Unit capacities:

breakthroughs saturate all edges on p, i.e., amortized constant cost per edge.

time
$$O(m+n)$$

Blocking Flows Analysis 3

If we use a dynamic tree data structure:

breakthrough (!), retreat, extend is possible in time $O(\log n)$

$$\Rightarrow$$

Time $O((m+n)\log n)$

"Theory alert": In practice, this seems to be slower (few breakthroughs, many retreat, extend ops.)

Dinitz Analysis 1

Lemma 1. d(s) increases by at least one in each round.

Proof. not here

Dinitz Analysis 2

- $\square \leq n$ rounds
- \square time O(mn) each

time $O(mn^2)$ (strongly polynomial)

time $O(mn \log n)$ with dynamic trees

Dinitz Analysis 3 – Unit Capacities

Lemma 2. At most $2\sqrt{m}$ BF computations:

Proof. Consider iteration $k = \sqrt{m}$. Cut in layergraph induces cut in residual graph of capacity at most \sqrt{m} . At most \sqrt{m} additional phases.

Total time: $O((m+n)\sqrt{m})$

more detailed analysis: $O(m \min \{m^{1/2}, n^{2/3}\})$

Dinitz Analysis 4 – Unit Networks

Unit capacity $+ \forall v \in V : \min \{ indegree(v), outdegree(v) \} = 1$:

time: $O((m+n)\sqrt{n})$

Matching

 $M\subseteq E$ is a matching in the undirected graph G=(V,E) iff (V,M) has maximum degree ≤ 1 .

M is maximal if $ot \exists e \in E \setminus M : M \cup \{e\}$ is a matching.

M has maximum cardinality if $ot\equiv$ matching M':|M'|>|M|

Maximum Cardinality Bipartite Matching

in $(L \cup R, E)$. Model as a unit network maximum flow problem

$$(\{s\} \cup L \cup R \cup \{t\}, \{(s,u) : u \in L\} \cup E \cup \{(v,t) : v \in R\})$$

Dinitz algorithm yields $O((n+m)\sqrt{n})$ algorithm

Similar Performance for Weighted Graphs?

time: $O(m \min \{m^{1/2}, n^{2/3}\} \log C)$ [Goldberg Rao 97]

Problem: Fat edges between layers ruin the argument

Idea: scale a parameter Δ from small to large.

Contract SCCs of fat edges (capacity $> \Delta$)

Experiments [Hagerup, Sanders Träff 98]:

Sometimes best algorithm usually slower than preflow push

Disadvantage of augmenting paths algorithms

Preflow-Push Algorithms

Preflow f: a flow where the flow conservation constraint is relaxed to

$$\operatorname{excess}(v) \coloneqq \sum_{(u,v) \in E} f_{(u,v)} - \sum_{(v,w) \in E} f_{(v,w)} \ge 0 \ .$$

$$v \in V \setminus \{s,t\}$$
 is active iff $\mathrm{excess}(v) > 0$

Procedure push(
$$e = (v, w), \delta$$
)

assert
$$\delta > 0 \land \mathsf{excess}(v) \geq \delta$$

assert residual capacity of $e \geq \delta$

$$excess(v) = \delta$$

$$excess(w) += \delta$$

if e is reverse edge then $f(\operatorname{reverse}(e)) = \delta$

else
$$f(e) += \delta$$

Level Function

Idea: make progress by pushing towards t

Maintain

an approximation d(v) of the BFS distance from v to t in G_f .

invariant d(t) = 0

invariant d(s) = n

invariant $\forall (v, w) \in E_f : d(v) \le d(w) + 1$ // no steep edges

Edge directions of e = (v, w)

steep: d(w) < d(v) - 1

downward: d(w) < d(v)

horizontal: d(w) = d(v)

upward: d(w) > d(v)


```
Procedure genericPreflowPush(G = (V, E), f)
     forall e = (s, v) \in E do push(e, c(e))
                                                                     // saturate
     d(s) := n
     d(v) := 0 for all other nodes
     while \exists v \in V \setminus \{s,t\}: excess(v) > 0 do // active node
          if \exists e = (v, w) \in E_f : d(w) < d(v) then // eligible edge
               choose some \delta \leq \min\left\{ \operatorname{excess}(v), c_e^f \right\}
               \mathsf{push}(e, \delta)
                                                      // no new steep edges
          else d(v)++
                                          // relabel. No new steep edges
Obvious choice for \delta:\delta=\min\left\{\mathrm{excess}(v),c_e^f\right\}
saturating push: \delta = c_e^f
nonsaturating push: \delta < c_e^f
```

To be filled in: How to select active nodes and eligible edges?

12 pushes in total

Partial Correctness

Lemma 3. When genericPreflowPush terminates f is a maximal flow.

Proof.

f is a flow since $\forall v \in V \setminus \{s,t\}$: excess(v) = 0.

To show that f is maximal, it suffices to show that

 $\not\exists$ path $p = \langle s, ..., t \rangle \in G_f$ (Max-Flow Min-Cut Theorem):

Since d(s) = n, d(t) = 0, p would have to contain steep edges.

That contradicts the invariant.

Lemma 4. For any cut (S,T),

$$\sum_{u \in S} excess(u) = \sum_{e \in E \cap (T \times S)} f(e) - \sum_{e \in E \cap (S \times T)} f(e),$$

Proof:

$$\sum_{u \in S} excess(u) = \sum_{u \in S} \left(\sum_{(v,u) \in E} f((v,u)) - \sum_{(u,v) \in E} f((u,v)) \right)$$

Contributions of edge *e* to sum:

S to
$$T$$
: $-f(e)$

$$T$$
 to S : $f(e)$

within *S*:
$$f(e) - f(e) = 0$$

within
$$T: 0$$

Lemma 5.

$$\forall \ active \ nodes \ v : \mathsf{excess}(v) > 0 \Rightarrow \exists \ path \ \langle v, \dots, s \rangle \in G_f$$

Intuition: what got there can always go back.

Proof.
$$S := \{u \in V : \exists \text{ path } \langle v, \dots u \rangle \in G_f\}, T := V \setminus S.$$
 Then

$$\sum_{u \in S} excess(u) = \sum_{e \in E \cap (T \times S)} f(e) - \sum_{e \in E \cap (S \times T)} f(e),$$

$$\forall (u, w) \in E_f : u \in S \Rightarrow w \in S$$
 by Def. of G_f , $S \Rightarrow \forall e = (u, w) \in E \cap (T \times S) : f(e) = 0$ Otherwise $(w, u) \in E_f$ Hence, $\sum excess(u) \leq 0$

Only the negative excess of s can outweigh excess (v) > 0.

Hence
$$s \in S$$
.

Lemma 6.

$$\forall v \in V : d(v) < 2n$$

Proof.

Suppose *v* is lifted to d(v) = 2n.

By the Lemma 2, there is a (simple) path p to s in G_f .

p has at most n-1 nodes

$$d(s) = n$$
.

Hence d(v) < 2n. Contradiction (no steep edges).

Lemma 7. # Relabel operations $\leq 2n^2$

Proof. $d(v) \le 2n$, i.e., v is relabeled at most 2n times.

Hence, at most $|V| \cdot 2n = 2n^2$ relabel operations.

Lemma 8. # saturating pushes $\leq nm$

Proof.

We show that there are at most n sat. pushes over any edge

$$e = (v, w)$$
.

A saturating push (e, δ) removes e from E_f .

Only a push on (w, v) can reinsert e into E_f .

For this to happen, w must be lifted at least two levels.

Hence, at most 2n/2 = n saturating pushes over (v, w)

Lemma 9. # nonsaturating pushes = $O(n^2m)$

$$\textit{if } \delta = \min \left\{ \operatorname{excess}(v), c_e^f \right\}$$

for arbitrary node and edge selection rules.

(arbitrary-preflow-push)

Proof.
$$\Phi := \sum_{\{v:v \text{ is active}\}} d(v).$$
 (Potential)

 $\Phi = 0$ initially and at the end (no active nodes left!)

Operation	$\Delta(\Phi)$	How many times?	Total effect
relabel	1	$\leq 2n^2$	$\leq 2n^2$
saturating push	$\leq 2n$	$\leq nm$	$\leq 2n^2m$
nonsaturating push	≤ -1		

$$\Phi \ge 0$$
 always.

Searching for Eligible Edges

Every node v maintains a currentEdge pointer to its sequence of outgoing edges in G_f .

invariant no edge e = (v, w) to the left of currentEdge is eligible

Invariant violations?

- \square relabel(v)? Reset currentEdge
- \square relabel(w)? No, no steep edges.
- \square push(w,v)? \Rightarrow (v,w) is upward

 $(\leq 2n \times)$

Lemma 10.

Total cost for searching $\leq \sum 2n \cdot degree(v) = 4nm = O(nm)$

Theorem 11. Arbitrary Preflow Push finds a maximum flow in time $O(n^2m)$.

Proof.

Lemma 3: partial correctness

Initialization in time O(n+m).

Maintain set (e.g., stack, FIFO) of active nodes.

Use reverse edge pointers to implement push.

Lemma 7: $2n^2$ relabel operations

Lemma 8: *nm* saturating pushes

Lemma 9: $O(n^2m)$ nonsaturating pushes

Lemma 10: O(nm) search time for eligible edges

Total time $O(n^2m)$

FIFO Preflow push

Examine a node: Saturating pushes until nonsaturating push or relabel.

Examine all nodes in phases (or use FIFO queue).

Theorem: time $O(n^3)$

Proof: not here

Highest Level Preflow Push

Always select active nodes that maximize d(v)

Use bucket priority queue

(insert, increaseKey, deleteMax)

not monotone (!) but relabels "pay" for scan operations

Lemma 12. At most $n^2\sqrt{m}$ nonsaturating pushes.

Proof. later

Theorem 13. Highest Level Preflow Push finds a maximum flow in time $O(n^2\sqrt{m})$.

9 pushes in total, 3 less than before

Proof of Lemma 12

$$K := \sqrt{m} \qquad \qquad \text{tuning parameter}$$

$$d'(v) := \frac{|\{w : d(w) \le d(v)\}|}{K} \qquad \text{scaled number of dominated nodes}$$

$$\Phi := \sum_{\{v : v \text{ is active}\}} d'(v). \qquad \qquad \text{(Potential)}$$

$$d^* := \max\{d(v) : v \text{ is active}\} \qquad \qquad \text{(highest level)}$$

phase:= all pushes between two consecutive changes of d^*

expensive phase: more than K pushes

cheap phase: otherwise

- 1. $<4n^2K$ nonsaturating pushes in all cheap phases together
- 2. $\Phi \ge 0$ always, $\Phi \le n^2/K$ initially (obvious)
- 3. a relabel or saturating push increases Φ by at most n/K.
- 4. a nonsaturating push does not increase Φ .
- 5. an expensive phase with $Q \geq K$ nonsaturating pushes decreases Φ by at least Q.

Lemma 7+Lemma 8+2.+3.+4.: \Rightarrow total possible decrease $\leq (2n^2 + nm)\frac{n}{K} + \frac{n^2}{K}$

Operation	Amount
Relabel	$2n^2$
Sat.push	nm

This
$$+5.:\leq \frac{2n^3+n^2+mn^2}{K}$$
 nonsaturating pushes in expensive phases This $+1.:\leq \frac{2n^3+n^2+mn^2}{K}+4n^2K=\mathrm{O}\left(n^2\sqrt{m}\right)$ nonsaturating pushes overall for $K=\sqrt{m}$

1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together

We first show that there are at most $4n^2$ phases (changes of $d^* = \max{\{d(v): v \text{ is active}\}}$). $d^* = 0$ initially, $d^* \geq 0$ always.

Only relabel operations increase d^* , i.e.,

 $\leq 2n^2$ increases by Lemma 7 and hence

 $\leq 2n^2$ decreases

 $\leq 4n^2$ changes overall

By definition of a cheap phase, it has at most K pushes.

- 1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together
- 2. $\Phi \ge 0$ always, $\Phi \le n^2/K$ initially (obvious)
- 3. a relabel or saturating push increases Φ by at most n/K.

Let *v* denote the relabeled or activated node.

$$d'(v) := \frac{|\{w : d(w) \le d(v)\}|}{K} \le \frac{n}{K}$$

A relabel of v can increase only the d'-value of v.

A saturating push on (u, w) may activate only w.

- 1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together
- 2. $\Phi \ge 0$ always, $\Phi \le n^2/K$ initially (obvious)
- 3. a relabel or saturating push increases Φ by at most n/K.
- 4. a nonsaturating push does not increase Φ .

v is deactivated (excess(v) is now 0)

w may be activated

but $d'(w) \le d'(v)$ (we do not push flow away from the sink)

- 1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together
- 2. $\Phi \ge 0$ always, $\Phi \le n^2/K$ initially (obvious)
- 3. a relabel or saturating push increases Φ by at most n/K.
- 4. a nonsaturating push does not increase Φ .
- 5. an expensive phase with $Q \ge K$ nonsaturating pushes decreases Φ by at least Q.

During a phase d^* remains constant

Each nonsat, push decreases the number of active nodes at level d^*

Hence, $|\{w:d(w)=d^*\}| \geq Q \geq K$ during an expensive phase

Each nonsat. push across (v, w) decreases Φ by

$$\geq d'(v) - d'(w) \geq |\{w : d(w) = d^*\}| / K \geq K / K = 1$$

- 1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together
- 2. $\Phi \ge 0$ always, $\Phi \le n^2/K$ initially (obvious)
- 3. a relabel or saturating push increases Φ by at most n/K.
- 4. a nonsaturating push does not increase Φ .
- 5. an expensive phase with $Q \ge K$ nonsaturating pushes decreases Φ by at least Q.

Lemma 7+Lemma 8+2.+3.+4.: \Rightarrow total possible decrease $\leq (2n^2 + nm)\frac{n}{K} + \frac{n^2}{K}$

Operation	Amount
Relabel	$2n^2$
Sat.push	nm

This
$$+5.: \le \frac{2n^3+n^2+mn^2}{K}$$
 nonsaturating pushes in expensive phases This $+1.: \le \frac{2n^3+n^2+mn^2}{K} + 4n^2K = O\left(n^2\sqrt{m}\right)$ nonsaturating pushes overall for $K=\sqrt{m}$

MFIFO: Modified FIFO Selection Rule

pushFront after relabel.

pushBack when activated by a push

d=4

Heuristic Improvements

Naive algorithm needs $\Omega\left(n^2\right)$ relabels even on a path graph. We can do better.

aggressive local relabeling:

d(v):= $1 + \min \left\{ d(w) : (v, w) \in G_f \right\}$ (like a sequence of relabels)

Heuristic Improvements

Naive algorithm has best case $\Omega\left(n^2\right)$. Why? We can do better.

aggressive local relabeling: d(v):= $1 + \min \left\{ d(w) : (v, w) \in G_f \right\}$ (like a sequence of relabels)

global relabeling: (initially and every O(m) edge inspections): $d(v) := G_f$.reverseBFS(t) for nodes that can reach t in G_f .

Special treatment of nodes with $d(v) \ge n$. (Returning flow is easy)

Gap Heuristics. No node can connect to *t* across an empty level:

if
$$\{v: d(v) = i\} = \emptyset$$
 then foreach v with $d(v) > i$ do $d(v) := n$

Experimental results

We use four classes of graphs:

- \square Random: n nodes, 2n+m edges; all edges (s,v) and (v,t) exist
- Cherkassky and Goldberg (1997) (two graph classes)
- Ahuja, Magnanti, Orlin (1993)

Timings: Random Graphs

Rule	BASIC	Ln	LRH	GRH	GAP	LEDA
FF	5.84 6.02 4.75		0.07	0.07	_	
	33.32	33.88	26.63	0.16	0.17	
HL	6.12	6.3	4.97	0.41	0.11	0.07
	27.03	27.61	22.22	1.14	0.22	0.16
MF	5.36	5.51	4.57	0.06	0.07	
	26.35	27.16	23.65	0.19	0.16	_

 $n \in \{1000, 2000\}, m = 3n$

FF=FIFO node selection, HL=hightest level, MF=modified FIFO $Ln=d(v)\geq n$ is special,

Timings: CG1

Rule	BASIC	Ln	LRH	GRH	GAP	LEDA
FF	3.46	3.62	2.87	0.9	1.01	_
	15.44	16.08	12.63	3.64	4.07	
HL	20.43	20.61	20.51	1.19	1.33	0.8
	192.8	191.5	193.7	4.87	5.34	3.28
MF	3.01	3.16	2.3	0.89	1.01	_
	12.22	12.91	9.52	3.65	4.12	

 $n \in \{1000, 2000\}, m = 3n$

FF=FIFO node selection, HL=hightest level, MF=modified FIFO $Ln = d(v) \ge n$ is special,

Rule	BASIC	Ln	LRH	GRH	GAP	LEDA		
FF	50.06	47.12	37.58	1.76	1.96	_		
	239	222.4	177.1	7.18	8			
HL	42.95	41.5	30.1	0.17	0.14	0.08		
	173.9	167.9	120.5	0.36	0.28	0.18		
MF	45.34	42.73	37.6	0.94	1.07			
	198.2	186.8	165.7	4.11	4.55	_		
$n \in \{1000, 2000\}, m = 3n$								

FF=FIFO node selection, HL=hightest level, MF=modified FIFO $Ln = d(v) \ge n$ is special,

Timings: AMO

Rule	BASIC	Ln	LRH	GRH	GAP	LEDA
FF	12.61	13.25	1.17	0.06	0.06	_
	55.74	58.31	5.01	0.1399	0.1301	
HL	15.14	15.8	1.49	0.13	0.13	0.07
	62.15	65.3	6.99	0.26	0.26	0.14
MF	10.97	11.65	0.04999	0.06	0.06	
	46.74	49.48	0.1099	0.1301	0.1399	

 $n \in \{1000, 2000\}, m = 3n$

FF=FIFO node selection, HL=hightest level, MF=modified FIFO $Ln=d(v)\geq n$ is special,

Asymptotics, $n \in \{5000, 10000, 20000\}$

Gen	Rule	GRH			GAP			LEDA		
rand	FF	0.16	0.41	1.16	0.15	0.42	1.05	_	_	
	HL	1.47	4.67	18.81	0.23	0.57	1.38	0.16	0.45	1.09
	MF	0.17	0.36	1.06	0.14	0.37	0.92	_		_
CG1	FF	3.6	16.06	69.3	3.62	16.97	71.29	_		_
	HL	4.27	20.4	77.5	4.6	20.54	80.99	2.64	12.13	48.52
	MF	3.55	15.97	68.45	3.66	16.5	70.23	_	_	_
CG2	FF	6.8	29.12	125.3	7.04	29.5	127.6	_		_
	HL	0.33	0.65	1.36	0.26	0.52	1.05	0.15	0.3	0.63
	MF	3.86	15.96	68.42	3.9	16.14	70.07	_		_
AMO	FF	0.12	0.22	0.48	0.11	0.24	0.49	_		_
	HL	0.25	0.48	0.99	0.24	0.48	0.99	0.12	0.24	0.52
	MF	0.11	0.24	0.5	0.11	0.24	0.48			

Recent AE Results on Max-Flow

Faster and More Dynamic Maximum Flow by Incremental Breadth-First Search, Goldberg, Hed, Kaplan, Kohli, Tarjan, Werneck, ESA 2015

- Much faster on many (relatively easy) real world instances (image processing, graph partitioning,...) than preflow-push
- ☐ Worst case performance guarantee $O(mn^2)$ (as in Dinitz algorithm)
- Adaptible to dynamic scenarios
- ☐ Uses pseudoflows that allow excesses and deficits.

Open problem: close gaps between theory and practice!

Zusammenfassung Flows und Matchings I

Natürliche Verallgemeinerung von kürzesten Wegen: ein Pfad → viele Pfade viele Anwendungen "schwierigste/allgemeinste" Graph-Probleme, die sich mit kombinatorischen Algorithmen in Polynomialzeit lösen lassen Beispiel für nichttriviale Algorithmenanalyse Manchmal sind spezielle Probleminstanzfamilien beweisbar leichter (z.B. unit capacity, matchings)

Zusammenfassung Flows und Matchings II

Entwurfstechnik: Algorithmeninvarianten relaxieren (augmenting paths → Preflow-Push → pseudoflows Invarianten leiten Entwurf und Verständnis von Algorithmen Potentialmethode (\neq Knotenpotentiale) Algorithm Engineering: practical case \neq worst case. Heuristiken/Details/Eingabeeigenschaften wichtig Datenstrukturen: bucket queues, graph representation, (dynamic trees)