Algorithmen II

Peter Sanders

Übungen:
Moritz Laupichler, Nikolai Maas

Institut für Theoretische Informatik

Web:
algo2.iti.kit.edu/AlgorithmenII_WS23.php
5 Maximum Flows and Matchings

[mit Kurt Mehlhorn, Rob van Stee]

Folien auf Englisch

Literatur:
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/LEDAbook/Graph_alg.ps

[Ahuja, Magnanti, Orlin, Network Flows, Prentice Hall, 1993]
Definitions: Network

- Network = directed weighted graph with source node \(s \) and sink node \(t \)
- \(s \) has no incoming edges, \(t \) has no outgoing edges
- Weight \(c_e \) of an edge \(e \) = capacity of \(e \) (nonnegative!)
Definitions: Flows

Flow = function f_e on the edges, $\forall e : 0 \leq f_e \leq c_e$

$\forall v \in V \setminus \{s, t\}$: total incoming flow = total outgoing flow

Value of a flow $\text{val}(f) =$

- total outgoing flow from $s = \text{total flow going into } t$

Goal: find a flow with maximum value

10

s

10

10

8

4

8

4

10

12

4

2

6

12

t
Definitions: (Minimum) s-t Cuts

An s-t cut is partition of V into S and T with $s \in S$ and $t \in T$.

The capacity of this cut is:

$$\sum \{c(u,v) : u \in S, v \in T\}$$
Duality Between Flows and Cuts

Theorem: [Elias/Feinstein/Shannon, Ford/Fulkerson 1956]

Value of an s-t max-flow $=$ minimum capacity of an s-t cut.

Proof: later
Applications

- Oil pipes
- Traffic flows on highways
- **Image Processing** http://vision.csd.uwo.ca/maxflow-data
 - segmentation
 - stereo processing
 - multiview reconstruction
 - surface fitting
- disk/machine/tanker **scheduling**
- matrix **rounding**
- ...
Current Research Challenge: AI versus Optimal Algorithms

Many image processing applications are currently taken over by deep convolutional neural networks.

+ Often better results
+ No ad-hoc definitions of s, t, c
 – “Optimality” is thrown over board
 – Lots of training examples needed

Is there a middle way?
Learn s, t, c then optimize?
Applications in our Group

- multicasting using network coding
- balanced k partitioning
- disk scheduling
Option 1: linear programming

☐ Flow variables x_e for each edge e

☐ Flow on each edge is at most its capacity

☐ Incoming flow at each vertex = outgoing flow from this vertex

☐ Maximize outgoing flow from starting vertex

We can do better!
Algorithms 1956–now

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1956</td>
<td>Ford-Fulkerson</td>
<td>$O(mnU)$</td>
</tr>
<tr>
<td>1969</td>
<td>Edmonds-Karp</td>
<td>$O(m^2n)$</td>
</tr>
<tr>
<td>1970</td>
<td>Dinic</td>
<td>$O(mn^2)$</td>
</tr>
<tr>
<td>1973</td>
<td>Dinic-Gabow</td>
<td>$O(mn \log U)$</td>
</tr>
<tr>
<td>1974</td>
<td>Karzanov</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>1977</td>
<td>Cherkassky</td>
<td>$O(n^2 \sqrt{m})$</td>
</tr>
<tr>
<td>1980</td>
<td>Galil-Naamad</td>
<td>$O(mn \log^2 n)$</td>
</tr>
<tr>
<td>1983</td>
<td>Sleator-Tarjan</td>
<td>$O(mn \log n)$</td>
</tr>
<tr>
<td>1986</td>
<td>Goldberg-Tarjan</td>
<td>$O(mn \log(n^2/m))$</td>
</tr>
<tr>
<td>1987</td>
<td>Ahuja-Orlin</td>
<td>$O(mn + n^2 \log U)$</td>
</tr>
</tbody>
</table>

$n =$ number of nodes
$m =$ number of arcs
$U =$ largest capacity
<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>Ahuja-Orlin-Tarjan</td>
<td>$O(mn \log (2 + n\sqrt{\log U}/m))$</td>
</tr>
<tr>
<td>1990</td>
<td>Cheriyan-Hagerup-Mehlhorn</td>
<td>$O(n^3/\log n)$</td>
</tr>
<tr>
<td>1990</td>
<td>Alon</td>
<td>$O(mn + n^{8/3} \log n)$</td>
</tr>
<tr>
<td>1992</td>
<td>King-Rao-Tarjan</td>
<td>$O(mn + n^{2+\epsilon})$</td>
</tr>
<tr>
<td>1993</td>
<td>Philipps-Westbrook</td>
<td>$O(mn \log n/ \log \frac{m}{n} + n^2 \log^{2+\epsilon} n)$</td>
</tr>
<tr>
<td>1994</td>
<td>King-Rao-Tarjan</td>
<td>$O(mn \log n/ \log \frac{m}{n \log n})$ if $m \geq 2n \log n$</td>
</tr>
<tr>
<td>1997</td>
<td>Goldberg-Rao</td>
<td>$O(\min{m^{1/2}, n^{2/3}}m\log (n^2/m) \log U)$</td>
</tr>
<tr>
<td>2014</td>
<td>Lee-Sidford</td>
<td>$O(m\sqrt{n} \log^2 U)$</td>
</tr>
<tr>
<td>2020</td>
<td>v. d. Brand et al.</td>
<td>$O(m + n^{3/2} \log U \log^? m)$</td>
</tr>
<tr>
<td>2021</td>
<td>Gao-Liu-Peng</td>
<td>$O(m^{3/2} - \frac{1}{328} \log U \log^? m)$</td>
</tr>
<tr>
<td>2022</td>
<td>v.d. Brand et al.</td>
<td>$O(m^{3/2} - \frac{1}{58} \log U \log^? m)$</td>
</tr>
<tr>
<td>2022</td>
<td>Chen, Kyng et al.</td>
<td>$O(m^{1+o(1)} \log U)$</td>
</tr>
</tbody>
</table>
Augmenting Paths (Rough Idea)

Find a path from \(s \) to \(t \) such that each edge has some spare capacity.

On this path, saturate the edge with the smallest spare capacity.

Adjust capacities for all edges (create residual graph) and repeat.

A typical greedy algorithm.
Example
Example
Example

![Graph Diagram]

0 —> 0 —> 10 —> 2

6 —> 4 —> 4 —> 4 —> 0

+4
Example

```
0 -> 1
10 -> 2
4 -> 10
0 -> 0
```
Example

are we done?
Example

\[
\begin{array}{c}
0 \\
10 \\
2 \\
8 \\
0
\end{array}
\quad
\begin{array}{c}
2 \\
2 \\
8 \\
0 \\
4
\end{array}
\quad
\begin{array}{c}
2 \\
2 \\
4 \\
4 \\
0
\end{array}
\quad
\begin{array}{c}
0 \\
12 \\
6 \\
2 \\
0
\end{array}
\]
Residual Graph

Given, network $G = (V, E, c)$, flow f

Residual graph $G_f = (V, E_f, c^f)$. For each $e \in E$ we have

$$
\begin{cases}
 e \in E_f \text{ with } c^f_e = c_e - f(e) & \text{if } f(e) < c(e) \\
 e^{rev} \in E_f \text{ with } c^{f}_{e^{rev}} = f(e) & \text{if } f(e) > 0
\end{cases}
$$
Augmenting Paths

Find a path p from s to t such that each edge e has nonzero residual capacity c^f_e

$$\Delta f := \min_{e \in p} c^f_e$$

foreach $(u, v) \in p$ do

if $(u, v) \in E$ then $f_{(u,v)} + = \Delta f$

else $f_{(v,u)} - = \Delta f$
Ford Fulkerson Algorithm

Function \(\text{FFMaxFlow}(G = (V, E), s, t, c : E \to \mathbb{N}) : E \to \mathbb{N} \)

\[
f := 0
\]

\[
\text{while } \exists \text{path } p = (s, \ldots, t) \text{ in } G_f \text{ do}
\]

\[
\text{augment } f \text{ along } p
\]

\[
\text{return } f
\]

\[
\text{time } O(m\text{val}(f))
\]
Ford Fulkerson – Correctness

“Clearly” FF computes a feasible flow f. (Invariant)

Todo: flow value is maximal

At termination: no augmenting paths in G_f left.

Consider cut $(S, T := V \setminus S)$ with

$S := \{v \in V : v \text{ reachable from } s \text{ in } G_f\}$
A Basic Observations

Lemma 1: For any cut \((S, T)\):

\[
\text{val}(f) = \sum_{e \in E \cap S \times T} f_e - \sum_{e \in E \cap T \times S} f_e.
\]
Ford Fulkerson – Correctness

Todo: \(\text{val}(f) \) is maximal when no augmenting paths in \(G_f \) left.

Consider cut \((S, T := V \setminus S)\) with
\[
S := \{v \in V : v \text{ reachable from } s \text{ in } G_f \}.
\]

Observation: \(\forall (u, v) \in E \cap T \times S : f(u, v) = 0 \)
otherwise \(c^f(v, u) > 0 \) contradicting the definition of \(S \).

\[
\text{val}(f) = \sum_{e \in E \cap S \times T} f_e - \sum_{e \in E \cap T \times S} f_e \quad \text{Lemma 1}
\]

\[
= \sum_{e \in E \cap S \times T} f_e \quad \text{Observation above}
\]

\[
= \sum_{e \in E \cap S \times T} c_{(u,v)} = (S, T) \text{ cut capacity}
\]

see next slide
Max-Flow-Min-Cut theorem

Theorem: $\text{Max-flow} = \text{min-cut}$

Proof:

obvious: \(\text{any-flow} \leq \text{max-flow} \leq \text{min-cut} \leq \text{any-cut}\)

previous slide:

\((S, T)\) flow = \((S, T)\) cut capacity

\(\Rightarrow\)

\((S, T)\) flow = max-flow = min-cut
A Bad Example for Ford Fulkerson
A Bad Example for Ford Fulkerson
A Bad Example for Ford Fulkerson
An Even Worse Example for Ford Fulkerson

Let \(r = \frac{\sqrt{5} - 1}{2} \).

Consider the graph

And the augmenting paths

\[p_0 = \langle s, c, b, t \rangle \]
\[p_1 = \langle s, a, b, c, d, t \rangle \]
\[p_2 = \langle s, c, b, a, t \rangle \]
\[p_3 = \langle s, d, c, b, t \rangle \]

The sequence of augmenting paths \(p_0(p_1, p_2, p_1, p_3)^* \) is an infinite sequence of positive flow augmentations.

The flow value does not converge to the maximum value 9.
Blocking Flows

f_b is a blocking flow in H if

$$\forall \text{ paths } p = \langle s, \ldots, t \rangle : \exists e \in p : f_b(e) = c(e)$$
Dinitz Algorithm

Function DinitzMaxFlow($G = (V, E), s, t, c : E \rightarrow \mathbb{N}) : E \rightarrow \mathbb{N}$

$f := 0$

while \exists path $p = (s, \ldots, t)$ in G_f

$\quad d = G_f.reverseBFS(t) : V \rightarrow \mathbb{N}$

$L_f = (V, \{(u, v) \in E_f : d(v) = d(u) - 1\})$ // layer graph

find a blocking flow f_b in L_f

augment $f += f_b$

return f
Dinitz – Correctness

analogous to Ford-Fulkerson
Example

Graph diagram with nodes labeled a, b, c, d, s, and t. Edges are labeled with capacities and costs.

Unused flows: 2, 4, 6, 10
Used flows: 2, 4, 6, 10
Saturation flows: 2, 4, 6, 10

Costs: 2, 4, 6, 10
Computing Blocking Flows

Idea: repeated DFS for augmenting paths
(not using DFS algorithm schema)
Function blockingFlow($L_f = (V, E)$) : $E \rightarrow \mathbb{N}$

$p = \langle s \rangle$: Path; $f_b = 0$: Flow

loop

\[\nu := p.last() \]

if $\nu = t$ then

\[\delta := \min \{ c(e) - f_b(e) : e \in p \} \]

foreach $e \in p$ do

\[f_b(e) += \delta \]

if $f_b(e) = c(e)$ then remove e from E

$p := \langle s \rangle$

else if $\exists e = (v, w) \in E$ then p.pushBack(w) // extend

else if $\nu = s$ then return f_b // done

else delete the last edge from p in p and E // retreat
Example

Graph with nodes labeled a, b, c, d, s, t. Edges include:
- Extend from s to a with weight 3 and weight 2.
- Extend from a to c with weight 4.
- Extend from c to b with weight 4.
- Extend from b to d with weight 4.
- Extend from d to c with weight 8.
- Extend from s to t with weight 0.
- Breakthrough from t to b with weight 112.
- Retreat from a to s with weight 8.
- Extend from b to a with weight 2.
Example
Blocking Flows Analysis 1

- running time $\#_{\text{extends}} + \#_{\text{retreats}} + n \cdot \#_{\text{breakthroughs}}$

- $\#_{\text{breakthroughs}} \leq m$ \quad \text{--} \quad \geq 1 \text{ edge is saturated}$

- $\#_{\text{retreats}} \leq m$ \quad \text{--} \quad \text{one edge is removed}$

- $\#_{\text{extends}} \leq \#_{\text{retreats}} + n \cdot \#_{\text{breakthroughs}}$ \quad \text{--} \quad \text{a retreat cancels 1 extend, a breakthrough cancels} \leq n \text{ extends}$

time is $O(m + nm) = O(nm)$
Blocking Flows Analysis 2

Unit capacities:

breakthroughs saturate all edges on p, i.e., amortized constant cost per edge.

time $O(m + n)$
Blocking Flows Analysis 3

If we use a dynamic tree data structure:
breakthrough (!), retreat, extend is possible in time $O(\log n)$

⇒

Time $O((m + n) \log n)$

“Theory alert”: In practice, this seems to be slower
(few breakthroughs, many retreat, extend ops.)
Dinitz Analysis 1

Lemma 1. $d(s)$ increases by at least one in each round.

Proof. not here
Dinitz Analysis 2

- \(\leq n \) rounds
- time \(O(mn) \) each

Time \(O(mn^2) \) (strongly polynomial)

Time \(O(mn \log n) \) with dynamic trees
Dinitz Analysis 3 – Unit Capacities

Lemma 2. At most $2\sqrt{m}$ BF computations:

Proof. Consider iteration $k = \sqrt{m}$. Cut in layergraph induces cut in residual graph of capacity at most \sqrt{m}. At most \sqrt{m} additional phases.

Total time: $O((m + n)\sqrt{m})$

more detailed analysis: $O\left(\min\left\{m^{1/2}, n^{2/3}\right\}\right)$
Dinitz Analysis 4 – Unit Networks

Unit capacity \(+ \ \forall v \in V : \min \{ \text{indegree}(v), \text{outdegree}(v) \} = 1 : \)

time: \(O((m + n)\sqrt{n}) \)
Matching

$M \subseteq E$ is a matching in the undirected graph $G = (V, E)$ iff (V, M) has maximum degree ≤ 1.

M is maximal if $\nexists e \in E \setminus M : M \cup \{e\}$ is a matching.

M has maximum cardinality if \nexists matching $M' : |M'| > |M|$
Maximum Cardinality Bipartite Matching

in \((L \cup R, E)\). Model as a unit network maximum flow problem

\[
\left(\{s\} \cup L \cup R \cup \{t\}, \{(s, u) : u \in L\} \cup E \cup \{(v, t) : v \in R\}\right)
\]

Dinitz algorithm yields \(O((n + m)\sqrt{n})\) algorithm
Similar Performance for Weighted Graphs?

time: $O\left(m \min \left\{ m^{1/2}, n^{2/3} \right\} \log C \right)$ [Goldberg Rao 97]

Problem: Fat edges between layers ruin the argument

Idea: *scale* a parameter Δ from small to large.
Contract SCCs of fat edges (capacity $> \Delta$)

Experiments [Hagerup, Sanders Träff 98]:
Sometimes best algorithm usually slower than *preflow push*
Disadvantage of augmenting paths algorithms

\[S \xrightarrow{\infty} \cdots \xrightarrow{\infty} \cdots \xrightarrow{\infty} \cdot \xrightarrow{1} t \]
Preflow-Push Algorithms

Preflow f: a flow where the flow conservation constraint is relaxed to

$$\text{excess}(v) := \sum_{(u,v) \in E} f_{u,v} - \sum_{(v,w) \in E} f_{v,w} \geq 0.$$

$v \in V \setminus \{s,t\}$ is active iff $\text{excess}(v) > 0$

Procedure $\text{push}(e = (v,w), \delta)$

assert $\delta > 0$ \land $\text{excess}(v) \geq \delta$

assert residual capacity of $e \geq \delta$

$\text{excess}(v) - = \delta$

$\text{excess}(w) += \delta$

if e is reverse edge then $f(\text{reverse}(e)) -= \delta$

else $f(e) += \delta$
Level Function

Idea: make progress by pushing towards t

Maintain
an approximation $d(v)$ of the BFS distance from v to t in G_f.

invariant $d(t) = 0$

invariant $d(s) = n$

invariant $\forall (v, w) \in E_f : d(v) \leq d(w) + 1$ // no steep edges

Edge directions of $e = (v, w)$

steep: $d(w) < d(v) - 1$

downward: $d(w) < d(v)$

horizontal: $d(w) = d(v)$

upward: $d(w) > d(v)$
Procedure **genericPreflowPush**\((G = (V, E), f)\)

forall \(e = (s, v) \in E\) do push\((e, c(e))\)
\(d(s) := n\)
\(d(v) := 0\) for all other nodes

while \(\exists v \in V \setminus \{s, t\}: \text{excess}(v) > 0\) do
 if \(\exists e = (v, w) \in E_f: d(w) < d(v)\) then
 choose some \(\delta \leq \min\\{\text{excess}(v), c_e^f\}\)
 push\((e, \delta)\)
 else \(d(v)++\)

Obvious choice for \(\delta\): \(\delta = \min\\{\text{excess}(v), c_e^f\}\)

saturating push: \(\delta = c_e^f\)

nonsaturating push: \(\delta < c_e^f\)

To be filled in: How to select active nodes and eligible edges?
Example
Example

Graph:
- Nodes: s, d, cap, f, excess, t
- Edges:
 - s to d: 6
 - d to cap: 10
 - cap to f: 10
 - f to excess: 10
 - excess to t: 12
 - s to t: 10, 10
 - d to t: 4
 - cap to t: 0
 - f to t: 8
 - excess to t: 4
Example

```
Example

Graph:

- **s** (source) to **d** (cap) with **6** capacity
- **d** to **cap** with **10** capacity
- **cap** to **f** (excess) with **10** capacity
- **s** to **10** with **10** capacity
- **1** to **10** with **4** capacity
- **12** to **t** (sink) with **10** capacity
- **t** to **0** with **8** capacity
```
Example

Graph:

- Source node: s
- Sink node: t
- Additional nodes: d, cap, f, $excess$

- Edges:
 - s to d: capacity 10, excess 6
 - s to cap: capacity 10, excess 6
 - s to f: capacity 10, excess 6
 - d to t: capacity 10, excess 1
 - cap to t: capacity 10, excess 1
 - f to t: capacity 10, excess 1
 - d to cap: capacity 4
 - cap to f: capacity 4
 - f to $excess$: capacity 4
 - t to $excess$: capacity 8
Example
Example

```
\begin{center}
\begin{tikzpicture}
\node[vertex, fill=white] (s) at (0,0) {$s$};
\node[vertex, fill=white] (d) at (2,2) {$d$};
\node[vertex, fill=white] (cap) at (3,1) {$\text{cap}$};
\node[vertex, fill=white] (f) at (1,0) {$f$};
\node[vertex, fill=white] (excess) at (4,1) {$\text{excess}$};
\node[vertex, fill=white] (t) at (5,0) {$t$};
\node[vertex, fill=white] (1) at (2,2) {};\node[vertex, fill=white] (2) at (4,2) {};\node[vertex, fill=white] (3) at (4,0) {};\node[vertex, fill=white] (4) at (0,2) {};\node[vertex, fill=white] (5) at (2,0) {};\node[vertex, fill=white] (6) at (0,0) {};\\
\draw[->, thick] (s) -- node[above] {10} (1);
\draw[->, thick] (1) -- node[above] {10} (2);
\draw[->, thick] (2) -- node[above] {4} (3);
\draw[->, thick] (3) -- node[above] {4} (4);
\draw[->, thick] (4) -- node[above] {4} (5);
\draw[->, thick] (5) -- node[above] {4} (s);
\draw[->, thick] (1) -- node[above] {6} (6);
\draw[->, thick] (6) -- node[above] {10} (f);
\draw[->, thick] (f) -- node[above] {8} (7);
\draw[->, thick] (7) -- node[above] {4} (2);
\draw[->, thick] (2) -- node[above] {4} (3);
\draw[->, thick] (3) -- node[above] {4} (4);
\draw[->, thick] (4) -- node[above] {4} (5);
\draw[->, thick] (5) -- node[above] {4} (s);
\end{tikzpicture}
\end{center}
```
Example
Example

\begin{tikzpicture}[node distance = 1.5cm, thick, main node/.style = {circle, draw, font = \sffamily\bfseries}]

\node[main node] (1) {1};
\node[main node] (2) [right of=1] {2};
\node[main node] (3) [below of=1] {7};
\node[main node] (4) [below right of=3] {1};
\node[main node] (5) [below right of=2] {1};
\node[main node] (6) [below left of=3] {d};
\node[main node] (7) [left of=6] {s};
\node[main node] (8) [right of=5] {t};

\path[
 edge node = \makebox[1cm][c]{\sf 10 10}]
 (1) edge (2);
\path[
 edge node = \makebox[1cm][c]{\sf 4}
]
 (1) edge (3);
\path[
 edge node = \makebox[1cm][c]{\sf 4}
]
 (3) edge (5);
\path[
 edge node = \makebox[1cm][c]{\sf 4}
]
 (5) edge (4);
\path[
 edge node = \makebox[1cm][c]{\sf 10 10}
]
 (7) edge (1);
\path[
 edge node = \makebox[1cm][c]{\sf 10}
]
 (7) edge (3);
\path[
 edge node = \makebox[1cm][c]{\sf 6}
]
 (7) edge (6);
\path[
 edge node = \makebox[1cm][c]{\sf 10}
]
 (6) edge (s);
\path[
 edge node = \makebox[1cm][c]{\sf 10}
]
 (4) edge (t);
\path[
 edge node = \makebox[1cm][c]{\sf 4}
]
 (4) edge (5);
\path[
 edge node = \makebox[1cm][c]{\sf 12}
]
 (5) edge (t);
\path[
 edge node = \makebox[1cm][c]{\sf 12}
]
 (2) edge (t);
\path[
 edge node = \makebox[1cm][c]{\sf 8}
]
 (t) edge (8);
\path[
 edge node = \makebox[1cm][c]{\sf 4}
]
 (8) edge (4);
\path[
 edge node = \makebox[1cm][c]{\sf 4}
]
 (4) edge (1);
\end{tikzpicture}
Example
Example

\[
\begin{array}{c}
\text{s} & \text{cap} & \text{d} & \text{f} & \text{excess} \\
6 & 10 & 10 & 8 & 4 \\
2 & 7 & 4 & 2 & 4 \\
2 & 1 & 4 & 8 & 4 \\
2 & 0 & & & \\
\end{array}
\]
Example

12 pushes in total
Partial Correctness

Lemma 3. When genericPreflowPush terminates, f is a maximal flow.

Proof.
f is a flow since $\forall v \in V \setminus \{s, t\} : \text{excess}(v) = 0$.

To show that f is maximal, it suffices to show that there does not exist a path $p = \langle s, \ldots, t \rangle \in G_f$ (Max-Flow Min-Cut Theorem):
Since $d(s) = n$, $d(t) = 0$, p would have to contain steep edges. That contradicts the invariant. \qed
Lemma 4. For any cut \((S, T)\),

\[
\sum_{u \in S} \text{excess}(u) = \sum_{e \in E \cap (T \times S)} f(e) - \sum_{e \in E \cap (S \times T)} f(e),
\]

Proof:

\[
\sum_{u \in S} \text{excess}(u) = \sum_{u \in S} \left(\sum_{(v, u) \in E} f((v, u)) - \sum_{(u, v) \in E} f((u, v)) \right)
\]

Contributions of edge \(e\) to sum:

- **S to T**: \(-f(e)\)
- **T to S**: \(f(e)\)
- **within S**: \(f(e) - f(e) = 0\)
- **within T**: 0

\[\blacksquare\]
Lemma 5.

∀ active nodes v : excess(v) > 0 ⇒ ∃ path ⟨v, ..., s⟩ ∈ G_f

Intuition: what got there can always go back.

Proof. S := {u ∈ V : ∃ path ⟨v, ...u⟩ ∈ G_f}, T := V \ S. Then

\[\sum_{u \in S} excess(u) = \sum_{e \in E \cap (T \times S)} f(e) - \sum_{e \in E \cap (S \times T)} f(e), \]

∀(u, w) ∈ E_f : u ∈ S ⇒ w ∈ S by Def. of G_f, S
⇒ ∀e = (u, w) ∈ E \ (T \times S) : f(e) = 0 Otherwise (w, u) ∈ E_f

Hence, \[\sum_{u \in S} excess(u) \leq 0 \]

Only the negative excess of s can outweigh excess(v) > 0.

Hence s ∈ S. □
Lemma 6.
\[\forall v \in V : d(v) < 2n \]

Proof.
Suppose \(v \) is lifted to \(d(v) = 2n \).
By the Lemma 2, there is a (simple) path \(p \) to \(s \) in \(G_f \).
\(p \) has at most \(n - 1 \) nodes
\(d(s) = n \).
Hence \(d(v) < 2n \). Contradiction (no steep edges). \(\square \)
Lemma 7. \# Relabel operations $\leq 2n^2$

Proof. $d(v) \leq 2n$, i.e., v is relabeled at most $2n$ times. Hence, at most $|V| \cdot 2n = 2n^2$ relabel operations. \qed
Lemma 8. \# saturating pushes \(\leq nm \)

Proof.

We show that there are at most \(n \) sat. pushes over any edge \(e = (v, w) \).

A saturating push \((e, \delta) \) removes \(e \) from \(E_f \).

Only a push on \((w, v) \) can reinsert \(e \) into \(E_f \).

For this to happen, \(w \) must be lifted at least two levels.

Hence, at most \(2n/2 = n \) saturating pushes over \((v, w) \)
Lemma 9. \# nonsaturating pushes = O(n^2m)

if \(\delta = \min \left\{ \text{excess}(v), c^e_f \right\} \)

for arbitrary node and edge selection rules.

(arbitrary-preflow-push)

Proof. \(\Phi := \sum_{\{v:v \text{ is active}\}} d(v) \).

(Potential)

\(\Phi = 0 \) initially and at the end (no active nodes left!)

<table>
<thead>
<tr>
<th>Operation</th>
<th>(\Delta(\Phi))</th>
<th>How many times?</th>
<th>Total effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>relabel</td>
<td>1</td>
<td>(\leq 2n^2)</td>
<td>(\leq 2n^2)</td>
</tr>
<tr>
<td>saturating push</td>
<td>(\leq 2n)</td>
<td>(\leq nm)</td>
<td>(\leq 2n^2m)</td>
</tr>
<tr>
<td>nonsaturating push</td>
<td>(\leq -1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\Phi \geq 0 \) always.
Searching for Eligible Edges

Every node v maintains a currentEdge pointer to its sequence of outgoing edges in G_f.

Invariant no edge $e = (v, w)$ to the left of currentEdge is eligible

Invariant violations?

- □ relabel(v)? Reset currentEdge
- □ relabel(w)? No, no steep edges.
- □ push(w, v)? $\Rightarrow (v, w)$ is upward

Lemma 10.

Total cost for searching $\leq \sum_{v \in V} 2n \cdot \text{degree}(v) = 4nm = O(nm)$
Theorem 11. Arbitrary Preflow Push finds a maximum flow in time $O(n^2m)$.

Proof.
Lemma 3: partial correctness
Initialization in time $O(n + m)$.
Maintain set (e.g., stack, FIFO) of active nodes.
Use reverse edge pointers to implement push.
Lemma 7: $2n^2$ relabel operations
Lemma 8: nm saturating pushes
Lemma 9: $O(n^2m)$ nonsaturating pushes
Lemma 10: $O(nm)$ search time for eligible edges

Total time $O(n^2m)$
FIFO Preflow push

Examine a node: Saturating pushes until nonsaturating push or relabel.

Examine all nodes in phases (or use FIFO queue).

Theorem: time $O(n^3)$

Proof: not here
Highest Level Preflow Push

Always select active nodes that maximize $d(v)$

Use bucket priority queue (insert, increaseKey, deleteMax)
not monotone (!) but relabels “pay” for scan operations

Lemma 12. At most $n^2 \sqrt{m}$ nonsaturating pushes.

Proof. later

Theorem 13. Highest Level Preflow Push finds a maximum flow in time $O(n^2 \sqrt{m})$.
Example

\[
\begin{array}{c}
\text{s} & \text{d} & \text{cap} & \text{f} & \text{excess} \\
6 & 10 & 10 & 10 & 10 \\
2 & 2 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 \\
1 & 1 & 1 & 1 & 1 \\
12 & 12 & 12 & 12 & 12 \\
t & t & t & t & t \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Example

\[
\begin{array}{c}
\text{s} & \overset{10}{\rightarrow} & 2 & \overset{4}{\rightarrow} & 1 & \overset{12}{\rightarrow} & t \\
\overset{10}{\rightarrow} & \text{d} & \overset{4}{\leftarrow} & \text{f} & \overset{4}{\leftarrow} & \text{excess} & \overset{8}{\leftarrow} & 0 \\
\overset{6}{\leftarrow} & \text{cap} & \overset{10}{\leftarrow} & 2 & \overset{10}{\leftarrow} & 10 & \overset{4}{\leftarrow} & 10 \\
\end{array}
\]
Example

\[
\begin{array}{c}
\text{Example} \\
\end{array}
\]
Example

\begin{itemize}
 \item \text{source (s)}:
 \begin{itemize}
 \item \text{cap (d)}: 6
 \item excess (f): 10
 \end{itemize}
 \item \text{sink (t)}:
 \begin{itemize}
 \item \text{cap (d)}: 12
 \item excess (f): 0
 \end{itemize}
 \item \text{intermediate nodes}:
 \begin{itemize}
 \item 2: 10, 8
 \item 3: 12, 12
 \item 1: 4, 4
 \item 7: 4, 4
 \end{itemize}
\end{itemize}
Example
Example

9 pushes in total, 3 less than before
Proof of Lemma 12

\[K := \sqrt{m} \]
\[d'(v) := \frac{|\{w : d(w) \leq d(v)\}|}{K} \]
\[\Phi := \sum_{\{v : v \text{ is active}\}} d'(v). \]
\[d^* := \max \{d(v) : v \text{ is active}\} \]
\[\text{phase} := \text{all pushes between two consecutive changes of } d^* \]
\[\text{expensive phase: more than } K \text{ pushes} \]
\[\text{cheap phase: otherwise} \]
Claims:

1. \(\leq 4n^2K \) nonsaturating pushes in all cheap phases together

2. \(\Phi \geq 0 \) always, \(\Phi \leq n^2/K \) initially (obvious)

3. a relabel or saturating push increases \(\Phi \) by at most \(n/K \).

4. a nonsaturating push does not increase \(\Phi \).

5. an expensive phase with \(Q \geq K \) nonsaturating pushes decreases \(\Phi \) by at least \(Q \).

Lemma 7 + Lemma 8 + 2. + 3. + 4. \(\Rightarrow \) total possible decrease \(\leq (2n^2 + nm) \frac{n}{K} + \frac{n^2}{K} \)

This + 5. \(\leq \frac{2n^3 + n^2 + mn^2}{K} \) nonsaturating pushes in expensive phases

This + 1. \(\leq \frac{2n^3 + n^2 + mn^2}{K} + 4n^2K = O\left(n^2 \sqrt{m}\right) \) nonsaturating pushes overall for \(K = \sqrt{m} \)
Claims:

1. $\leq 4n^2 K$ nonsaturating pushes in all cheap phases together

We first show that there are at most $4n^2$ phases (changes of $d^* = \max \{d(v) : v \text{ is active}\}$).

$d^* = 0$ initially, $d^* \geq 0$ always.

Only relabel operations increase d^*, i.e.,

$\leq 2n^2$ increases by Lemma 7 and hence

$\leq 2n^2$ decreases

$\leq 4n^2$ changes overall

By definition of a cheap phase, it has at most K pushes.
Claims:

1. \(\leq 4n^2 K \) nonsaturating pushes in all cheap phases together

2. \(\Phi \geq 0 \) always, \(\Phi \leq n^2 / K \) initially \hspace{1cm} \text{(obvious)}

3. a relabel or saturating push increases \(\Phi \) by at most \(n / K \).

Let \(v \) denote the relabeled or activated node.

\[
d'(v) := \left| \{ w : d(w) \leq d(v) \} \right| \leq \frac{n}{K}
\]

A relabel of \(v \) can increase only the \(d' \)-value of \(v \).

A saturating push on \((u, w)\) may activate only \(w \).
Claims:

1. \(\leq 4n^2K \) nonsaturating pushes in all cheap phases together

2. \(\Phi \geq 0 \) always, \(\Phi \leq n^2/K \) initially (obvious)

3. a relabel or saturating push increases \(\Phi \) by at most \(n/K \).

4. a nonsaturating push does not increase \(\Phi \).

\(v \) is deactivated (excess(\(v \)) is now 0)
\(w \) may be activated
but \(d'(w) \leq d'(v) \) (we do not push flow away from the sink)
Claims:

1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together

2. $\Phi \geq 0$ always, $\Phi \leq n^2/K$ initially (obvious)

3. a relabel or saturating push increases Φ by at most n/K.

4. a nonsaturating push does not increase Φ.

5. an expensive phase with $Q \geq K$ nonsaturating pushes decreases Φ by at least Q.

During a phase d^* remains constant

Each nonsat. push decreases the number of active nodes at level d^*

Hence, $|\{w : d(w) = d^*\}| \geq Q \geq K$ during an expensive phase

Each nonsat. push across (v, w) decreases Φ by

$\geq d'(v) - d'(w) \geq |\{w : d(w) = d^*\}| / K \geq K/K = 1$
Claims:

1. $\leq 4n^2K$ nonsaturating pushes in all cheap phases together

2. $\Phi \geq 0$ always, $\Phi \leq \frac{n^2}{K}$ initially (obvious)

3. a relabel or saturating push increases Φ by at most $\frac{n}{K}$.

4. a nonsaturating push does not increase Φ.

5. an expensive phase with $Q \geq K$ nonsaturating pushes decreases Φ by at least Q.

Lemma 7 + Lemma 8 + 2. + 3. + 4. \Rightarrow

total possible decrease $\leq \left(2n^2 + nm\right)\frac{n}{K} + \frac{n^2}{K}$

This + 5. $\leq \frac{2n^3+n^2+mn^2}{K}$ nonsaturating pushes in expensive phases

This + 1. $\leq \frac{2n^3+n^2+mn^2}{K} + 4n^2K = O\left(n^2\sqrt{m}\right)$ nonsaturating pushes overall for $K = \sqrt{m}$
MFIFO: Modified FIFO Selection Rule

pushFront after relabel.
pushBack when activated by a push
Heuristic Improvements

Naive algorithm needs $\Omega \left(n^2 \right)$ relabels even on a path graph. We can do better.

aggressive local relabeling:

$$d(v) := 1 + \min \left\{ d(w) : (v, w) \in G_f \right\}$$

(like a sequence of relabels)
Heuristic Improvements

Naive algorithm has best case $\Omega \left(n^2\right)$. Why? We can do better.

aggressive local relabeling: $d(v) := 1 + \min \left\{ d(w) : (v, w) \in G_f \right\}$
(like a sequence of relabels)

global relabeling: (initially and every $O(m)$ edge inspections):
$d(v) := G_f.\text{reverseBFS}(t)$ for nodes that can reach t in G_f.

Special treatment of nodes with $d(v) \geq n$. (Returning flow is easy)

Gap Heuristics. No node can connect to t across an empty level:
if $\{ v : d(v) = i \} = \emptyset$ then foreach v with $d(v) > i$ do $d(v):= n$
Experimental results

We use four classes of graphs:

- Random: n nodes, $2n + m$ edges; all edges (s, v) and (v, t) exist
- Cherkassky and Goldberg (1997) (two graph classes)
- Ahuja, Magnanti, Orlin (1993)
Timings: Random Graphs

<table>
<thead>
<tr>
<th>Rule</th>
<th>BASIC</th>
<th>Ln</th>
<th>LRH</th>
<th>GRH</th>
<th>GAP</th>
<th>LEDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>5.84</td>
<td>6.02</td>
<td>4.75</td>
<td>0.07</td>
<td>0.07</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>33.32</td>
<td>33.88</td>
<td>26.63</td>
<td>0.16</td>
<td>0.17</td>
<td>—</td>
</tr>
<tr>
<td>HL</td>
<td>6.12</td>
<td>6.3</td>
<td>4.97</td>
<td>0.41</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>27.03</td>
<td>27.61</td>
<td>22.22</td>
<td>1.14</td>
<td>0.22</td>
<td>0.16</td>
</tr>
<tr>
<td>MF</td>
<td>5.36</td>
<td>5.51</td>
<td>4.57</td>
<td>0.06</td>
<td>0.07</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>26.35</td>
<td>27.16</td>
<td>23.65</td>
<td>0.19</td>
<td>0.16</td>
<td>—</td>
</tr>
</tbody>
</table>

\[n \in \{1000,2000\}, m = 3n \]

FF=_FIFO node selection, HL=highest level, MF=modified FIFO

Ln= \(d(v) \geq n \) is special,

LRH=local relabeling heuristic, GRH=global relabeling heuristics
Timings: CG1

<table>
<thead>
<tr>
<th>Rule</th>
<th>BASIC</th>
<th>Ln</th>
<th>LRH</th>
<th>GRH</th>
<th>GAP</th>
<th>LEDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>3.46</td>
<td>3.62</td>
<td>2.87</td>
<td>0.9</td>
<td>1.01</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>15.44</td>
<td>16.08</td>
<td>12.63</td>
<td>3.64</td>
<td>4.07</td>
<td>—</td>
</tr>
<tr>
<td>HL</td>
<td>20.43</td>
<td>20.61</td>
<td>20.51</td>
<td>1.19</td>
<td>1.33</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>192.8</td>
<td>191.5</td>
<td>193.7</td>
<td>4.87</td>
<td>5.34</td>
<td>3.28</td>
</tr>
<tr>
<td>MF</td>
<td>3.01</td>
<td>3.16</td>
<td>2.3</td>
<td>0.89</td>
<td>1.01</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>12.22</td>
<td>12.91</td>
<td>9.52</td>
<td>3.65</td>
<td>4.12</td>
<td>—</td>
</tr>
</tbody>
</table>

\(n \in \{1000, 2000\}, m = 3n\)

FF=FIFO node selection, HL=highest level, MF=modified FIFO

Ln= \(d(v) \geq n\) is special,

LRH=local relabeling heuristic, GRH=global relabeling heuristics
Timings: CG2

<table>
<thead>
<tr>
<th>Rule</th>
<th>BASIC</th>
<th>Ln</th>
<th>LRH</th>
<th>GRH</th>
<th>GAP</th>
<th>LEDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>50.06</td>
<td>47.12</td>
<td>37.58</td>
<td>1.76</td>
<td>1.96</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>239</td>
<td>222.4</td>
<td>177.1</td>
<td>7.18</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>HL</td>
<td>42.95</td>
<td>41.5</td>
<td>30.1</td>
<td>0.17</td>
<td>0.14</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>173.9</td>
<td>167.9</td>
<td>120.5</td>
<td>0.36</td>
<td>0.28</td>
<td>0.18</td>
</tr>
<tr>
<td>MF</td>
<td>45.34</td>
<td>42.73</td>
<td>37.6</td>
<td>0.94</td>
<td>1.07</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>198.2</td>
<td>186.8</td>
<td>165.7</td>
<td>4.11</td>
<td>4.55</td>
<td>—</td>
</tr>
</tbody>
</table>

\(n \in \{1000, 2000\}, m = 3n \)

FF=FIFO node selection, HL=highest level, MF=modified FIFO

Ln= \(d(v) \geq n \) is special,

LRH=local relabeling heuristic, GRH=global relabeling heuristics
Timings: AMO

<table>
<thead>
<tr>
<th>Rule</th>
<th>BASIC</th>
<th>Ln</th>
<th>LRH</th>
<th>GRH</th>
<th>GAP</th>
<th>LEDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>12.61</td>
<td>13.25</td>
<td>1.17</td>
<td>0.06</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>55.74</td>
<td>58.31</td>
<td>5.01</td>
<td>0.1399</td>
<td>0.1301</td>
<td>—</td>
</tr>
<tr>
<td>HL</td>
<td>15.14</td>
<td>15.8</td>
<td>1.49</td>
<td>0.13</td>
<td>0.13</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>62.15</td>
<td>65.3</td>
<td>6.99</td>
<td>0.26</td>
<td>0.26</td>
<td>0.14</td>
</tr>
<tr>
<td>MF</td>
<td>10.97</td>
<td>11.65</td>
<td>0.04999</td>
<td>0.06</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>46.74</td>
<td>49.48</td>
<td>0.1099</td>
<td>0.1301</td>
<td>0.1399</td>
<td>—</td>
</tr>
</tbody>
</table>

\(n \in \{ 1000, 2000 \}, m = 3n\)

- FF=FIFO node selection, HL=highest level, MF=modified FIFO
- Ln= \(d(v) \geq n\) is special,
- LRH=local relabeling heuristic, GRH=global relabeling heuristics
Asymptotics, \(n \in \{5000, 10000, 20000\} \)

<table>
<thead>
<tr>
<th>Gen</th>
<th>Rule</th>
<th>GRH</th>
<th>GAP</th>
<th>LEDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>rand</td>
<td>FF</td>
<td>0.16</td>
<td>0.41</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>1.47</td>
<td>4.67</td>
<td>18.81</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>0.17</td>
<td>0.36</td>
<td>1.06</td>
</tr>
<tr>
<td>CG1</td>
<td>FF</td>
<td>3.6</td>
<td>16.06</td>
<td>69.3</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>4.27</td>
<td>20.4</td>
<td>77.5</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>3.55</td>
<td>15.97</td>
<td>68.45</td>
</tr>
<tr>
<td>CG2</td>
<td>FF</td>
<td>6.8</td>
<td>29.12</td>
<td>125.3</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>0.33</td>
<td>0.65</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>3.86</td>
<td>15.96</td>
<td>68.42</td>
</tr>
<tr>
<td>AMO</td>
<td>FF</td>
<td>0.12</td>
<td>0.22</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>0.25</td>
<td>0.48</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>0.11</td>
<td>0.24</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Recent AE Results on Max-Flow

- Much faster on many (relatively easy) real world instances (image processing, graph partitioning, . . .) than preflow-push
- Worst case performance guarantee $O(mn^2)$ (as in Dinitz algorithm)
- Adaptable to dynamic scenarios
- Uses pseudoflows that allow excesses and deficits.

Open problem: close gaps between theory and practice!
Zusammenfassung Flows und Matchings I

- Natürliche Verallgemeinerung von kürzesten Wegen:
 ein Pfad \(\leadsto\) viele Pfade

- viele Anwendungen

- “schwierigste/allgemeinsten” Graph-Probleme, die sich mit kombinatorischen Algorithmen in Polynomialzeit lösen lassen

- Beispiel für nichttriviale Algorithmenanalyse

- Manchmal sind spezielle Probleminstanzfamilien beweisbar leichter (z.B. unit capacity, matchings)
Zusammenfassung Flows und Matchings II

- Entwurfstechnik: Algorithmeninvarianten relaxieren
 (augmenting paths ↛ Preflow-Push ↛ pseudoflows)

- Invarianten leiten Entwurf und Verständnis von Algorithmen

- Potentialmethode (\neq Knotenpotentiale)

- Algorithm Engineering: practical case \neq worst case.
 Heuristiken/Details/Eingabeeigenschaften wichtig

- Datenstrukturen: bucket queues, graph representation,
 (dynamic trees)