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S Maximum Flows and Matchings
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[mit Kurt Mehlhorn, Rob van Stee]
Folien auf Englisch

Literatur:

[Mehlhorn / Naher, The LEDA Platform of Combinatorial and
Geometric Computing, Cambridge University Press, 1999]
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/
LEDAbook/Graph_alg.ps

[Ahuja, Magnanti, Orlin, Network Flows, Prentice Hall, 1993]
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Definitions: Network

] Network = directed weighted graph with
source node s and sink node ¢

] s has no incoming edges, ¢ has no outgoing edges

I Weight ¢, of an edge e = capacity of e (nonnegative!)
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Definitions: Flows

] Flow = function f, on the edges, Ve : 0 < f, < ¢,
Vv € V\ {s,t}: total incoming flow = total outgoing flow
] Value of a flow val(f) =

total outgoing flow from s =

[ ] Goal: find a flow with maximum value
10
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Definitions: (Minimum) s-¢ Cuts

An s-t cut is partition of Vinto S and 7" withs € Sandt € T.

The of this cut is:

Z{C(u,v) uesS,ve T}
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Karlsruhe Institute of Technology

Duality Between Flows and Cuts

Theorem:[Elias/Feinstein/Shannon, Ford/Fulkerson 1956]

Value of an s-f max-flow = minimum capacity of an s-f cut.
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Proof: later 4
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Applications

Karlsruhe Institute of Technology

] Qil pipes
| Traffic flows on highways
|:| |mage PFOCGSSIng http://vision.csd.uwo.ca/maxflow-data

— segmentation

— stereo processing

— multiview reconstruction
— surface fitting

] disk/machine/tanker scheduling

| matrix rounding

L] ...
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Current Research Challenge:

Al versus Optimal Algorithms

Many image processing applications are currently taken over by

deep convolutional neural networks.
+ Often better results
+ No ad-hoc definitions of s, 1, ¢
— “Optimality” is thrown over board
— Lots of training examples needed

Is there a middle way?

Learn s, f, ¢ then optimize?
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Applications in our Group

[ multicasting using requests disks controller

network coding

] balanced k partitioning ¢ W‘A“' —

|/O—-busses

] disk scheduling

W W W lw [w
|
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Option 1: linear programming
|| Flow variables x, for each edge e
| Flow on each edge is at most its capacity
[ Incoming flow at each vertex = outgoing flow from this vertex
[ ] Maximize outgoing flow from starting vertex

We can do better!
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Algorithms 1956-now

Year Author Running time

1956  Ford-Fulkerson O(mnU)

1969  Edmonds-Karp O(m°n)

1970 Dinic O(mn?)

1973  Dinic-Gabow O(mnlogU)

1974 Karzanov O(n®)  n = number of nodes
1977  Cherkassky O(n®y/m) m = number of arcs
1980  Galil-Naamad O(mnlog®n) U = largest capacity
1983  Sleator-Tarjan O(mnlogn)

1986 Goldberg-Tarjan  O(mnlog(n®/m))
1987  Ahuja-Orlin ~ O(mn+n®logU)
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Running time

Year Author

1987 Ahuja-Orlin-Tarjan O(mnlog(2 4+ n+/logU /m))
1990 Cheriyan-Hagerup-Mehlhorn O(n®/logn)

1990 Alon O(mn+n%/3logn)

1992 King-Rao-Tarjan O(mn + n**¢)

1993 Philipps-Westbrook O(mnlogn/log™ +n?log**¢n)
1994 King-Rao-Tarjan O(mnlogn/log nlogn) it m > 2nlogn
1997 Goldberg-Rao O(min{m'/?,n*/3Ymlog(n?/m)logU)
2014 Lee-Sidford O(m+/nlog?U)

2020 v. d. Brand et al. O(m+ n2 logU log’ m)

2021 Gao-Liu-Peng O(m >3 logUlog’ m)

2022 v.d. Brand et al. O(m 5% logUlog’ m)

2022 Chen, Kyng et al. O(m'*+°W1ogU)
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Augmenting Paths (Rough Idea)

Find a path from s to  such that each edge has some spare capacity
On this path, saturate the edge with the smallest spare capacity

Adjust capacities for all edges (create residual graph) and repeat

A typical greedy algorithm
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Example
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Example
0
10 - 5
4 10
O
4 4 7
4 4
_______________ @
0



Sanders: Algorithmen Il - November21, 2023 5-16 ﬂ(l'l‘

tttttttttttttttttttttttttttttt

Example
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Karlsruhe Institute of Technology

Example
0
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are we done?
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Example
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Residual Graph

Given, network G = (V,E,¢), flow f

Residual graph G ¢ = (V, Ef,cf). For each e € E we have

y

e € Er with ¢l = ce— fle) if fle) <c(e)

\
\ere" € Er with cﬁev = f(e) iff(e) >0
10 10
O 12 12
/ 12
O
A
: 4
capacity \ g
flow Q Q

residual capacity
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Karlsruhe Institute of Technology

Augmenting Paths

Find a path p from s to ¢ such that each edge e has nonzero residual

capacity cép

Af:= mincﬁ
ecp

foreach (u,v) € p do
if (u, v) € E then f(u,v)"_ =Af
else fr, ) —=Af
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Karlsruhe Institute of Technology

Ford Fulkerson Algorithm

Function FFMaxFlow(G = (V,E),s,t,c: E - N): E - N
=0
while Jpath p = (s,...,t) in G do
augment f along p
return f

time O(mval(f))
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Ford Fulkerson — Correctness

“Clearly” FF computes a feasible flow f. (Invariant)
Todo: flow value is maximal
At termination: no augmenting paths in G 7 left.

Consider cut (S, 7:=V \ S) with
S:= {v € V : vreachable from s in Gf}
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A Basic Observations

Lemma 1: For any cut (S,7):

S—T edges T—S edges

val(f)= Y f— Y f.

ecENSXT ecENT XS
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Ford Fulkerson — Correctness

Todo: val(f) is maximal when no augmenting paths in G ¢ left.

Consider cut (S, 7:=V \ S) with
S:= {v c V : vreachable from s in Gf}.
Observation: V(u,v) € ENT xS: f(u,v) =0

otherwise ¢/ (v,u) > 0 contradicting the definition of S.

val(f) = Z fe— Z fe Lemma 1
ecENSXT ecENT XS
= Y f Observation above
ecENSXT
= ) ¢y = (8,T) cut capacity
ecENSXT

see next slide
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Max-Flow-Min-Cut theorem

Theorem: Max-flow = min-cut

Proof:

obvious: any-flow < max-flow < min-cut < any-cut

previous slide:
(S,T) flow = (S, T) cut capacity
=

(S,T) flow = max-flow = min-cut
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A Bad Example for Ford Fulkerson
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A Bad Example for Ford Fulkerson
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A Bad Example for Ford Fulkerson
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An Even Worse Example for Ford Fulkerson
[U. Zwick, TCS 148, p. 165—170, 1995]

V51
Let r = 5
Consider the graph

And the augmenting paths
po = (s,c,b,1)

p1 = (s,a,b,c,d,t)

pr = (s,c,b,a,t)

p3 = (s,d,c,b,t)

The sequence of augmenting paths py (pl,pz,pl,m)* is an infinite

sequence of positive flow augmentations.

The flow value does not converge to the maximum value 9.
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Karlsruhe Institute of Technology

Blocking Flows

fp is a blocking flow in H if

Vpaths p = (s,...,t) : de € p: fr(e) = c(e)
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Dinitz Algorithm -

Function DinitzMaxFlow(G = (V,E),s,t,c: E —+N): E - N
=0
while Jpath p = (s,...,t) in G do
d=Gy.reverseBFS(t) : V =+ N
Ly=(V,{(u,v) €Ef:d(v) =d(u)—1}) I/ layer graph
find a blocking flow f}, in L

augment f+=fp
return f
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Karlsruhe Institute of Technology

Dinitz — Correctness

analogous to Ford-Fulkerson
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Example 2 1010 1

10 @ ------o- - ©,

10// A \\\1212
3/// \\\ 0
(S ®

6 2 4
bo---o oo

@ﬁ@- > >@~@—@ﬁ®
2 3 2

unused used saturated
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Computing BlOCking FlOWS Karlsruhe Institute of Technology

|dea: repeated DFS for augmenting paths

(not using DFS algorithm schema)
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Function blockingFlow(Ls = (V,E)) : E — N
p=(s) : Path;  f,=0 : Flow

loop // Round
v:= p.last()
if v=1 then // breakthrough

6:= min{c(e) — fr(e) : e € p}
foreach e € p do

fo(e)+=0
if f;,(e) = c(e) then remove e from E
pi= (s)
else if de = (v,w) € E then p.pushBack(w)  // extend
else if v = s then return f; [/l done

else delete the last edge from pin pand E [/l retreat
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Example 2 10 1
@ exiend ~;©

10 10 12

R extend extend
/, 10 0
® breakthrough

\ 1 /
d
2 1

@ e > (0 _extend

e . 2

yZ N\
s

extend \*\ 0

3.
(9 (© breakthrough
4
extend
10 2 1 8
b 4

d
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Example 2 1
@ e > (O extend
s g ’ \\\ 2
3.7 4 extend \‘\ 0
(S @® breakthrough
A
extend
k : 1 /
b A d
2 1
@ e - ©.
3.7 4 ,’extend \\\ 0
(S " retreat @ breakthrough
2.7
extend !
\ - A e
---------- > @

4 exten
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Example
2 1
@ ~©.
3.7 4 ,‘extend L, 0
(S retreat @ breakthrough

1Atend
d

extend
retreat 4
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Karlsruhe Institute of Technology

Blocking Flows Analysis 1

L] running time #,/enas + Hretrears + 1 #breakthmughs

L #preakthroughs < M — > 1 edge is saturated

L #retrears < m — one edge is removed

] Heoxtends < Hretreats + 1" #breakthroughs
— a retreat cancels 1 extend, a breakthrough cancels < n extends

time is O(m+nm) = O(nm)
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Blocking Flows Analysis 2

Unit capacities:

breakthroughs saturate all edges on p,

l.e., amortized constant cost per edge.

time O(m +n)
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Blocking Flows Analysis 3

If we use a dynamic tree data structure:

breakthrough (!), retreat, extend is possible in time O(logn)
=
Time O((m~+n)logn)

“Theory alert™ In practice, this seems to be slower

(few breakthroughs, many retreat, extend ops.)
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Lemma 1. d(s) increases by at least one in each round.

Proof. not here []
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Dinitz Analysis 2
[ 1 < nrounds
[ time O(mn) each
time O(mnz) (strongly polynomial)

time O(mnlogn) with dynamic trees

5-43

Karlsruhe Institute of Technology
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Dinitz Analysis 3 — Unit Capacities

Lemma 2. Af most 2./m BF computations:

Proof. Consider iteration k = /m.
Cut 1n layergraph induces cut in

residual graph of capacity at most /m.
At most y/m additional phases.

Total time: O((m +n)/m)

more detailed analysis: O (m min {ml/z7 n2/3 })
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Dinitz Analysis 4 — Unit Networks

Karlsruhe Institute of Technology

Unit capacity + Vv € V : min {indegree(v), outdegree(v) } = 1:
time: O((m—+n)+/n)
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Matching

M C E is a matching in the undirected graph G = (V, E) iff
(V,M) has maximum degree < 1.

M is maximal if Ae € E\ M : M U{e} is a matching.

M has maximum cardinality if Amatching M’ : |M'| > |M|




Sanders: Algorithmen Il - November21, 2023 5-47 &(IT

Karlsruhe Institute of Technology

Maximum Cardinality Bipartite Matching

in (LUR,E). Model as a unit network maximum flow problem

{s}ULURU{t} , {(s,u):uec L} UEU{(v,1): H

L R

Dinitz algorithm yields O((n + m)+/n) algorithm
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Similar Performance for Weighted Graphs?

time: O (mmin {m1/2,n2/3 } log C) [Goldberg Rao 97]

Problem: Fat edges between layers ruin the argument

Idea: scale a parameter A from small to large.

Contract SCCs of fat edges (capacity > A)

Experiments [Hagerup, Sanders Traff 98]:
Sometimes best algorithm usually slower than preflow push
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Disadvantage of augmenting paths algorithms
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Preflow-Push Algorithms

Preflow f: a flow where the flow conservation constraint is relaxed to

inflow outflow
z—/ﬁ
excess(v):i= Y f Z Fooaw) =
(u,v)EE (vyw)eE

v e V\{s,t}is active iff excess(v) > 0
Procedure push(e = (v,w),0)

assert 0 >0 A excess(v) > 0

assert residual capacity of e > 0

excess(v) —=0

excess(w) +=0

if e is reverse edge then f(reverse(e)) —=0

else f(e) +=0
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Karlsruhe Institute of Technology

Level Function

ldea: make progress by pushing towards ¢

Maintain
an approximation d(v) of the BFS distance from vto ¢ in G.

invariant d(¢) =0
invariant d(s) =n
invariant V(v,w) € E¢ :d(v) <d(w) + 1 // no steep edges

Edge directions of e = (v, w)
steep: d(w) < d(v)—1
downward: d(w) < d(v)
horizontal: d(w) = d(v)
upward: d(w) > d(v)
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Karlsruhe Institute of Technology

Procedure genericPreflowPush(G = (V,E), f)

forall e = (s,v) € E do push(e,c(e)) // saturate
d(s):=n

d(v):= 0 for all other nodes

while v € V\ {s,¢} : excess(v) > 0 do // active node

if de = (v,w) € Ef:d(w) <d(v) then // eligible edge
choose some 0 < min {excess(v),cg }

push(e, o) // no new steep edges
else d(v)++ // relabel. No new steep edges

Obvious choice for 0 : & = min {excess(v),cf}

saturating push: 0 = cg

nonsaturating push: 0 < cg

To be filled in: How to select active nodes and eligible edges?
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Example
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Example

108

g 6 \
10
cap 3 !

EXCeSS

12 pushes in total
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Partial Correctness

Lemma 3. When genericPreflowPush terminates

f is a maximal flow.

Proof.
fisaflow since Vv € V'\ {s,} : excess(v) = 0.

To show that f 1s maximal, it suffices to show that

Apath p = (s,...,t) € Gy (Max-Flow Min-Cut Theorem):
Since d(s) =n, d(t) =0, p would have to contain steep edges.
That contradicts the invariant. []
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Lemma 4. For any cut (S,T),

Zexcess(u)— Z fle)— Z f(e),

ues ecEN(T xS) ecEN(SXT)
Proof:
Zexcess(u) = Z ( Z f((v,u)) — Z f((%")))
ues ucS \ (vu)€eE (u,v)€E

Contributions of edge e to sum:

StoT: —f(e)

TtoS: f(e)

within S: f(e) — f(e) =0

within 7: O u
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Lemma 3.
V active nodes v : excess(v) > 0 = I path (v,...,s) € Gy

Intuition: what got there can always go back.

Proof. S:={ueV :3path (v,...u) € Gy}, T :=V\S. Then

Z excess(u) = Z fle)— Z fle),

ucsS ecEN(T xS) ecEN(SXT)

Vu,w) €eEf:ucS=wes by Def. of G¢, S
= Ve = (u,w) € EN(T xS): f(e) =0 Otherwise (w,u) € E

Hence, Y excess(u) <0
ucsS

Only the negative excess of s can outweigh excess(v) > 0.
Hence s € §. []
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Lemma 6.
YWevV:dv)<2n

Proof.

Suppose v is lifted to d(v) = 2n.

By the Lemma 2, there 1s a (simple) path p to s in G¢.

p has at most n — 1 nodes

d(s) =n.

Hence d(v) < 2n. Contradiction (no steep edges). ]
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Lemma 7. # Relabel operations < 2n*

Proof. d(v) < 2n, i.e., v is relabeled at most 2n times.
Hence, at most |V| - 2n = 2n? relabel operations. ]
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Lemma 8. # saturating pushes < nm

Proof.
We show that there are at most n sat. pushes over any edge

e= (v,w). @

A saturating push(e, 0) removes e from E. /
Only a push on (w,v) can reinsert e into E. @ lift

For this to happen, w must be lifted at least two levels. \
Hence, at most 2n/2 = n saturating pushes over (v, w)

[ ]
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Lemma 9. # nonsaturating pushes = O(nzm)

if 0 = min {excess(v),cé( }
for arbitrary node and edge selection rules.

(arbitrary-preflow-push)

Proof. ® := Z d(v). (Potential)

{v:vis active}

® = 0 initially and at the end (no active nodes left!)
Operation | A(®) How many times? Total effect

relabel 1 < 2n? < 2n?

saturating push | <2n < nm < 2n*m

nonsaturating push | < —1

d > 0 always. ]
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Searching for Eligible Edges

Every node v maintains a currentEdge pointer to its sequence of
outgoing edges in G .
invariant no edge ¢ = (v, w) to the left of currentEdge is eligible

Invariant violations?

] relabel(v)? Reset currentEdge (< 2nx)
] relabel(w)? No, no steep edges. @
(] push(w,v)? = (v,w) is upward \.
Lemma 10. W

Total cost for searching < Z 2n - degree(v) = 4nm = O(nm)
veV
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Theorem 11. Arbitrary Preflow Push finds a maximum flow in
time O (nzm)

Proof.

Lemma 3: partial correctness

Initialization in time O(n +m).

Maintain set (e.g., stack, FIFO) of active nodes.
Use reverse edge pointers to implement push.
Lemma 7: 2n” relabel operations

Lemma 8: nm saturating pushes

Lemma 9: O (nzm) nonsaturating pushes
Lemma 10: O(nm) search time for eligible edges

Total time O (nzm) [ ]
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FIFO Preflow push

Examine a node: Saturating pushes until nonsaturating push or relabel.
Examine all nodes in phases (or use FIFO queue).
Theorem: time O(n”)

Proof: not here
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Highest Level Preflow Push

Always select active nodes that maximize d(v)
Use bucket priority queue (insert, increaseKey, deleteMax)

not monotone (!) but relabels “pay” for scan operations

Lemma 12. Ar most n>/m nonsaturating pushes.

Proof. later ]

Theorem 13. Highest Level Preflow Push finds a maximum flow

in time O (n*/m) .
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Karlsruhe Institute of Technology

Example
10 10
W
4
s() (Ot
g \ ; / °
gap 1Oi0 é% é} 8

eXCess 10 4
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Example
10 10 10
2N
4
s() (Ot
G O \ 4 / 0
gap 10&0 é% é} 8

eXCess 10 4
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Example
1010 14
ZUZEAN
4
s() (Ot

6 4 0
d 4
cap 108 7 1 3

f O O
A

excess 4 4
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Example
2 108
O O
10 10 2 3 12
4 12
s() (Ot

6 4 0
d 4
cap 108 7 1 3

f O O
A

excess 4 4
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Example

g 6 \
10
cap 9 7

eXCESS
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Karlsruhe Institute of Technology

Example

g 6 \
10
cap 3 !

f
excess

9 pushes in total, 3 less than before
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Proof of Lemma 12

K :=+/m tuning parameter
d(w) <d
d'(v):= A (WI){_ W)} scaled number of dominated nodes
D= ) d®W). (Potential)
{v:vis active}
d* :=max{d(v) : vis active} (highest level)

phase:= all pushes between two consecutive changes of d*
expensive phase: more than K pushes

cheap phase: otherwise
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1. < 4n*K nonsaturating pushes in all cheap phases together

2. © > 0 always, P < nZ/K initially (obvious)
3. a relabel or saturating push increases ® by at most n/K.

4. a nonsaturating push does not increase P.

5. an expensive phase with 0 > K nonsatu-

rating pushes decreases P by at least Q. Operation | Amount

Lemma 74+Lemma 84-2.4-3.+4..=
2
total possible decrease < (2n2 + nm) % 4+ %

Relabel 2n?

Sat.push nm

3 2 2
This +3. :< 2Z +”K+m” nonsaturating pushes in expensive phases

3 2 2
This +1. :< 22 o +4n°K = O(nz\/n_fz) nonsaturating

pushes overall for K = \/m ]
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1. < An*K nonsaturating pushes in all cheap phases together

We first show that there are at most 4n> phases
(changes of d* = max {d(v) : v is active}).

d* = O initially, d* > 0 always.

Only relabel operations increase d*, i.e.,

< 2n? increases by Lemma 7 and hence

< 2n? decreases

< 4n? changes overall

By definition of a cheap phase, it has at most K pushes.
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1. < 4n*K nonsaturating pushes in all cheap phases together
2. © > 0 always, P < nz/K initially (obvious)
3. arelabel or saturating push increases ® by at most n/K.

Let v denote the relabeled or activated node.
) A <d0)}]

K K
A relabel of v can increase only the d’-value of v.

A saturating push on (u,w) may activate only w.
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1. < 4n*K nonsaturating pushes in all cheap phases together
2. ® > (0 always, ® < nz/K initially (obvious)
3. arelabel or saturating push increases ® by at most n/K.
4. a nonsaturating push does not increase P.

v is deactivated (excess(V) is now 0)
w may be activated

but d’(w) < d'(v) (we do not push flow away from the sink)
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Karlsruhe Institute of Technology

Claims:

1. < 4n*K nonsaturating pushes in all cheap phases together

2. © > 0 always, P < nz/K initially (obvious)
3. arelabel or saturating push increases ® by at most n/K.

4. a nonsaturating push does not increase P.

5. an expensive phase with O > K nonsatu-

rating pushes decreases P by at least Q.

During a phase d* remains constant

Each nonsat. push decreases the number of active nodes at level d*
{w:d(w)=d"}| > Q > K during an expensive phase
Each nonsat. push across (v, w) decreases P by
>d'(v)—d(w)>|{w:d(w)=d*}|/K>K/K=1 n

Hence,
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1. < 4n*K nonsaturating pushes in all cheap phases together

2. © > 0 always, P < nZ/K initially (obvious)
3. a relabel or saturating push increases ® by at most n/K.

4. a nonsaturating push does not increase P.

5. an expensive phase with 0 > K nonsatu-

rating pushes decreases P by at least Q. Operation | Amount

Lemma 74+Lemma 84-2.4-3.+4..=
2
total possible decrease < (2n2 + nm) % 4+ %

Relabel 2n?

Sat.push nm

3 2 2
This +3. :< 2Z +”K+m” nonsaturating pushes in expensive phases

3 2 2
This +1. :< 22 o +4n°K = O(nz\/n_fz) nonsaturating

pushes overall for K = \/m ]
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MFIFO: Modified FIFO Selection Rule

pushFront after relabel.

pushBack when activated by a push
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Heuristic Improvements

Naive algorithm needs £ (nz) relabels even on a path graph. We can
do better.

aggressive local relabeling:

d=4 d=4
d(v)::1—|—min{d(w) : (v,w) EGf} O o
(like a sequence of relabels) . ;
d=4 d=4
e=15 3 Q e=5 3 Q
/ /

dig>\\\\\£{\\s d=8 5‘\\\\\3;\\3 d=8
O O
8 d=8 8
d=7 d=7
O O
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Heuristic Improvements

Naive algorithm has best case €2 (nz) Why? We can do better.

aggressive local relabeling: d(v):= 1 4 min {d (vyw) € Gf}
(like a sequence of relabels)

global relabeling: (initially and every O(m) edge inspections):
d(v) := G.reverseBFS(t) for nodes that can reach ¢ in G.

Special treatment of nodes with d (v) > n. (Returning flow is easy)

Gap Heuristics. No node can connect to f across an empty level:

if {v:d(v) =i} =0 then foreach v with d(v) > i do d(v):=
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Experimental results

We use four classes of graphs:
] Random: n nodes, 2n + m edges; all edges (s,v) and (v, 1) exist
] Cherkassky and Goldberg (1997) (two graph classes)

[ ] Ahuja, Magnanti, Orlin (1993)
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Timings: Random Graphs

Rule | BASIC Ln | LRH | GRH | GAP | LEDA

FF 584 | 6.02 | 475 | 0.07 | 0.07 —

33.32 | 33.88 | 26.63 | 0.16 | 0.17 —

HL 6.12 6.3 | 4.97 | 041 | 0.11 0.07

27.03 | 27.61 | 2222 | 1.14 | 0.22 | 0.16

MF 5.36 | 5.51 457 | 0.06 | 0.07 —
26.35 | 27.16 | 23.65 | 0.19 | 0.16 —

n € {1000,2000} ,m = 3n
FF=FIFO node selection, HL=hightest level, MF=modified FIFO

Ln=d(v) > n s special,

LRH=Ilocal relabeling heuristic, GRH=global relabeling heuristics
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Timings: CG1
Rule | BASIC Ln | LRH | GRH | GAP | LEDA
FF 346 | 3.62 | 2.87 0.9 | 1.01 —
15.44 | 16.08 | 12.63 | 3.64 | 4.07 —
HL | 20.43 | 20.61 | 20.51 | 1.19 | 1.33 0.8
192.8 | 191.5 | 193.7 | 487 | 534 | 3.28

MF 3.01 3.16 23 | 0.89 | 1.01

12.22 | 12.91 9.52 | 3.65 | 4.12
n € {1000,2000} ,m = 3n

FF=FIFO node selection, HL=hightest level, MF=modified FIFO

Ln=d(v) > n s special,

LRH=Ilocal relabeling heuristic, GRH=global relabeling heuristics
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Timings: CG2
Rule | BASIC Ln | LRH | GRH | GAP | LEDA
FF | 50.06 | 4712 | 37.58 | 1.76 | 1.96 —
239 | 222.4 | 1771 | 7.18 8 —
HL | 4295 | 415 | 30.1 | 0.17 | 0.14 | 0.08
1739 | 167.9 | 1205 | 0.36 | 0.28 | 0.18

MF | 4534 | 4273 | 37.6 | 0.94 | 1.0/

198.2 | 186.8 | 165.7 | 4.11 | 4.55
n € {1000,2000} ,m = 3n

FF=FIFO node selection, HL=hightest level, MF=modified FIFO

Ln=d(v) > n s special,

LRH=Ilocal relabeling heuristic, GRH=global relabeling heuristics
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Timings: AMO

Rule | BASIC Ln LRH GRH GAP | LEDA
FF | 12.61 | 13.25 1.17 0.06 0.06 —
55.74 | 58.31 5.01 | 0.1399 | 0.1301 —

HL | 15.14 15.8 1.49 0.13 0.13 0.07
62.15 | 65.3 6.99 0.26 0.26 0.14

MF | 10.97 | 11.65 | 0.04999 0.06 0.06 —
46.74 | 49.48 | 0.1099 | 0.1301 | 0.1399 —

n € {1000,2000} ,m = 3n
FF—=FIFO node selection, HL=hightest level, MF=modified FIFO
Ln=d(v) > n s special,

LRH=Ilocal relabeling heuristic, GRH=global relabeling heuristics
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Asymptotics, n € {5000, 10000,20000}
Gen Rule GRH GAP LEDA
rand FF | 0.16 0.41 1.16 0.15 0.42 1.05 — — —
HL | 1.47 4.67 | 18.81 0.23 0.57 1.38 0.16 0.45 1.09
MF | 0.17 0.36 1.06 0.14 0.37 0.92 — — —
CG1 FF 3.6 | 16.06 69.3 3.62 | 16.97 | 71.29 — — —
HL | 4.27 20.4 77.5 46 | 20.54 | 80.99 2.64 | 1213 | 48.52
MF | 3.55 | 15.97 | 68.45 3.66 16.5 | 70.23 — — —
CG2 FF 6.8 | 29.12 | 125.3 7.04 29.5 | 127.6 — — —
HL | 0.33 0.65 1.36 0.26 0.52 1.05 0.15 0.3 0.63
MF | 3.86 | 15.96 | 68.42 3.9 | 16.14 | 70.07 — — —
AMO FF | 0.12 0.22 0.48 0.11 0.24 0.49 — — —
HL | 0.25 0.48 0.99 0.24 0.48 0.99 0.12 0.24 0.52
MF | 0.11 0.24 0.5 0.11 0.24 0.48 — — —
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Recent AE Results on Max-Flow

Faster and More Dynamic Maximum Flow by Incremental Breadth-First
Search, Goldberg, Hed, Kaplan, Kohli, Tarjan, Werneck, ESA 2015

[ | Much faster on many (relatively easy) real world instances

(image processing, graph partitioning,...) than preflow-push

] Worst case performance guarantee O(mnz)

(as in Dinitz algorithm)
[ | Adaptible to dynamic scenarios
[ | Uses pseudoflows that allow excesses and deficits.

Open problem: close gaps between theory and practice!
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Zusammenfassung Flows und MatchingsI

] Natdrliche Verallgemeinerung von kiirzesten Wegen:

ein Pfad ~~ viele Pfade
| viele Anwendungen

| “schwierigste/allgemeinste” Graph-Probleme, die sich mit

kombinatorischen Algorithmen in Polynomialzeit [6sen lassen
| Beispiel fiir nichttriviale Algorithmenanalyse

] Manchmal sind spezielle Probleminstanzfamilien beweisbar

leichter (z.B. unit capacity, matchings)
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Zusammenfassung Flows und Matchings I

|| Entwurfstechnik: Algorithmeninvarianten relaxieren

(augmenting paths ~~ Preflow-Push ~~ pseudoflows
LI Invarianten leiten Entwurf und Verstandnis von Algorithmen
[] (% Knotenpotentiale)

1 Algorithm Engineering: practical case #* worst case.

Heuristiken/Details/Eingabeeigenschaften wichtig

| Datenstrukturen: bucket queues, graph representation,

(dynamic trees)



