Sanders: Algorithmen Il - November21, 2023 &(IT

tttttttttttttttttttttttttttttt

Algorithmen 11

Peter Sanders
Ubungen:
Moritz Laupichler, Nikolai Maas

Institut fur Theoretische Informatik

Web:
algo2.iti.kit.edu/AlgorithmenII_WS23.php

Sanders: Algorithmen Il - november21, 2023 5-1 &(IT
S Maximum Flows and Matchings

tttttttttttttttttttttttttttttt

[mit Kurt Mehlhorn, Rob van Stee]
Folien auf Englisch

Literatur:

[Mehlhorn / Naher, The LEDA Platform of Combinatorial and
Geometric Computing, Cambridge University Press, 1999]
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/
LEDAbook/Graph_alg.ps

[Ahuja, Magnanti, Orlin, Network Flows, Prentice Hall, 1993]

Sanders: Algorithmen Il - November21, 2023

Definitions: Network

] Network = directed weighted graph with
source node s and sink node ¢

] s has no incoming edges, ¢ has no outgoing edges

I Weight ¢, of an edge e = capacity of e (nonnegative!)

10

O O
10 12

10 38

Karlsruhe Institute of Technology

Sanders: Algorithmen Il - November21, 2023 5-3

Definitions: Flows

] Flow = function f, on the edges, Ve : 0 < f, < ¢,
Vv € V\ {s,t}: total incoming flow = total outgoing flow
] Value of a flow val(f) =

total outgoing flow from s =

[] Goal: find a flow with maximum value
10

O O

Karlsruhe Institute of Technology

Sanders-' AlgO]"lthmen II = November 21, 2023 5.4 &(IT
Definitions: (Minimum) s-¢ Cuts

An s-t cut is partition of Vinto S and 7" withs € Sandt € T.

The of this cut is:

Z{C(u,v) uesS,ve T}

Sanders: Algorithmen II - November21, 2023 -3 &(IT

Karlsruhe Institute of Technology

Duality Between Flows and Cuts

Theorem:[Elias/Feinstein/Shannon, Ford/Fulkerson 1956]

Value of an s-f max-flow = minimum capacity of an s-f cut.

10
O O

12
12

Proof: later 4

Sanders: Algorithmen II - November21, 2023 - Zusatz ‘ee® 5-6 &(IT
Applications

Karlsruhe Institute of Technology

] Qil pipes
| Traffic flows on highways
|:| |mage PFOCGSSIng http://vision.csd.uwo.ca/maxflow-data

— segmentation

— stereo processing

— multiview reconstruction
— surface fitting

] disk/machine/tanker scheduling

| matrix rounding

L] ...

Sanders: AlgOl"lthmen I - November 21, 2023 - ZMSCZZLZ w 5.7 &(IT
Current Research Challenge:

Al versus Optimal Algorithms

Many image processing applications are currently taken over by

deep convolutional neural networks.
+ Often better results
+ No ad-hoc definitions of s, 1, ¢
— “Optimality” is thrown over board
— Lots of training examples needed

Is there a middle way?

Learn s, f, ¢ then optimize?

Sanders: Algorithmen II - November21, 2023 - Zusatz ‘ee® 5-8 &(IT
Applications in our Group

[multicasting using requests disks controller

network coding

] balanced k partitioning ¢ W‘A“' —

|/O—-busses

] disk scheduling

W W W lw [w
|
xh%

Sanders: Algorithmen Il - november21, 2023 59 &(IT
Option 1: linear programming
|| Flow variables x, for each edge e
| Flow on each edge is at most its capacity
[Incoming flow at each vertex = outgoing flow from this vertex
[] Maximize outgoing flow from starting vertex

We can do better!

Sanders: AlgOrlthmen Il - November 21, 2023 = ZMSCltZ w} 5-10 &(IT
Algorithms 1956-now

Year Author Running time

1956 Ford-Fulkerson O(mnU)

1969 Edmonds-Karp O(m°n)

1970 Dinic O(mn?)

1973 Dinic-Gabow O(mnlogU)

1974 Karzanov O(n®) n = number of nodes
1977 Cherkassky O(n®y/m) m = number of arcs
1980 Galil-Naamad O(mnlog®n) U = largest capacity
1983 Sleator-Tarjan O(mnlogn)

1986 Goldberg-Tarjan O(mnlog(n®/m))
1987 Ahuja-Orlin ~ O(mn+n®logU)

Sanders: Algorithmen II - November21, 2023 - Zusatz ‘ee® 5-11 QQ(IT

Running time

Year Author

1987 Ahuja-Orlin-Tarjan O(mnlog(2 4+ n+/logU /m))
1990 Cheriyan-Hagerup-Mehlhorn O(n®/logn)

1990 Alon O(mn+n%/3logn)

1992 King-Rao-Tarjan O(mn + n**¢)

1993 Philipps-Westbrook O(mnlogn/log™ +n?log**¢n)
1994 King-Rao-Tarjan O(mnlogn/log nlogn) it m > 2nlogn
1997 Goldberg-Rao O(min{m'/?,n*/3Ymlog(n?/m)logU)
2014 Lee-Sidford O(m+/nlog?U)

2020 v. d. Brand et al. O(m+ n2 logU log’ m)

2021 Gao-Liu-Peng O(m >3 logUlog’ m)

2022 v.d. Brand et al. O(m 5% logUlog’ m)

2022 Chen, Kyng et al. O(m'*+°W1ogU)

Sanders: Algorithmen Il - November21, 2023 512 & (IT
Augmenting Paths (Rough Idea)

Find a path from s to such that each edge has some spare capacity
On this path, saturate the edge with the smallest spare capacity

Adjust capacities for all edges (create residual graph) and repeat

A typical greedy algorithm

Sanders: Algorithmen Il - November21, 2023 5-13 &(IT

Karlsruhe Institute of Technology

Example
10
O O .
2N SN
sO) (Ot
A
10 8
O O

Sanders: Algorithmen II - november21, 2023 >-14 &(IT

tttttttttttttttttttttttttttttt

Example
0
o AT NN
/,’10 4 10\\

Sanders: Algorithmen Il - November21, 2023 5-15 &(IT

tttttttttttttttttttttttttttttt

Example
0
10 - 5
4 10
O
4 4 7
4 4
_______________ @
0

Sanders: Algorithmen Il - November21, 2023 5-16 ﬂ(l'l‘

tttttttttttttttttttttttttttttt

Example

Sanders: Algorithmen Il - November21, 2023 5-17 &(IT

Karlsruhe Institute of Technology

Example
0
e TR
10 4 12
O O
4 A 4
O
O 0

are we done?

Sanders: Algorithmen Il - November21, 2023 5-18 ﬂ(l'l‘

tttttttttttttttttttttttttttttt

Example

Sanders: AlgO]"lthmen II - November 21, 2023 5-19 &(IT
Residual Graph

Given, network G = (V,E,¢), flow f

Residual graph G ¢ = (V, Ef,cf). For each e € E we have

y

e € Er with ¢l = ce— fle) if fle) <c(e)

\
\ere" € Er with cﬁev = f(e) iff(e) >0
10 10
O 12 12
/ 12
O
A
: 4
capacity \ g
flow Q Q

residual capacity

Sanders: Algorithmen Il - November21, 2023 5-20 &(IT

Karlsruhe Institute of Technology

Augmenting Paths

Find a path p from s to ¢ such that each edge e has nonzero residual

capacity cép

Af:= mincﬁ
ecp

foreach (u,v) € p do
if (u, v) € E then f(u,v)"_ =Af
else fr,) —=Af

Sanders: Algorithmen II - November 21, 2023 5-21 &(IT

Karlsruhe Institute of Technology

Ford Fulkerson Algorithm

Function FFMaxFlow(G = (V,E),s,t,c: E - N): E - N
=0
while Jpath p = (s,...,t) in G do
augment f along p
return f

time O(mval(f))

Sanders: Algorithmen Il - November21, 2023 5.7 & (IT
Ford Fulkerson — Correctness

“Clearly” FF computes a feasible flow f. (Invariant)
Todo: flow value is maximal
At termination: no augmenting paths in G 7 left.

Consider cut (S, 7:=V \ S) with
S:= {v € V : vreachable from s in Gf}

Sanders: Algorithmen Il - November21, 2023 5-23 & (IT
A Basic Observations

Lemma 1: For any cut (S,7):

S—T edges T—S edges

val(f)= Y f— Y f.

ecENSXT ecENT XS

Sanders: Algorithmen Il - November21, 2023 54 &(IT
Ford Fulkerson — Correctness

Todo: val(f) is maximal when no augmenting paths in G ¢ left.

Consider cut (S, 7:=V \ S) with
S:= {v c V : vreachable from s in Gf}.
Observation: V(u,v) € ENT xS: f(u,v) =0

otherwise ¢/ (v,u) > 0 contradicting the definition of S.

val(f) = Z fe— Z fe Lemma 1
ecENSXT ecENT XS
= Y f Observation above
ecENSXT
=) ¢y = (8,T) cut capacity
ecENSXT

see next slide

Sanders: Algorithmen Il - November21, 2023 5-25 & (IT
Max-Flow-Min-Cut theorem

Theorem: Max-flow = min-cut

Proof:

obvious: any-flow < max-flow < min-cut < any-cut

previous slide:
(S,T) flow = (S, T) cut capacity
=

(S,T) flow = max-flow = min-cut

Sanders: AlgO]"lthmen 11 - November 21,2023 5-26 &(IT
A Bad Example for Ford Fulkerson

O

100 100

100 100

Sanders: Algorithmen Il - November21, 2023

A Bad Example for Ford Fulkerson

100

100

O

w
! O

O

O

s

99 ,,"
z,, 1
M

(o)

100

Karlsruhe Institute of Technology

Sanders: Algorithmen Il - November21, 2023 5-28 & (IT
A Bad Example for Ford Fulkerson

O) »
100 100 99 100 99 099
A1 Lo 1N
1 2 110 011
o O C ; JoRo
17 S
100 100 100 . .99 99 : 99
O O)

Sanders: Algorithmen II - November21, 2023 - Zusatz ‘ee® 5-29 QQ(IT

An Even Worse Example for Ford Fulkerson
[U. Zwick, TCS 148, p. 165—170, 1995]

V51
Let r = 5
Consider the graph

And the augmenting paths
po = (s,c,b,1)

p1 = (s,a,b,c,d,t)

pr = (s,c,b,a,t)

p3 = (s,d,c,b,t)

The sequence of augmenting paths py (pl,pz,pl,m)* is an infinite

sequence of positive flow augmentations.

The flow value does not converge to the maximum value 9.

Sanders: Algorithmen Il - November21, 2023 5-30 &(IT

Karlsruhe Institute of Technology

Blocking Flows

fp is a blocking flow in H if

Vpaths p = (s,...,t) : de € p: fr(e) = c(e)

Sanders: Algorithmen Il - November21, 2023 5-31 &(IT
Dinitz Algorithm -

Function DinitzMaxFlow(G = (V,E),s,t,c: E —+N): E - N
=0
while Jpath p = (s,...,t) in G do
d=Gy.reverseBFS(t) : V =+ N
Ly=(V,{(u,v) €Ef:d(v) =d(u)—1}) I/ layer graph
find a blocking flow f}, in L

augment f+=fp
return f

Sanders: Algorithmen II - November 21, 2023 5-32 &(IT

Karlsruhe Institute of Technology

Dinitz — Correctness

analogous to Ford-Fulkerson

Sanders: Algorithmen Il - November21, 2023 5-33 QQ(IT

Example 2 1010 1

10 @ ------o- - ©,

10// A \\\1212
3/// \\\ 0
(S ®

6 2 4
bo---o oo

@ﬁ@- > >@~@—@ﬁ®
2 3 2

unused used saturated

Sanders: AlgOl”lthmen I[= November 21, 2023 5.34 &(IT
Computing BlOCking FlOWS Karlsruhe Institute of Technology

|dea: repeated DFS for augmenting paths

(not using DFS algorithm schema)

Sanders: Algorithmen Il - November21, 2023 5-35 &(IT

tttttttttttttttttttttttttttttt

Function blockingFlow(Ls = (V,E)) : E — N
p=(s) : Path; f,=0 : Flow

loop // Round
v:= p.last()
if v=1 then // breakthrough

6:= min{c(e) — fr(e) : e € p}
foreach e € p do

fo(e)+=0
if f;,(e) = c(e) then remove e from E
pi= (s)
else if de = (v,w) € E then p.pushBack(w) // extend
else if v = s then return f; [/l done

else delete the last edge from pin pand E [/l retreat

Sanders: Algorithmen Il - November21, 2023 5-36 ﬁ(IT

ttttttttttttttttttttttttttttt

Example 2 10 1
@ exiend ~;©

10 10 12

R extend extend
/, 10 0
® breakthrough

\ 1 /
d
2 1

@ e > (0 _extend

e . 2

yZ N\
s

extend *\ 0

3.
(9 (© breakthrough
4
extend
10 2 1 8
b 4

d

Sanders: Algorithmen Il - November21, 2023 5-37 ﬁ(IT

ttttttttttttttttttttttttttttt

Example 2 1
@ e > (O extend
s g ’ \\\ 2
3.7 4 extend \‘\ 0
(S @® breakthrough
A
extend
k : 1 /
b A d
2 1
@ e - ©.
3.7 4 ,’extend \\\ 0
(S " retreat @ breakthrough
2.7
extend !
\ - A e
---------- > @

4 exten

Sanders: Algorithmen Il - November21, 2023 5-38 &(IT

ttttttttttttttttttttttttttttt

Example
2 1
@ ~©.
3.7 4 ,‘extend L, 0
(S retreat @ breakthrough

1Atend
d

extend
retreat 4

Sanders: Algorithmen II - November 21, 2023 5-39 &(IT

Karlsruhe Institute of Technology

Blocking Flows Analysis 1

L] running time #,/enas + Hretrears + 1 #breakthmughs

L #preakthroughs < M — > 1 edge is saturated

L #retrears < m — one edge is removed

] Heoxtends < Hretreats + 1" #breakthroughs
— a retreat cancels 1 extend, a breakthrough cancels < n extends

time is O(m+nm) = O(nm)

Sanders'. AlgOI”lﬂ/lmen I[= November 21, 2023 5-40 &(IT
Blocking Flows Analysis 2

Unit capacities:

breakthroughs saturate all edges on p,

l.e., amortized constant cost per edge.

time O(m +n)

Sanders: Algorithmen Il - nNovember21, 2023 - Zusatz o 2 5.41 & (IT
Blocking Flows Analysis 3

If we use a dynamic tree data structure:

breakthrough (!), retreat, extend is possible in time O(logn)
=
Time O((m~+n)logn)

“Theory alert™ In practice, this seems to be slower

(few breakthroughs, many retreat, extend ops.)

Sanders: Algorithmen Il - November21, 2023 5-42 &(IT

Lemma 1. d(s) increases by at least one in each round.

Proof. not here []

Sanders: Algorithmen Il - November21, 2023
Dinitz Analysis 2
[1 < nrounds
[time O(mn) each
time O(mnz) (strongly polynomial)

time O(mnlogn) with dynamic trees

5-43

Karlsruhe Institute of Technology

Sanders: Algorithmen Il - November21, 2023

Dinitz Analysis 3 — Unit Capacities

Lemma 2. Af most 2./m BF computations:

Proof. Consider iteration k = /m.
Cut 1n layergraph induces cut in

residual graph of capacity at most /m.
At most y/m additional phases.

Total time: O((m +n)/m)

more detailed analysis: O (m min {ml/z7 n2/3 })

Sanders: Algorithmen Il - november21, 2023 5-45 &(IT
Dinitz Analysis 4 — Unit Networks

Karlsruhe Institute of Technology

Unit capacity + Vv € V : min {indegree(v), outdegree(v) } = 1:
time: O((m—+n)+/n)

Sanders-' AlgOFlthmelfl II - November 21, 2023 5-46 &(IT
Matching

M C E is a matching in the undirected graph G = (V, E) iff
(V,M) has maximum degree < 1.

M is maximal if Ae € E\ M : M U{e} is a matching.

M has maximum cardinality if Amatching M’ : |M'| > |M|

Sanders: Algorithmen Il - November21, 2023 5-47 &(IT

Karlsruhe Institute of Technology

Maximum Cardinality Bipartite Matching

in (LUR,E). Model as a unit network maximum flow problem

{s}ULURU{t} , {(s,u):uec L} UEU{(v,1): H

L R

Dinitz algorithm yields O((n + m)+/n) algorithm

Sanders: Algorithmen II - November21, 2023 - Zusatz ‘ee® 5-48 &(IT
Similar Performance for Weighted Graphs?

time: O (mmin {m1/2,n2/3 } log C) [Goldberg Rao 97]

Problem: Fat edges between layers ruin the argument

Idea: scale a parameter A from small to large.

Contract SCCs of fat edges (capacity > A)

Experiments [Hagerup, Sanders Traff 98]:
Sometimes best algorithm usually slower than preflow push

Sanders: AlgOl’lthmen I[= November 21, 2023 5-49 &(IT
Disadvantage of augmenting paths algorithms

S o o o o %SXQt

O O O O O

1

Sanders: Algorithmen Il - November21, 2023 5-50 &(IT

Institute of Technology

Preflow-Push Algorithms

Preflow f: a flow where the flow conservation constraint is relaxed to

inflow outflow
z—/ﬁ
excess(v):i= Y f Z Fooaw) =
(u,v)EE (vyw)eE

v e V\{s,t}is active iff excess(v) > 0
Procedure push(e = (v,w),0)

assert 0 >0 A excess(v) > 0

assert residual capacity of e > 0

excess(v) —=0

excess(w) +=0

if e is reverse edge then f(reverse(e)) —=0

else f(e) +=0

Sanders: Algorithmen II - November 21, 2023 3-51 &(IT

Karlsruhe Institute of Technology

Level Function

ldea: make progress by pushing towards ¢

Maintain
an approximation d(v) of the BFS distance from vto ¢ in G.

invariant d(¢) =0
invariant d(s) =n
invariant V(v,w) € E¢ :d(v) <d(w) + 1 // no steep edges

Edge directions of e = (v, w)
steep: d(w) < d(v)—1
downward: d(w) < d(v)
horizontal: d(w) = d(v)
upward: d(w) > d(v)

Sanders: Algorithmen II - november21, 2023 5-52 &(IT

Karlsruhe Institute of Technology

Procedure genericPreflowPush(G = (V,E), f)

forall e = (s,v) € E do push(e,c(e)) // saturate
d(s):=n

d(v):= 0 for all other nodes

while v € V\ {s,¢} : excess(v) > 0 do // active node

if de = (v,w) € Ef:d(w) <d(v) then // eligible edge
choose some 0 < min {excess(v),cg }

push(e, o) // no new steep edges
else d(v)++ // relabel. No new steep edges

Obvious choice for 0 : & = min {excess(v),cf}

saturating push: 0 = cg

nonsaturating push: 0 < cg

To be filled in: How to select active nodes and eligible edges?

Sanders: Algorithmen Il - November21, 2023 5-53 &(IT

tttttttttttttttttttttttttttttt

Example
10 10
2NN
4
s() (Ot
g \ ; / °
;:ap 1010 C()> (()) 8

eXCess 10 4

Sanders: Algorithmen II - november21, 2023 5-54 &(IT

tttttttttttttttttttttttttttttt

Example
1010 10
2NN
4
s() (Ot
;:ap 1010 C()> (()) 8

eXCess 10 4

Sanders: Algorithmen Il - November21, 2023 5-55 &(IT

tttttttttttttttttttttttttttttt

Example
- 10 10
10
/ig////71_ A 1\\\\\i§
s() (Ot
d © \ y / ’
;:ap 1010 C()> (()) 8

eXCess 10 4

Sanders: Algorithmen Il - November21, 2023 5-56 &(IT

tttttttttttttttttttttttttttttt

Example
- 10 10
10
y 1 A 1\%5\)
s() (Ot
d © \ y / ’
;:ap 1010 (1> (()) 8

eXCess 6 4 4 4

Sanders: Algorithmen Il - November21, 2023 5-57 &(IT

tttttttttttttttttttttttttttttt

Example
1010 4
O
1 12
10
Ot
0
cap 10& 0 3
O

excess 2 4

Sanders: Algorithmen Il - November21, 2023 5-58 &(IT

tttttttttttttttttttttttttttttt

Example
1010 4
O
1 12
10
Ot
0
cap 108 0 3
O

excess A

Sanders: Algorithmen II - november21, 2023 5-59 &(IT

tttttttttttttttttttttttttttttt

Example
1010 4
O
1 12
10
Ot
0
cap 1 1 48
O

excess

Sanders: Algorithmen Il - November21, 2023 5-60 &(IT

tttttttttttttttttttttttttttttt

Example
1010 2
O
1 12
12
Ot
0
cap 1 1 74 8
O

excess

Sanders: Algorithmen II - November21, 2023 >-61 &(IT

tttttttttttttttttttttttttttttt

Example
2 108
O O
1010 1 2 12
4 12
s() (Ot
6 4’ 0
d
cap 108 7 1 48
f O O

excess A

Sanders: Algorithmen II - november21, 2023 5-62 &(IT

tttttttttttttttttttttttttttttt

Example

108

. 5 \
ca 10
P g !

eXCESS

Sanders: Algorithmen Il - November21, 2023 5-63 QQ(IT

Example

108

g 6 \
10
cap 3 !

EXCeSS

12 pushes in total

Sanders-. AlgOFlthmen II = November 21, 2023 5.64 &(IT
Partial Correctness

Lemma 3. When genericPreflowPush terminates

f is a maximal flow.

Proof.
fisaflow since Vv € V'\ {s,} : excess(v) = 0.

To show that f 1s maximal, it suffices to show that

Apath p = (s,...,t) € Gy (Max-Flow Min-Cut Theorem):
Since d(s) =n, d(t) =0, p would have to contain steep edges.
That contradicts the invariant. []

Sanders: Algorithmen I - November21, 2023 5-65 & (IT
Lemma 4. For any cut (S,T),

Zexcess(u)— Z fle)— Z f(e),

ues ecEN(T xS) ecEN(SXT)
Proof:
Zexcess(u) = Z (Z f((v,u)) — Z f((%")))
ues ucS \ (vu)€eE (u,v)€E

Contributions of edge e to sum:

StoT: —f(e)

TtoS: f(e)

within S: f(e) — f(e) =0

within 7: O u

Sanders: Algorithmen Il - november21, 2023 5-66 QQ(IT

Lemma 3.
V active nodes v : excess(v) > 0 = I path (v,...,s) € Gy

Intuition: what got there can always go back.

Proof. S:={ueV :3path (v,...u) € Gy}, T :=V\S. Then

Z excess(u) = Z fle)— Z fle),

ucsS ecEN(T xS) ecEN(SXT)

Vu,w) €eEf:ucS=wes by Def. of G¢, S
= Ve = (u,w) € EN(T xS): f(e) =0 Otherwise (w,u) € E

Hence, Y excess(u) <0
ucsS

Only the negative excess of s can outweigh excess(v) > 0.
Hence s € §. []

Sanders: Algorithmen Il - november21, 2023 5-67 QQ(IT

Lemma 6.
YWevV:dv)<2n

Proof.

Suppose v is lifted to d(v) = 2n.

By the Lemma 2, there 1s a (simple) path p to s in G¢.

p has at most n — 1 nodes

d(s) =n.

Hence d(v) < 2n. Contradiction (no steep edges).]

Sanders: Algorithmen Il - November21, 2023 5-68 QQ(IT

Lemma 7. # Relabel operations < 2n*

Proof. d(v) < 2n, i.e., v is relabeled at most 2n times.
Hence, at most |V| - 2n = 2n? relabel operations.]

Sanders: Algorithmen Il - November21, 2023 5-69 QQ(IT

Lemma 8. # saturating pushes < nm

Proof.
We show that there are at most n sat. pushes over any edge

e= (v,w). @

A saturating push(e, 0) removes e from E. /
Only a push on (w,v) can reinsert e into E. @ lift

For this to happen, w must be lifted at least two levels. \
Hence, at most 2n/2 = n saturating pushes over (v, w)

[]

Sandel”S.' AlgOFlthmen II = November 21, 2023 5-70 g!(IT

Lemma 9. # nonsaturating pushes = O(nzm)

if 0 = min {excess(v),cé(}
for arbitrary node and edge selection rules.

(arbitrary-preflow-push)

Proof. ® := Z d(v). (Potential)

{v:vis active}

® = 0 initially and at the end (no active nodes left!)
Operation | A(®) How many times? Total effect

relabel 1 < 2n? < 2n?

saturating push | <2n < nm < 2n*m

nonsaturating push | < —1

d > 0 always.]

Sanders: Algorithmen Il - November21, 2023 . &(IT
Searching for Eligible Edges

Every node v maintains a currentEdge pointer to its sequence of
outgoing edges in G .
invariant no edge ¢ = (v, w) to the left of currentEdge is eligible

Invariant violations?

] relabel(v)? Reset currentEdge (< 2nx)
] relabel(w)? No, no steep edges. @
(] push(w,v)? = (v,w) is upward \.
Lemma 10. W

Total cost for searching < Z 2n - degree(v) = 4nm = O(nm)
veV

Sanders: Algorithmen Il - november21, 2023 5-72 QQ(IT

Theorem 11. Arbitrary Preflow Push finds a maximum flow in
time O (nzm)

Proof.

Lemma 3: partial correctness

Initialization in time O(n +m).

Maintain set (e.g., stack, FIFO) of active nodes.
Use reverse edge pointers to implement push.
Lemma 7: 2n” relabel operations

Lemma 8: nm saturating pushes

Lemma 9: O (nzm) nonsaturating pushes
Lemma 10: O(nm) search time for eligible edges

Total time O (nzm) []

Sanders: Algorithmen Il - November21, 2023 5-73 & (IT
FIFO Preflow push

Examine a node: Saturating pushes until nonsaturating push or relabel.
Examine all nodes in phases (or use FIFO queue).
Theorem: time O(n”)

Proof: not here

Sanders: Algorithmen Il - November21, 2023 5-74 ﬂ(IT
Highest Level Preflow Push

Always select active nodes that maximize d(v)
Use bucket priority queue (insert, increaseKey, deleteMax)

not monotone (!) but relabels “pay” for scan operations

Lemma 12. Ar most n>/m nonsaturating pushes.

Proof. later]

Theorem 13. Highest Level Preflow Push finds a maximum flow

in time O (n*/m) .

Sanders: Algorithmen Il - November21, 2023 5-75 &(IT

Karlsruhe Institute of Technology

Example
10 10
W
4
s() (Ot
g \ ; / °
gap 1Oi0 é% é} 8

eXCess 10 4

Sanders: Algorithmen Il - November21, 2023 5-76 &(IT

tttttttttttttttttttttttttttttt

Example
10 10 10
2N
4
s() (Ot
G O \ 4 / 0
gap 10&0 é% é} 8

eXCess 10 4

Sanders: Algorithmen Il - November21, 2023 5-77 &(IT

tttttttttttttttttttttttttttttt

Example
1010 14
ZUZEAN
4
s() (Ot

6 4 0
d 4
cap 108 7 1 3

f O O
A

excess 4 4

Sanders: Algorithmen Il - November21, 2023 5-78 &(IT

tttttttttttttttttttttttttttttt

Example
2 108
O O
10 10 2 3 12
4 12
s() (Ot

6 4 0
d 4
cap 108 7 1 3

f O O
A

excess 4 4

Sanders: Algorithmen II - november21, 2023 5-79 &(IT

tttttttttttttttttttttttttttttt

Example

g 6 \
10
cap 9 7

eXCESS

Sanders: Algorithmen Il - November21, 2023 5-80 &(IT

Karlsruhe Institute of Technology

Example

g 6 \
10
cap 3 !

f
excess

9 pushes in total, 3 less than before

Sanders-. AlgOrlthmen Il - November 21, 2023 = ZMSCltZ w 5-81 &(IT
Proof of Lemma 12

K :=+/m tuning parameter
d(w) <d
d'(v):= A (WI){_ W)} scaled number of dominated nodes
D=) d®W). (Potential)
{v:vis active}
d* :=max{d(v) : vis active} (highest level)

phase:= all pushes between two consecutive changes of d*
expensive phase: more than K pushes

cheap phase: otherwise

Sandel"S.° AlgOl’lthmen Il - November 21, 2023 = ZMSCltZ w 5.82 &(IT

1. < 4n*K nonsaturating pushes in all cheap phases together

2. © > 0 always, P < nZ/K initially (obvious)
3. a relabel or saturating push increases ® by at most n/K.

4. a nonsaturating push does not increase P.

5. an expensive phase with 0 > K nonsatu-

rating pushes decreases P by at least Q. Operation | Amount

Lemma 74+Lemma 84-2.4-3.+4..=
2
total possible decrease < (2n2 + nm) % 4+ %

Relabel 2n?

Sat.push nm

3 2 2
This +3. :< 2Z +”K+m” nonsaturating pushes in expensive phases

3 2 2
This +1. :< 22 o +4n°K = O(nz\/n_fz) nonsaturating

pushes overall for K = \/m]

Sanders.' AlgOl"lthmen Il - November 21, 2023 = ZMSCltZ W‘ 5.83 &(IT

1. < An*K nonsaturating pushes in all cheap phases together

We first show that there are at most 4n> phases
(changes of d* = max {d(v) : v is active}).

d* = O initially, d* > 0 always.

Only relabel operations increase d*, i.e.,

< 2n? increases by Lemma 7 and hence

< 2n? decreases

< 4n? changes overall

By definition of a cheap phase, it has at most K pushes.

Sanders.' AlgOl"lthmen 1l - November 21, 2023 = ZMSCltZ W 5.84 &(IT

1. < 4n*K nonsaturating pushes in all cheap phases together
2. © > 0 always, P < nz/K initially (obvious)
3. arelabel or saturating push increases ® by at most n/K.

Let v denote the relabeled or activated node.
) A <d0)}]

K K
A relabel of v can increase only the d’-value of v.

A saturating push on (u,w) may activate only w.

Sanders: Algorithmen II - Novemver21, 2023 - Zusatz ‘ee® 5-85 &(IT
1. < 4n*K nonsaturating pushes in all cheap phases together
2. ® > (0 always, ® < nz/K initially (obvious)
3. arelabel or saturating push increases ® by at most n/K.
4. a nonsaturating push does not increase P.

v is deactivated (excess(V) is now 0)
w may be activated

but d’(w) < d'(v) (we do not push flow away from the sink)

Sandel’s.’ AlgOl’ll‘hmen II - November 21, 2023 - ZMSCZIZ m 5-86 &(IT

Karlsruhe Institute of Technology

Claims:

1. < 4n*K nonsaturating pushes in all cheap phases together

2. © > 0 always, P < nz/K initially (obvious)
3. arelabel or saturating push increases ® by at most n/K.

4. a nonsaturating push does not increase P.

5. an expensive phase with O > K nonsatu-

rating pushes decreases P by at least Q.

During a phase d* remains constant

Each nonsat. push decreases the number of active nodes at level d*
{w:d(w)=d"}| > Q > K during an expensive phase
Each nonsat. push across (v, w) decreases P by
>d'(v)—d(w)>|{w:d(w)=d*}|/K>K/K=1 n

Hence,

Sandel"S.° AlgOl’lthmen Il - November 21, 2023 = ZMSCltZ w 5.87 &(IT

1. < 4n*K nonsaturating pushes in all cheap phases together

2. © > 0 always, P < nZ/K initially (obvious)
3. a relabel or saturating push increases ® by at most n/K.

4. a nonsaturating push does not increase P.

5. an expensive phase with 0 > K nonsatu-

rating pushes decreases P by at least Q. Operation | Amount

Lemma 74+Lemma 84-2.4-3.+4..=
2
total possible decrease < (2n2 + nm) % 4+ %

Relabel 2n?

Sat.push nm

3 2 2
This +3. :< 2Z +”K+m” nonsaturating pushes in expensive phases

3 2 2
This +1. :< 22 o +4n°K = O(nz\/n_fz) nonsaturating

pushes overall for K = \/m]

Sanders: AlgO]"lthmen I[= November 21, 2023 5-88 &(IT
MFIFO: Modified FIFO Selection Rule

pushFront after relabel.

pushBack when activated by a push

Sanders: Algorithmen Il - November21, 2023 5-89 &(IT
Heuristic Improvements

Naive algorithm needs £ (nz) relabels even on a path graph. We can
do better.

aggressive local relabeling:

d=4 d=4
d(v)::1—|—min{d(w) : (v,w) EGf} O o
(like a sequence of relabels) . ;
d=4 d=4
e=15 3 Q e=5 3 Q
/ /

dig>\\\\\£{\\s d=8 5‘\\\\\3;\\3 d=8
O O
8 d=8 8
d=7 d=7
O O

Sanders: Algorithmen Il - November21, 2023 5-90 &(IT
Heuristic Improvements

Naive algorithm has best case €2 (nz) Why? We can do better.

aggressive local relabeling: d(v):= 1 4 min {d (vyw) € Gf}
(like a sequence of relabels)

global relabeling: (initially and every O(m) edge inspections):
d(v) := G.reverseBFS(t) for nodes that can reach ¢ in G.

Special treatment of nodes with d (v) > n. (Returning flow is easy)

Gap Heuristics. No node can connect to f across an empty level:

if {v:d(v) =i} =0 then foreach v with d(v) > i do d(v):=

Sanders: Algorithmen Il - nNovember21, 2023 - Zusatz Sy 5.01 ﬂ (IT
Experimental results

We use four classes of graphs:
] Random: n nodes, 2n + m edges; all edges (s,v) and (v, 1) exist
] Cherkassky and Goldberg (1997) (two graph classes)

[] Ahuja, Magnanti, Orlin (1993)

Karlsruhe Institute of Technology

Sanders: Algorithmen II - November21, 2023 - Zusatz ‘ee®
Timings: Random Graphs

Rule | BASIC Ln | LRH | GRH | GAP | LEDA

FF 584 | 6.02 | 475 | 0.07 | 0.07 —

33.32 | 33.88 | 26.63 | 0.16 | 0.17 —

HL 6.12 6.3 | 4.97 | 041 | 0.11 0.07

27.03 | 27.61 | 2222 | 1.14 | 0.22 | 0.16

MF 5.36 | 5.51 457 | 0.06 | 0.07 —
26.35 | 27.16 | 23.65 | 0.19 | 0.16 —

n € {1000,2000} ,m = 3n
FF=FIFO node selection, HL=hightest level, MF=modified FIFO

Ln=d(v) > n s special,

LRH=Ilocal relabeling heuristic, GRH=global relabeling heuristics

Karlsruhe Institute of Technology

Sanders: Algorithmen II - November21, 2023 - Zusatz ‘ee®
Timings: CG1
Rule | BASIC Ln | LRH | GRH | GAP | LEDA
FF 346 | 3.62 | 2.87 0.9 | 1.01 —
15.44 | 16.08 | 12.63 | 3.64 | 4.07 —
HL | 20.43 | 20.61 | 20.51 | 1.19 | 1.33 0.8
192.8 | 191.5 | 193.7 | 487 | 534 | 3.28

MF 3.01 3.16 23 | 0.89 | 1.01

12.22 | 12.91 9.52 | 3.65 | 4.12
n € {1000,2000} ,m = 3n

FF=FIFO node selection, HL=hightest level, MF=modified FIFO

Ln=d(v) > n s special,

LRH=Ilocal relabeling heuristic, GRH=global relabeling heuristics

Karlsruhe Institute of Technology

Sanders: Algorithmen II - November21, 2023 - Zusatz ‘ee®
Timings: CG2
Rule | BASIC Ln | LRH | GRH | GAP | LEDA
FF | 50.06 | 4712 | 37.58 | 1.76 | 1.96 —
239 | 222.4 | 1771 | 7.18 8 —
HL | 4295 | 415 | 30.1 | 0.17 | 0.14 | 0.08
1739 | 167.9 | 1205 | 0.36 | 0.28 | 0.18

MF | 4534 | 4273 | 37.6 | 0.94 | 1.0/

198.2 | 186.8 | 165.7 | 4.11 | 4.55
n € {1000,2000} ,m = 3n

FF=FIFO node selection, HL=hightest level, MF=modified FIFO

Ln=d(v) > n s special,

LRH=Ilocal relabeling heuristic, GRH=global relabeling heuristics

Sanders: Algorithmen II - November21, 2023 - Zusatz ‘ee® 5-95 &(IT
Timings: AMO

Rule | BASIC Ln LRH GRH GAP | LEDA
FF | 12.61 | 13.25 1.17 0.06 0.06 —
55.74 | 58.31 5.01 | 0.1399 | 0.1301 —

HL | 15.14 15.8 1.49 0.13 0.13 0.07
62.15 | 65.3 6.99 0.26 0.26 0.14

MF | 10.97 | 11.65 | 0.04999 0.06 0.06 —
46.74 | 49.48 | 0.1099 | 0.1301 | 0.1399 —

n € {1000,2000} ,m = 3n
FF—=FIFO node selection, HL=hightest level, MF=modified FIFO
Ln=d(v) > n s special,

LRH=Ilocal relabeling heuristic, GRH=global relabeling heuristics

Sanders: Algorithmen II - November21, 2023 - Zusatz ‘ee® 5-96 &(IT
Asymptotics, n € {5000, 10000,20000}
Gen Rule GRH GAP LEDA
rand FF | 0.16 0.41 1.16 0.15 0.42 1.05 — — —
HL | 1.47 4.67 | 18.81 0.23 0.57 1.38 0.16 0.45 1.09
MF | 0.17 0.36 1.06 0.14 0.37 0.92 — — —
CG1 FF 3.6 | 16.06 69.3 3.62 | 16.97 | 71.29 — — —
HL | 4.27 20.4 77.5 46 | 20.54 | 80.99 2.64 | 1213 | 48.52
MF | 3.55 | 15.97 | 68.45 3.66 16.5 | 70.23 — — —
CG2 FF 6.8 | 29.12 | 125.3 7.04 29.5 | 127.6 — — —
HL | 0.33 0.65 1.36 0.26 0.52 1.05 0.15 0.3 0.63
MF | 3.86 | 15.96 | 68.42 3.9 | 16.14 | 70.07 — — —
AMO FF | 0.12 0.22 0.48 0.11 0.24 0.49 — — —
HL | 0.25 0.48 0.99 0.24 0.48 0.99 0.12 0.24 0.52
MF | 0.11 0.24 0.5 0.11 0.24 0.48 — — —

Sanders: Algorithmen II - November21, 2023 - Zusatz ‘ee® 5-97 &(IT
Recent AE Results on Max-Flow

Faster and More Dynamic Maximum Flow by Incremental Breadth-First
Search, Goldberg, Hed, Kaplan, Kohli, Tarjan, Werneck, ESA 2015

[| Much faster on many (relatively easy) real world instances

(image processing, graph partitioning,...) than preflow-push

] Worst case performance guarantee O(mnz)

(as in Dinitz algorithm)
[| Adaptible to dynamic scenarios
[| Uses pseudoflows that allow excesses and deficits.

Open problem: close gaps between theory and practice!

Sanders: AlgOFIthmen I - November 21, 2023 5-98 &(IT
Zusammenfassung Flows und MatchingsI

] Natdrliche Verallgemeinerung von kiirzesten Wegen:

ein Pfad ~~ viele Pfade
| viele Anwendungen

| “schwierigste/allgemeinste” Graph-Probleme, die sich mit

kombinatorischen Algorithmen in Polynomialzeit [6sen lassen
| Beispiel fiir nichttriviale Algorithmenanalyse

] Manchmal sind spezielle Probleminstanzfamilien beweisbar

leichter (z.B. unit capacity, matchings)

Sanders: Algm”lﬂ/lmen I - November 21, 2023 5-99 &(IT
Zusammenfassung Flows und Matchings I

|| Entwurfstechnik: Algorithmeninvarianten relaxieren

(augmenting paths ~~ Preflow-Push ~~ pseudoflows
LI Invarianten leiten Entwurf und Verstandnis von Algorithmen
[] (% Knotenpotentiale)

1 Algorithm Engineering: practical case #* worst case.

Heuristiken/Details/Eingabeeigenschaften wichtig

| Datenstrukturen: bucket queues, graph representation,

(dynamic trees)

