
Parallel Sorting Excercise

Prof. Peter Sanders, Vitaly Osipov, Yaroslav Akhremtsev

November 5, 2014

1 Problem Statement

Sorting is a basic operation involved in many algorithms as a subroutine. There-
fore it is important to provide a fast sorting primitive that exploits parallelism
available in current architectures. In this exercise we develop different sort-
ing algorithms using different technologies for parallel programming, such as
OpenMP, C++11 STL Threads library, Intel TBB, Open MPI?, Cuda?

2 Plan of Work

2.1 Preliminaries

• Split in groups of size at most 2.

• Get to know the GIT version system and register at https://education.
github.com/pack/join. As a student you will get a possibility to create
free private repositories on the github. All the source code should be
submitted to github. Each member of the group has to submit under
her/his own account.

• Please comment the code, so that we can see what the code does in the
source files.

• Use your private laptops to debug the code, try to keep only the correct
code in github.

• As soon as you push your code into the github it will be automatically
uploaded into our continuous integration system, compiled, and undergo
some correctness tests and benchmarks. The exact input/output formats
will be formalized later. You will be able to see the console output of your
program on our servers.

2.2 Naive Quicksort

As a warm-up we propose to implement a naive quicksort algorithm using a
technology of your choice.

1



• Get to know how the algorithm works.

• Implement serial quicksort and use it as correctness test for your parallel
implementation.

• Do not parallelize partitioning, only the recursive calls should be paral-
lelized.

• Choose your favorite parallel programming technology and implement a
parallel version of the algorithm.

2.3 Your Favorite Sort

• Choose your favorite sorting algorithm from: ”non-naive” quicksort, in-
place quicksort, merge sort, sample sort, radix sort. And send your pref-
erence list including all algorithms to osipov@kit.edu (from the most pre-
ferred to the least preferred). The algorithms will be distributed in the
”first come first serve” order.

• Get to know how the algorithm works.

• Implement a serial version of the algorithm.

• Which parts of the algorithm allow parallelization?

• Choose your favorite parallel programming technology and implement a
parallel version of the algorithm.

• Define and choose the best tuning parameters of the algorithm.

• Benchmark your implementation and compare with the results of the other
groups.

2.4 Presentation

• The exact format will be defined later.

2


