1

Parallel Sorting Excercise

Prof. Peter Sanders, Vitaly Osipov, Yaroslav Akhremtsev
November 5, 2014

Problem Statement

Sorting is a basic operation involved in many algorithms as a subroutine. There-
fore it is important to provide a fast sorting primitive that exploits parallelism
available in current architectures. In this exercise we develop different sort-
ing algorithms using different technologies for parallel programming, such as
OpenMP, C++11 STL Threads library, Intel TBB, Open MPIT*, Cuda*

2

2.1

2.2

Plan of Work

Preliminaries
Split in groups of size at most 2.

Get to know the GIT version system and register at https://education.
github.com/pack/join. As a student you will get a possibility to create
free private repositories on the github. All the source code should be
submitted to github. Each member of the group has to submit under
her/his own account.

Please comment the code, so that we can see what the code does in the
source files.

Use your private laptops to debug the code, try to keep only the correct
code in github.

As soon as you push your code into the github it will be automatically
uploaded into our continuous integration system, compiled, and undergo
some correctness tests and benchmarks. The exact input/output formats
will be formalized later. You will be able to see the console output of your
program on our servers.

Naive Quicksort

As a warm-up we propose to implement a naive quicksort algorithm using a
technology of your choice.



2.3

2.4

Get to know how the algorithm works.

Implement serial quicksort and use it as correctness test for your parallel
implementation.

Do not parallelize partitioning, only the recursive calls should be paral-
lelized.

Choose your favorite parallel programming technology and implement a

parallel version of the algorithm.

Your Favorite Sort

Choose your favorite sorting algorithm from: “non-naive” quicksort, in-
place quicksort, merge sort, sample sort, radix sort. And send your pref-
erence list including all algorithms to osipov@kit.edu (from the most pre-
ferred to the least preferred). The algorithms will be distributed in the
"first come first serve” order.

Get to know how the algorithm works.
Implement a serial version of the algorithm.
Which parts of the algorithm allow parallelization?

Choose your favorite parallel programming technology and implement a
parallel version of the algorithm.

Define and choose the best tuning parameters of the algorithm.
Benchmark your implementation and compare with the results of the other

groups.

Presentation

The exact format will be defined later.



