
INSTITUTE OF THEORETICAL INFORMATICS – ALGORITHMICS

Thrill :
Distributed Big Data Batch Processing in C++
Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students | 2016-01-19

KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association www.kit.edu

http://www.kit.edu

Example T = [
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

dbadcbccbabdcc$]
SAi LCPi TSAi...n

14 - $
9 0 a b d c c $
2 1 a d c b c c b a b d c c $
8 0 b a b d c c $
1 2 b a d c b c c b a b d c c $
5 1 b c c b a b d c c $
10 1 b d c c $
13 0 c $
7 1 c b a b d c c $
4 2 c b c c b a b d c c $
12 1 c c $
6 2 c c b a b d c c $
0 0 d b a d c b c c b a b d c c $
3 1 d c b c c b a b d c c $
11 2 d c c $

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 2 / 25

bwUniCluster
512 x 16 cores, 64 GB RAM

© KIT (SCC)

Suffix Sorting with DC3: Example

[d b a c b a c b d $ $]T = = [ti]i=0,...,n−1

0 1 2 3 4 5 6 7 8 9 10

(bac,1), (bac,4), (bd$,7), (acb,2) (acb,5), (d$$,8)triples

(acb,2) (acb,5), (bac,1), (bac,4), (bd$,7), (d$$,8)sorted
0 0 1 0 1 1equal 0/1
0 0 1 1 2 3prefix sum

1 1 2 0 0 3 $R =

3 4 0 1 2 5 $SAR = 2 3 4 0 1 5 $ISAR =

r1 r4 r7 r2 r5 r8

[(d, b, 2, 0, 0), (c, b, 3, 1, 3), (c, b, 4, 5, 6)]

[(2, b, 0, 1), (3, b, 1, 4), (4, b, 5, 7)]

[(0, a, c, 3, 2), (1, a, c, 4, 5), (5, d, $, 6, 8)]

S0 =

S1 =

S2 =

(ti , ti+1, ri+1, ri+2, i)

(ri+1, ti+1, ri+2, i+1)

(ri+2, ti+2, t ′
i+3, r ′

i+4, i+2)

Merge(Sort(S0), Sort(S1), Sort(S2))SAT =
Θ(sort(n))

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 4 / 25

Flavours of Big Data Frameworks
High Performance Computing (Supercomputers)
MPI

Batch Processing
Google’s MapReduce, Hadoop MapReduce , Apache Spark ,
Apache Flink (Stratosphere), Google’s FlumeJava.

Real-time Stream Processing
Apache Storm , Apache Spark Streaming, Google’s MillWheel.

Interactive Cached Queries
Google’s Dremel, Powerdrill and BigQuery, Apache Drill .

Sharded (NoSQL) Databases and Data Warehouses
MongoDB , Apache Cassandra, Apache Hive, Google BigTable,
Hypertable, Amazon RedShift, FoundationDB.

Graph Processing
Google’s Pregel, GraphLab , Giraph , GraphChi.

Time-based Distributed Processing
Microsoft’s Dryad, Microsoft’s Naiad.

What is Map/Reduce?

Time Money

Money Power

Happy Time Money

(Time,1)
(Money,1)

(Money,1)
(Power,1)

(Happy,1)
(Time,1)

(Money,1)

Map
(Happy,1)

(Money,1)
(Money,1)
(Money,1)

(Power,1)

(Time,1)
(Time,1)

Shuffle
(Happy,1)

(Money,3)

(Power,1)

(Time,2)

Reduce

Computation model popularized in 2004
by Google with the name MapReduce.

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 6 / 25

Why Map/Reduce?

Changes the perspective from the number of processors
to how data is processed.

A simple algorithmic and programming abstraction with

automatic parallelization of
independent operations (map) and aggregation (reduce),

automatic distribution and balancing of data and work,

automatic fault tolerance versus hardware errors.

⇒ MapReduce framework

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 7 / 25

Where is Map/Reduce?

Programming model for (highly) distributed system

Implementations, e.g., in
and other experimental frameworks (some also in C++):
(Boost.MapReduce, Sector/Sphere, mapreduce-lite).

for calculations like: PageRank (spare matrix multiplication),
parallel image processing, aggregation of statistics, machine
learning, etc.

NOT the same as distributed file systems or
(distributed) databases .

And now, our’s: Thrill .

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 8 / 25

Why another Big Data Framework?

Hadoop
World Record

Spark
100 TB

Spark
1 PB

Data Size 102.5 TB 100 TB 1000 TB
Elapsed Time 72 mins 23 mins 234 mins
Nodes 2100 206 190
Cores 50400 6592 6080
Reducers 10 000 29 000 250 000
Rate 1.42 TB/min 4.27 TB/min 4.27 TB/min
Rate/node 11.2 MB/sec 345 MB/sec 375 MB/sec
Daytona Rules Yes Yes No
Environment dedicated EC2 (i2.8xlarge)

source: http://databricks.com/blog/2014/10/10/spark-petabyte-sort.html

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 9 / 25

http://databricks.com/blog/2014/10/10/spark-petabyte-sort.html

Big Data Batch Processing

InterfaceLow Level
Difficult

High Level
Simple

E
ffi

ci
en

cy
S

lo
w

Fa
st MPI

MapReduce
Hadoop

Apache
Spark

Apache
Flink

Our Requirements:

compound primitives into
complex algorithms

overlap computation and
communication,

efficient simple data types,

C++, and much more...

Lower Layers
of Thrill

New Project:
Thrill

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 10 / 25

Big Data Batch Processing

InterfaceLow Level
Difficult

High Level
Simple

E
ffi

ci
en

cy
S

lo
w

Fa
st MPI

MapReduce
Hadoop

Apache
Spark

Apache
Flink

Our Requirements:

compound primitives into
complex algorithms

overlap computation and
communication,

efficient simple data types,

C++, and much more...

Lower Layers
of Thrill

New Project:
Thrill

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 10 / 25

Big Data Batch Processing

InterfaceLow Level
Difficult

High Level
Simple

E
ffi

ci
en

cy
S

lo
w

Fa
st MPI

MapReduce
Hadoop

Apache
Spark

Apache
Flink

Our Requirements:

compound primitives into
complex algorithms

overlap computation and
communication,

efficient simple data types,

C++, and much more...

Lower Layers
of Thrill

New Project:
Thrill

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 10 / 25

Big Data Batch Processing

InterfaceLow Level
Difficult

High Level
Simple

E
ffi

ci
en

cy
S

lo
w

Fa
st MPI

MapReduce
Hadoop

Apache
Spark

Apache
Flink

Our Requirements:

compound primitives into
complex algorithms

overlap computation and
communication,

efficient simple data types,

C++, and much more...

Lower Layers
of Thrill

New Project:
Thrill

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 10 / 25

Thrill’s Design Goals

Distributed arrays of small items (characters or integers).

High-performance, parallelized C++ operations.

Locality-aware, in-memory computation.

Transparently use disk if needed
⇒ external memory algorithms.

Avoid all unnecessary round trips of data to memory (or disk).

Optimize chaining of local operations.

Current Status:

Open-Source at http://project-thrill.org and Github.

Status: prototypes of many DOps work reasonably well.

Near future: extension to distributed LCP array construction.

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 11 / 25

http://project-thrill.org

Distributed Immutable Array (DIA)

User Programmer’s View:
DIA<T> = result of an operation (local or distributed).
Model: distributed array of items T on the cluster
Cannot access items directly, instead use actions.

A

A. Map(·) =: B

B. Sort(·) =: C

PE0 PE1 PE2 PE3

Framework Designer’s View:
Goals: distribute work, optimize execution on cluster, add
redundancy where applicable. =⇒ build data-flow graph.
DIA<T> = chain of computation items
Let distributed operations choose “materialization”.

Distributed Immutable Array (DIA)

User Programmer’s View:
DIA<T> = result of an operation (local or distributed).
Model: distributed array of items T on the cluster
Cannot access items directly, instead use actions.

A

A. Map(·) =: B

B. Sort(·) =: C

PE0 PE1 PE2 PE3

Framework Designer’s View:
Goals: distribute work, optimize execution on cluster, add
redundancy where applicable. =⇒ build data-flow graph.
DIA<T> = chain of computation items
Let distributed operations choose “materialization”.

Distributed Immutable Array (DIA)

User Programmer’s View:
DIA<T> = result of an operation (local or distributed).
Model: distributed array of items T on the cluster
Cannot access items directly, instead use actions.

A

A. Map(·) =: B

B. Sort(·) =: C

PE0 PE1 PE2 PE3

A

B := A. Map()

C := B. Sort()

C
Framework Designer’s View:

Goals: distribute work, optimize execution on cluster, add
redundancy where applicable. =⇒ build data-flow graph.
DIA<T> = chain of computation items
Let distributed operations choose “materialization”.

List of Primitives

Local Operations (LOp): input is one item, output ≥ 0 items.
Map(), Filter(), FlatMap().

Distributed Operations (DOp): input is a DIA, output is a DIA.
Sort() Sort a DIA using comparisons.

ShuffleReduce() Shuffle with Key Extractor, Hasher, and
associative Reducer.

PrefixSum() Compute (generalized) prefix sum on DIA.
Windowk () Scan all k consecutive DIA items.

Concat() Concatenate two or more DIAs of equal type.
Zip() Combine equal sized DIAs item-wise.

Merge() Merge equal typed DIAs using comparisons.

Actions: input is a DIA, output: ≥ 0 items on master.
At(), Min(), Max(), Sum(), Sample(), pretty much still open.

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 13 / 25

Exert of DC3’s Data-Flow Graph
R := (r , i)

A := R. Sort(by r)

Filter(i < nmod1) Filter(i ≥ nmod1)

R1 := Map((r , i)→ (i)) R2 := Map((r , i)→ (i))

Zip((ti , ti+1, ti+2), (r1), (r2))

Window3(ti → (ti , ti+1, ti+2))

T = (t)

R1 = (r1) R2 = (r2)

Window2((T , r1, r2)i , (T ′, r ′
1, r ′

2)i+1)

M = (T , r1, r2)
T = (ti , ti+1, ti+2)

Map((ti , ti+1, r1, r2, i)) Map((r1, ti+1, r2, i + 1)) Map((r2, ti+2, t ′
i , r ′

1, i + 2))

Sort(by (ti , r1)) Sort(by (r1)) Sort(by (r2))

A Suffix Sorting Algorithm: DC3

Execution on Cluster

Compute Compute Compute Compute

network

Compile program into one binary, running on all nodes.

Collective coordination of work on compute nodes, like MPI.

Control flow is decided on by using C++ statements.

Runs on MPI clusters and on Amazon’s EC2 cloud.

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 16 / 25

Layers of Thrill

api: High-level User Interface
DIA<T>, Map, FlatMap, Filter, Reduce, Sort, Merge, ...

core: Internal Algorithms
reducing hash tables (bucket and linear probing), multiway
merge, stage executor

data: Data Layer
Block, File, BlockQueue,
Reader, Writer, Multiplexer,
Streams, BlockPool (paging)

net: Network Layer
(Binomial Tree) Broadcast,
Reduce, AllReduce, Async-
Send/Recv, Dispatcher
Backends: mock, TCP, MPIio: Async File I/O

borrowed from STXXL
common: Common Tools
Logger, Delegates, Math, ...

mem: Memory Limitation
Allocators, Counting

Parallel Algorithms Lecture and Thrill

Thrill contains many things you learned in this lecture:

DOps are BSP-style communications primitives. LOps are
inlined into them.

Network layer’s Broadcast(), Reduce(), etc are binomial tree
algorithms. Prefixsum() is a hypercube algorithm.

Sort() is a distributed external sample sort.

Merge() uses distributed multisequence selection to balance
result.

In future (like bachelor/master theses): add more advanced things
like distributed hashing, Bloom filters, etc to Thrill.

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 18 / 25

Mapping Data-Flow Nodes to Cluster

A := Read()

B := A. Sort()

C := B. Map()D

E := Zip(C, D)

E. WriteFs()

Master PE 0

A := Read[0, n
2)
()

pre-op: sample, store

exchange samples

post-op: transmit and sort

C := B. Map()D[0, m
2)

pre-op: store

align arrays (exchange)

post-op: zip lambda

E. WriteFs
[0, `

2)
()

PE 1

A := Read[n
2 ,n)()

pre-op: sample, store

exchange samples

post-op: transmit and sort

C := B. Map() D[m
2 ,m)

pre-op: store

align arrays (exchange)

post-op: zip lambda

E. WriteFs
[`

2 ,`)
()

Sorting DOp

pre-op: sample

save to disk when/if full

broadcast splitters, build tree
in parallel: distribute to PEs,
sort and save to disk if full

input

output

input

output

samples

< < < < < <<

external multiway merge

pre-op: sample

save to disk when/if full

broadcast splitters, build tree
in parallel: distribute to PEs,
sort and save to disk if full

samples

< < < < < <<
external multiway merge

Timing: Word-Count Weak-ScalingBenchmarks: Weak-Scaling[2]

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140

T
im

e
 p

e
r

E
le

m
e

n
t

[n
s
]

#Cores

Weak-Scaling

framework=Spark
framework=Thrill

Sebastian Lamm – Thrill - Chaining and Applications
Institute of Theoretical Informatics – Algorithmics II 23. September 2015 19 / 23
Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 21 / 25

Speedup: Word-Count Weak-ScalingBenchmarks: Weak-Scaling[2]

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140

S
p

e
e

d
u

p
 T

h
ri
ll

o
v
e

r
S

p
a

rk

#Cores

Weak-Scaling

framework=Spark
framework=Thrill

Sebastian Lamm – Thrill - Chaining and Applications
Institute of Theoretical Informatics – Algorithmics II 23. September 2015 19 / 23
Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 22 / 25

Timing: Word-Count Strong-ScalingBenchmarks: Strong-Scaling[2]

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140

T
im

e
 p

e
r

E
le

m
e

n
t

[n
s
]

#Cores

Strong-Scaling (128GB total)

framework=Spark
framework=Thrill

Sebastian Lamm – Thrill - Chaining and Applications
Institute of Theoretical Informatics – Algorithmics II 23. September 2015 20 / 23
Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 23 / 25

Speedup: Word-Count Strong-ScalingBenchmarks: Strong-Scaling[2]

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140

S
p

e
e

d
u

p
 T

h
ri
ll

o
v
e

r
S

p
a

rk

#Cores

Strong-Scaling (128GB total)

framework=Spark
framework=Thrill

Sebastian Lamm – Thrill - Chaining and Applications
Institute of Theoretical Informatics – Algorithmics II 23. September 2015 20 / 23
Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 24 / 25

Current and Future Work

Open-Source at http://project-thrill.org and Github.

High quality, very modern C++14 code.

Some Master thesis ideas:

Distributed rank()/select() and wavelet tree construction.

Distributed query processing.

Communication efficient distributed operations for Thrill.

Thank you for your attention!

Questions?

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students – Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics – Algorithmics January 19nd, 2016 25 / 25

http://project-thrill.org

	Suffix and LCP Array

