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Example T = [
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

dbadcbccbabdcc$]
SAi LCPi TSAi...n

14 - $
9 0 a b d c c $
2 1 a d c b c c b a b d c c $
8 0 b a b d c c $
1 2 b a d c b c c b a b d c c $
5 1 b c c b a b d c c $
10 1 b d c c $
13 0 c $
7 1 c b a b d c c $
4 2 c b c c b a b d c c $
12 1 c c $
6 2 c c b a b d c c $
0 0 d b a d c b c c b a b d c c $
3 1 d c b c c b a b d c c $
11 2 d c c $
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Suffix Sorting with DC3: Example

[ d b a c b a c b d $ $ ]T = = [ ti ]i=0,...,n−1

0 1 2 3 4 5 6 7 8 9 10

(bac,1), (bac,4), (bd$,7), (acb,2) (acb,5), (d$$,8)triples

(acb,2) (acb,5), (bac,1), (bac,4), (bd$,7), (d$$,8)sorted
0 0 1 0 1 1equal 0/1
0 0 1 1 2 3prefix sum

1 1 2 0 0 3 $R =

3 4 0 1 2 5 $SAR = 2 3 4 0 1 5 $ISAR =

r1 r4 r7 r2 r5 r8

[(d, b, 2, 0, 0), (c, b, 3, 1, 3), (c, b, 4, 5, 6)]

[(2, b, 0, 1), (3, b, 1, 4), (4, b, 5, 7)]

[(0, a, c, 3, 2), (1, a, c, 4, 5), (5, d, $, 6, 8)]

S0 =

S1 =

S2 =

(ti , ti+1, ri+1, ri+2, i)

(ri+1, ti+1, ri+2, i+1)

(ri+2, ti+2, t ′
i+3, r ′

i+4, i+2)

Merge(Sort(S0), Sort(S1), Sort(S2))SAT =
Θ(sort(n))
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Flavours of Big Data Frameworks
High Performance Computing (Supercomputers)
MPI

Batch Processing
Google’s MapReduce, Hadoop MapReduce , Apache Spark ,
Apache Flink (Stratosphere), Google’s FlumeJava.

Real-time Stream Processing
Apache Storm , Apache Spark Streaming, Google’s MillWheel.

Interactive Cached Queries
Google’s Dremel, Powerdrill and BigQuery, Apache Drill .

Sharded (NoSQL) Databases and Data Warehouses
MongoDB , Apache Cassandra, Apache Hive, Google BigTable,
Hypertable, Amazon RedShift, FoundationDB.

Graph Processing
Google’s Pregel, GraphLab , Giraph , GraphChi.

Time-based Distributed Processing
Microsoft’s Dryad, Microsoft’s Naiad.



What is Map/Reduce?

Time Money

Money Power

Happy Time Money

(Time,1)
(Money,1)

(Money,1)
(Power,1)

(Happy,1)
(Time,1)

(Money,1)

Map
(Happy,1)

(Money,1)
(Money,1)
(Money,1)

(Power,1)

(Time,1)
(Time,1)

Shuffle
(Happy,1)

(Money,3)

(Power,1)

(Time,2)

Reduce

Computation model popularized in 2004
by Google with the name MapReduce.
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Why Map/Reduce?

Changes the perspective from the number of processors
to how data is processed.

A simple algorithmic and programming abstraction with

automatic parallelization of
independent operations (map) and aggregation (reduce),

automatic distribution and balancing of data and work,

automatic fault tolerance versus hardware errors.

⇒ MapReduce framework
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Where is Map/Reduce?

Programming model for (highly) distributed system

Implementations, e.g., in
and other experimental frameworks (some also in C++):
(Boost.MapReduce, Sector/Sphere, mapreduce-lite).

for calculations like: PageRank (spare matrix multiplication),
parallel image processing, aggregation of statistics, machine
learning, etc.

NOT the same as distributed file systems or
(distributed) databases .

And now, our’s: Thrill .
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Why another Big Data Framework?

Hadoop
World Record

Spark
100 TB

Spark
1 PB

Data Size 102.5 TB 100 TB 1000 TB
Elapsed Time 72 mins 23 mins 234 mins
# Nodes 2100 206 190
# Cores 50400 6592 6080
# Reducers 10 000 29 000 250 000
Rate 1.42 TB/min 4.27 TB/min 4.27 TB/min
Rate/node 11.2 MB/sec 345 MB/sec 375 MB/sec
Daytona Rules Yes Yes No
Environment dedicated EC2 (i2.8xlarge)

source: http://databricks.com/blog/2014/10/10/spark-petabyte-sort.html
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Big Data Batch Processing
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Thrill’s Design Goals

Distributed arrays of small items (characters or integers).

High-performance, parallelized C++ operations.

Locality-aware, in-memory computation.

Transparently use disk if needed
⇒ external memory algorithms.

Avoid all unnecessary round trips of data to memory (or disk).

Optimize chaining of local operations.

Current Status:

Open-Source at http://project-thrill.org and Github.

Status: prototypes of many DOps work reasonably well.

Near future: extension to distributed LCP array construction.
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Distributed Immutable Array (DIA)

User Programmer’s View:
DIA<T> = result of an operation (local or distributed).
Model: distributed array of items T on the cluster
Cannot access items directly, instead use actions.

A

A. Map(·) =: B

B. Sort(·) =: C

PE0 PE1 PE2 PE3

Framework Designer’s View:
Goals: distribute work, optimize execution on cluster, add
redundancy where applicable. =⇒ build data-flow graph.
DIA<T> = chain of computation items
Let distributed operations choose “materialization”.



Distributed Immutable Array (DIA)

User Programmer’s View:
DIA<T> = result of an operation (local or distributed).
Model: distributed array of items T on the cluster
Cannot access items directly, instead use actions.

A

A. Map(·) =: B

B. Sort(·) =: C

PE0 PE1 PE2 PE3

Framework Designer’s View:
Goals: distribute work, optimize execution on cluster, add
redundancy where applicable. =⇒ build data-flow graph.
DIA<T> = chain of computation items
Let distributed operations choose “materialization”.



Distributed Immutable Array (DIA)

User Programmer’s View:
DIA<T> = result of an operation (local or distributed).
Model: distributed array of items T on the cluster
Cannot access items directly, instead use actions.

A

A. Map(·) =: B

B. Sort(·) =: C

PE0 PE1 PE2 PE3

A

B := A. Map()

C := B. Sort()

C
Framework Designer’s View:

Goals: distribute work, optimize execution on cluster, add
redundancy where applicable. =⇒ build data-flow graph.
DIA<T> = chain of computation items
Let distributed operations choose “materialization”.



List of Primitives

Local Operations (LOp): input is one item, output ≥ 0 items.
Map(), Filter(), FlatMap().

Distributed Operations (DOp): input is a DIA, output is a DIA.
Sort() Sort a DIA using comparisons.

ShuffleReduce() Shuffle with Key Extractor, Hasher, and
associative Reducer.

PrefixSum() Compute (generalized) prefix sum on DIA.
Windowk () Scan all k consecutive DIA items.

Concat() Concatenate two or more DIAs of equal type.
Zip() Combine equal sized DIAs item-wise.

Merge() Merge equal typed DIAs using comparisons.

Actions: input is a DIA, output: ≥ 0 items on master.
At(), Min(), Max(), Sum(), Sample(), pretty much still open.
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Exert of DC3’s Data-Flow Graph
R := (r , i)

A := R. Sort(by r)

Filter(i < nmod1) Filter(i ≥ nmod1)

R1 := Map((r , i)→ (i)) R2 := Map((r , i)→ (i))

Zip((ti , ti+1, ti+2), (r1), (r2))

Window3(ti → (ti , ti+1, ti+2))

T = (t)

R1 = (r1) R2 = (r2)

Window2((T , r1, r2)i , (T ′, r ′
1, r ′

2)i+1)

M = (T , r1, r2)
T = (ti , ti+1, ti+2)

Map((ti , ti+1, r1, r2, i)) Map((r1, ti+1, r2, i + 1)) Map((r2, ti+2, t ′
i , r ′

1, i + 2))

Sort(by (ti , r1)) Sort(by (r1)) Sort(by (r2))



A Suffix Sorting Algorithm: DC3



Execution on Cluster

Compute Compute Compute Compute

network

Compile program into one binary, running on all nodes.

Collective coordination of work on compute nodes, like MPI.

Control flow is decided on by using C++ statements.

Runs on MPI clusters and on Amazon’s EC2 cloud.
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Layers of Thrill

api: High-level User Interface
DIA<T>, Map, FlatMap, Filter, Reduce, Sort, Merge, ...

core: Internal Algorithms
reducing hash tables (bucket and linear probing), multiway
merge, stage executor

data: Data Layer
Block, File, BlockQueue,
Reader, Writer, Multiplexer,
Streams, BlockPool (paging)

net: Network Layer
(Binomial Tree) Broadcast,
Reduce, AllReduce, Async-
Send/Recv, Dispatcher
Backends: mock, TCP, MPIio: Async File I/O

borrowed from STXXL
common: Common Tools
Logger, Delegates, Math, ...

mem: Memory Limitation
Allocators, Counting



Parallel Algorithms Lecture and Thrill

Thrill contains many things you learned in this lecture:

DOps are BSP-style communications primitives. LOps are
inlined into them.

Network layer’s Broadcast(), Reduce(), etc are binomial tree
algorithms. Prefixsum() is a hypercube algorithm.

Sort() is a distributed external sample sort.

Merge() uses distributed multisequence selection to balance
result.

In future (like bachelor/master theses): add more advanced things
like distributed hashing, Bloom filters, etc to Thrill.
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Mapping Data-Flow Nodes to Cluster

A := Read()

B := A. Sort()

C := B. Map()D

E := Zip(C, D)

E. WriteFs()

Master PE 0

A := Read[0, n
2 )
()

pre-op: sample, store

exchange samples

post-op: transmit and sort

C := B. Map()D[0, m
2 )

pre-op: store

align arrays (exchange)

post-op: zip lambda

E. WriteFs
[0, `

2 )
()

PE 1

A := Read[ n
2 ,n)()

pre-op: sample, store

exchange samples

post-op: transmit and sort

C := B. Map() D[ m
2 ,m)

pre-op: store

align arrays (exchange)

post-op: zip lambda

E. WriteFs
[ `

2 ,`)
()



Sorting DOp

pre-op: sample

save to disk when/if full

broadcast splitters, build tree
in parallel: distribute to PEs,
sort and save to disk if full

input

output

input

output

samples

< < < < < <<

external multiway merge

pre-op: sample

save to disk when/if full

broadcast splitters, build tree
in parallel: distribute to PEs,
sort and save to disk if full

samples

< < < < < <<
external multiway merge



Timing: Word-Count Weak-ScalingBenchmarks: Weak-Scaling[2]
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Speedup: Word-Count Weak-ScalingBenchmarks: Weak-Scaling[2]
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Timing: Word-Count Strong-ScalingBenchmarks: Strong-Scaling[2]
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Current and Future Work

Open-Source at http://project-thrill.org and Github.

High quality, very modern C++14 code.

Some Master thesis ideas:

Distributed rank()/select() and wavelet tree construction.

Distributed query processing.

Communication efficient distributed operations for Thrill.

Thank you for your attention!

Questions?
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